Устройство гидроакустической визуализации

Использование: изобретение относится к области гидроакустической техники и может быть использовано при поиске и распознавании подводных объектов в условиях ограниченной оптической видимости на основе формирования их акустического изображения. Сущность: устройство гидроакустической визуализации, содержащее размещенные в герметичном корпусе антенный блок, включающий установленные в одной плоскости перпендикулярно продольной оси герметичного корпуса излучающую и приемную многоэлементные решетки в виде взаимно перпендикулярных линеек, генератор излучаемого сигнала, соединенную с его выходом многоотводную линию задержки, многоканальный усилитель, выход которого соединен с излучающей многоэлементной решеткой, блок обработки принятого сигнала, включающий последовательно соединенные с выходом приемной антенной решетки приемный усилитель, аналого-цифровой преобразователь, формирователь характеристик направленности и блок вычисления корреляционной функции, второй вход которого подключен к выходу генератора излучаемого сигнала, а также размещенный в герметичном корпусе блок графического отображения акустического изображения, содержащий видеоконтроллер, соединенный кабельной линией связи с выходом блока обработки принятого сигнала, графический дисплей, соединенный с выходом видеоконтроллера, и пульт управления, подключенный к входу видеоконтроллера, снабжено блоком коммутаторов, включенным между многоотводной линией задержки и многоканальным усилителем, и блоком формирования линейно возрастающих времен задержки, включенным между генератором излучаемого сигнала и блоком коммутаторов, при этом управляющий вход блока коммутаторов соединен через кабельную линию связи с пультом управления блока отображения графической информации. Изобретение позволяет существенно увеличить скорость обзора пространства в режиме поиска (режим 2D) за счет облучения всего пространства обзора всего за одну посылку зондирующего сигнала. При необходимости распознавания обнаруженного подводного объекта включается режим 3D, который позволяет воспроизводить его трехмерное изображение, существенно расширяя при этом возможность распознавания. Технический результат: увеличение скорости обзора пространства в режиме поиска за счет обзора всего освещаемого пространства всего за одну посылку зондирующего сигнала. 3 ил.

 

Изобретение относится к области гидроакустической техники и может быть использовано при поиске и распознавании подводных объектов в условиях ограниченной оптической видимости на основе формирования их акустического изображения.

Известно устройство гидроакустической визуализации подводного пространства в условиях ограниченной видимости, содержащее двухмерную антенную приемо-излучающую решетку, многопозиционные переключатели, обеспечивающие переключение режимов приема и передачи акустических колебаний, акустическую линзу, обеспечивающую фокусировку, а также блоки обработки и отображения информации на дисплее (см., например, Системы акустического изображения, под ред. Г. Уэйда, Ленинград, Изд-во «Судостроение», 1981 г., стр. 133-134).

Недостатком устройства является плохое качество изображения из-за наличия помех от интерференции сигналов с боковых лепестков, а также искажений сигнала на линзе.

Известно устройство гидроакустической визуализации подводного пространства в условиях ограниченной видимости, содержащее электрический генератор, подключенный к пьезоэлектрическому излучателю (прожектору), приемный блок, включающий звуковой объектив, приемную пьезоэлектрическую матрицу, электронно-лучевой коммутатор, усилитель, а также видеоконтрольное устройство, включающее блок строчной и кадровой разверток, видеоусилитель и кинескоп, либо иное устройство отображения (см., например, «Подводная система звуковидения», Научно-производственное предприятие «Гамма», Заявка на изобретение РФ №99115047 от 14.03.1990 г., www.nppgamma.com).

Недостатком устройства является плохое качество изображения из-за наличия помех от интерференции сигналов с боковых лепестков, а также искажений сигнала на линзе.

Известно устройство гидроакустической визуализации подводного пространства в условиях ограниченной видимости, содержащее размещенные в герметичном корпусе антенный блок, блок генерации излучаемого сигнала, блок обработки принятого сигнала, а также размещенный в герметичном корпусе блок графического отображения акустического изображения, соединенный кабельной линией связи с выходом блока обработки принятого сигнала, при этом антенный блок содержит жидкостную акустическую линзу, фокусирующую звуковое изображение на вращающуюся линейку электроакустических преобразователей, состоящую из 32 элементов, расположенных по радиусу, причем электроакустические преобразователи одновременно являются излучателями, блок обработки принятого сигнала выполнен в виде электронно-оптического преобразователя, состоящего из 32 светодиодов, расположенных в том же порядке, что и приемные элементы импульсного генератора, а блок графического отображения акустического изображения размещен на маске водолаза (см., например, П. Грегуш, Звуковидение, Перевод с англ. Под ред. Света В.Д., М., изд-во «Мир», 1982 г., стр. 168-169).

Недостатком этого устройства является плохое качество изображения из-за наличия помех от интерференции сигналов с боковых лепестков и от вращающихся деталей, а также искажений сигнала на линзе.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является известное устройство гидроакустической визуализации, содержащее размещенные в герметичном корпусе антенный блок, блок генерации излучаемого сигнала, блок обработки принятого сигнала, а также размещенный в герметичном корпусе блок графического отображения акустического изображения, соединенный кабельной линией связи с выходом блока обработки принятого сигнала, при этом антенный блок содержит установленные в одной плоскости перпендикулярно продольной оси герметичного корпуса излучающую и приемную многоэлементные решетки в виде взаимно перпендикулярных линеек, блок генерации излучаемого сигнала содержит последовательно соединенные генератор, многоотводную линию задержки и многоканальный усилитель, выход которого соединен с излучающей многоэлементной решеткой, блок обработки принятого сигнала содержит последовательно соединенные с выходом приемной антенной решетки приемный усилитель, аналого-цифровой преобразователь, формирователь характеристик направленности и блок вычисления корреляционной функции, второй вход которого подключен к выходу генератора, а блок графического отображения акустического изображения содержит видеоконтроллер, соединенный кабельной линией связи с выходом блока вычисления корреляционной функции, графический дисплей, соединенный с выходом видеоконтроллера, и пульт управления, подключенный к входу видеоконтроллера (Патент РФ №2457145, МПК В63С 11/48, от 20.01.2011 г.).

Недостатком этого устройства является малая скорость обзора всего сектора из-за последовательного характера его облучения узким лучом. Из-за малой скорости распространения звука в воде общее время облучения всего сектора может оказаться весьма большим. Так при шкале дистанций 75 м и числе посылок зондирующего сигнала 100 общее время, необходимое для обзора всего сектора облучения, составляет не менее 10 секунд.

Техническим результатом изобретения является увеличение скорости обзора пространства в режиме поиска за счет обзора всего освещаемого пространства всего за одну посылку зондирующего сигнала.

Технический результат достигается за счет того, что устройство гидроакустической визуализации, содержащее размещенные в герметичном корпусе антенный блок, включающий установленные в одной плоскости перпендикулярно продольной оси герметичного корпуса излучающую и приемную многоэлементные решетки в виде взаимно перпендикулярных линеек, генератор излучаемого сигнала, соединенную с его выходом многоотводную линию задержки, многоканальный усилитель, выход которого соединен с излучающей многоэлементной решеткой, блок обработки принятого сигнала, включающий последовательно соединенные с выходом приемной антенной решетки приемный усилитель, аналого-цифровой преобразователь, формирователь характеристик направленности и блок вычисления корреляционной функции, второй вход которого подключен к выходу генератора излучаемого сигнала, а также размещенный в герметичном корпусе блок графического отображения акустического изображения, содержащий видеоконтроллер, соединенный кабельной линией связи с выходом блока обработки принятого сигнала, графический дисплей, соединенный с выходом видеоконтроллера, и пульт управления, подключенный к входу видеоконтроллера, снабжено блоком коммутаторов, включенным между многоотводной линией задержки и многоканальным усилителем, и блоком формирования линейно возрастающих времен задержки, включенным между генератором излучаемого сигнала и блоком коммутаторов, при этом управляющий вход блока коммутаторов соединен через кабельную линию связи с пультом управления блока отображения графической информации.

Сущность изобретения поясняется чертежами. На Фиг. 1 представлена блок-схема устройства, на фиг. 2 приведена функциональная схема блока формирования линейно возрастающих времен задержки для случая нечетного числа элементов излучающей антенны, а на фиг. 3 представлен один из возможных вариантов аппаратной реализации блока формирования линейно возрастающих времен задержки.

Устройство гидроакустической визуализации согласно изобретению содержит размещенные в герметичном корпусе 1 антенный блок, включающий установленные в одной плоскости перпендикулярно продольной оси герметичного корпуса 1 излучающую 2 и приемную 3 многоэлементные решетки в виде взаимно перпендикулярных линеек, генератор излучаемого сигнала 4, соединенную с его выходом многоотводную линию задержки 5, многоканальный усилитель 6, выход которого соединен с излучающей многоэлементной решеткой 2, блок обработки принятого сигнала, включающий последовательно соединенные с выходом приемной антенной решетки 3 приемный усилитель 7, аналого-цифровой преобразователь 8, формирователь характеристик направленности 9 и блок вычисления корреляционной функции 10, второй вход которого подключен к выходу генератора излучаемого сигнала 4, а также размещенный в герметичном корпусе блок графического отображения акустического изображения 12, содержащий видеоконтроллер 13, соединенный кабельной линией связи 11 с выходом блока вычисления корреляционной функции 10, графический дисплей 14, соединенный с выходом видеоконтроллера 13, пульт управления 15, подключенный к входу видеоконтроллера 13, при этом на дисплее 14 изображены область отображения мощности эхо-сигналов в координатах «угол приема-дистанция» 16, область отображения мощности эхо-сигналов в координатах «угол приема-угол излучения» 17 и область отображения меню 18. Устройство содержит также блок коммутаторов 19, включенный между многоотводной линией задержки 5 и многоканальным усилителем 6, и блоком формирования линейно возрастающих времен задержки 20, включенным между генератором излучаемого сигнала 4 и блоком коммутаторов 19, при этом управляющий вход блока коммутаторов 19 соединен через кабельную линию связи 11 с пультом управления 15 блока отображения графической информации 12.

Устройство работает следующим образом.

Генератор 4 формирует сигнал, подключаемый к многоотводной линии задержки 5 и к блоку формирования линейно возрастающих времен задержки 20. Блок коммутаторов 19 в зависимости от режима работы, устанавливаемого с пульта управления 15, подключает на вход многоканального усилителя мощности 6 и затем к элементам излучающей антенны 2 сигналы с выхода либо многоканальной линии задержки 5, либо блока формирования линейно возрастающих времен задержки 20.

В режиме 3D излучаемые сигналы формируются многоотводной линией задержки 5. В результате сложения в воде акустических сигналов, излученных в этом режиме всеми элементами антенны, формируется луч, узкий в плоскости, проходящей через линию излучающей антенны 2 и широкий - в перпендикулярной плоскости. Угол наклона луча относительно линии антенны зависит от времени задержки сигнала на соседних отводах многоотводной линии задержки 5. Путем изменения этого времени при посылке очередного зондирующего сигнала осуществляется последовательное сканирование пространства во всем заданном секторе углов.

В режиме 2D весь заданный сектор углов облучается за одну посылку зондирующего сигнала. В этом режиме коммутатор 19 подключает к элементам излучающей антенны сигналы с выхода блока формирования линейно возрастающих времен задержки 20. Временной сдвиг сигналов, формируемых этим блоком, возрастает от элемента к элементу на величину:

где d - шаг между элементами излучающей антенны;

Δφ - общая ширина сектора облучения;

с - скорость звука в воде;

М - целое число, определяемое количеством элементов излучающей антенны N:

где функция Е() вычисляет целую часть аргумента.

Для случая нечетного числа элементов излучающей антенны число М является номером центрального элемента антенны. На этот элемент в режиме 2D подается непосредственно входной сигнал. Сигнал с выхода первой линии задержки предназначается для элементов антенны, соседних с центральным, сигнал с выхода второй линии задержки, задержанный еще на время 2·Δt, предназначается для элементов, отстоящих на 2 шага от центрального и т.д. Сигнал с выхода последней линии задержки, задержанный еще на время (М-1)·Δt, предназначается для крайних элементов излучающей антенны. В одном из возможных вариантов аппаратной реализации блока формирования временных задержек (фиг. 3) в качестве линий задержки используются сдвиговые регистры CP1, СР2…, состоящие из последовательно соединенных D-триггеров. Время задержки равно произведению числа D-триггеров на период следования тактовых импульсов Clk. Число D-триггеров в первой линии задержки равно NT=Δt·FClk, где FClk - тактовая частота D-триггера. Число триггеров во второй линии задержки равно 2·NT, в третьей - 3·NT и т.д.

После каждого облучения отраженные эхо-сигналы от подводных объектов, находящихся в области облучения, принимаются элементами приемной антенны 3 и последовательно поступают на многоканальный усилитель 7, аналого-цифровой преобразователь 8, формирователь характеристик направленности 9 и блок вычисления корреляционной функции 10. Элементы приемной антенны 3 располагаются вдоль прямой линии, перпендикулярной линии элементов излучающей антенны 2. Характеристика направленности такой антенны имеет малую ширину в плоскости, проходящей через линию антенны, и большую в перпендикулярной плоскости. При формировании веера характеристик направленности приемной антенны 3 осуществляется параллельный обзор пространства вдоль всего сектора облучения. Обзор пространства по третьей координате - дистанции осуществляется путем вычисления корреляционной функции принятого сигнала с излученным. На выходе блока вычисления корреляционной функции 10 формируется совокупность оценок мощности эхо-сигнала с каждого элементарного участка озвучиваемого пространства. Таким образом, устройство за каждый цикл работы производит обзор окружающего подводного пространства по всем трем координатам в пределах заданных границ.

Полученные оценки мощности эхо-сигнала по кабельной линии связи 11 поступают на блок графического отображения акустического изображения 12, включающий видеоконтроллер 13, дисплей 14 и пульт управления 15. Видеоконтроллер 13 в соответствии с заложенным программным обеспечением на основе информации, поступающей из антенного блока 3 и пульта управления 15, осуществляет формирование графического изображения, выводимого на графический дисплей 14. Экран дисплея разделен на 3 области. В области 16 отображается распределение мощности эхо-сигнала в координатах угол приема - дистанция. В области 17 отображается распределение уровней сигнала по координатам угол излучения - угол приема. В области 18 в символьном виде выводятся режимы и параметры графического отображения.

Распределение мощности эхо-сигнала в координатах угол приема - дистанция в области 16 дисплея 14 в зависимости от выбранного режима отображается либо для текущего угла облучения, либо для суммарного сигнала в заданном секторе облучения. Границы сектора облучения задаются с помощью пульта управления 15. В области 17 выводится либо максимальное значение сигнала в выбранном интервале дистанций, либо суммарное. Причем границы интервала также задаются с помощью пульта управления.

Изобретение позволяет существенно увеличить скорость обзора пространства в режиме поиска (режим 2D) за счет облучения всего пространства обзора всего за одну посылку зондирующего сигнала. При необходимости распознавания обнаруженного подводного объекта включается режим 3D, который позволяет воспроизводить его трехмерное изображение, существенно расширяя при этом возможность распознавания.

Устройство гидроакустической визуализации, содержащее размещенные в герметичном корпусе антенный блок, включающий установленные в одной плоскости перпендикулярно продольной оси герметичного корпуса излучающую и приемную многоэлементные решетки в виде взаимно перпендикулярных линеек, генератор излучаемого сигнала, соединенную с его выходом многоотводную линию задержки, многоканальный усилитель, выход которого соединен с излучающей многоэлементной решеткой, блок обработки принятого сигнала, включающий последовательно соединенные с выходом приемной антенной решетки приемный усилитель, аналого-цифровой преобразователь, формирователь характеристик направленности и блок вычисления корреляционной функции, второй вход которого подключен к выходу генератора излучаемого сигнала, а также размещенный в герметичном корпусе блок графического отображения акустического изображения, содержащий видеоконтроллер, соединенный кабельной линией связи с выходом блока обработки принятого сигнала, графический дисплей, соединенный с выходом видеоконтроллера, и пульт управления, подключенный к входу видеоконтроллера, отличающееся тем, что оно снабжено блоком коммутаторов, включенным между многоотводной линией задержки и многоканальным усилителем, и блоком формирования линейно возрастающих времен задержки, включенным между генератором излучаемого сигнала и блоком коммутаторов, при этом управляющий вход блока коммутаторов соединен через кабельную линию связи с пультом управления блока отображения графической информации.



 

Похожие патенты:

Изобретение относится к акустическим измерениям и может быть использовано для измерения скорости звука в естественных водоемах. Предложен способ акустического мониторинга изменчивости параметров морских акваторий, заключающийся в формировании в морской среде акустической трассы распространения звука и обработке принятого приемным элементом трассы акустического сигнала, которой включает измерение скорости распространения звука, температуры и давления в образцовой зоне водоема на фиксированных горизонтах, свободной от загрязнений техногенного характера, при этом полученные значения измеренной скорости распространения звука являются эталонными значениями для данного водоема и заносятся в память вычислительного устройства средства акустического мониторинга, при формировании в морской среде акустической трассы распространения звука и обработке принятого приемным элементом трассы акустического сигнала, измерения скорости распространения звука выполняют при температуре и давлении, соответствующих температуре и давлению полученных эталонных значений скорости распространения звука на фиксированных горизонтах акватории исследуемого водоема.

Изобретение относится к гидроакустической технике, в частности к области активной гидролокации. Согласно изобретению активный гидролокатор, включает процессорный блок, приемо-передающий блок, соединительный кабель от процессорного к приемо-передающему блоку, антенный блок гидролокатора со встроенным сигнальным и управляющим кабелем, при этом приемо-передающий блок выполнен выносным и содержит две фазируемые антенные решетки, работающие в паре, одна из которых - излучающая с веерной диаграммой направленности, установлена внутри корпуса с возможностью вращения в горизонтальной плоскости вокруг оси, проходящей через ее геометрический центр, а другая - приемная антенная решетка, неподвижно закреплена на корпусе и выполнена в виде кольца, охватывающего герметичный корпус, заполненный жидкостью для компенсации гидростатического давления внешней среды.
Применение: Изобретение относится к области рыболовства и предназначено для диагностики гидробионтов (обнаружения, определения местоположения и перемещения, вида, возраста, пола и состояния).

Изобретение относится к гидролокации, конкретно к пассивным способам акустического обнаружения и локации подводных пловцов в толще воды, и может быть использовано при проведении подводных поисковых и спасательных работ, осуществлении охраны береговых сооружений и пляжей со стороны водной среды или охраны подводных сооружений, а также охраны судов на якорной стоянке, морских нефтяных платформ, входов в порты, опор мостов, каналов, акваторий гидростанций.

Изобретение относится к области подводной навигации и, в частности, может быть использовано для определения собственных координат АНПА при его перемещении подо льдом в высоких арктических широтах.

Настоящее изобретение относится к области гидроакустики и может быть использовано для разработки гидроакустической аппаратуры различного назначения. Способ позволяет автоматически обнаруживать гидроакустические сигналы шумоизлучения объектов.

Изобретение относится к области гидроакустики, а именно к конструированию многоэлементных антенн гидроакустических комплексов надводных кораблей и подводных лодок. Предложена многоэлементная гидроакустическая антенна, содержащая основание, на котором закреплены секции, в которых размещены стержневые пьезокерамические преобразователи, каждая секция заключена в герметичный корпус и содержит на лицевой стороне пластину, в отверстиях которой установлены передние накладки стержневых пьезокерамических преобразователей, герметично соединенные со стенками отверстий резиновыми развязками-уплотнениями, и каждая секция имеет электрический вывод.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов.

Изобретение относится к техническим средствам охраны объектов со стороны водной среды с прямой передачей информации в пункт приема об обнаруженных подводных целях через границу вода-воздух на основе эффекта параметрического взаимодействия электромагнитных и акустических колебаний, организованных на границе вода-воздух.

Изобретение относится к освоению подводных месторождений полезных ископаемых, преимущественно жидких и газообразных, а именно к сооружению технологических комплексов, предназначенных для обустройства морских глубоководных нефтегазовых месторождений и работающих в экстремальных условиях.
Изобретение относится к телеуправляемым подводным робототехническим системам, обеспечивающим высокоточное обследование, фотовидеосъемку и профилирование подводных протяженных поверхностей, обследование зон обледенения корпусов судов и подводных конструкций.

Изобретение относится к области судостроения, а более конкретно - к техническим средствам для обеспечения технического обслуживания и ремонта подводных добычных комплексов и доставки технологического оборудования с борта надводного обеспечивающего судна на дно акватории, и может быть использовано при создании подводных аппаратов для выполнения работ на подводных добычных комплексах в арктических ледовых условиях.

Изобретение относится к области проведения обследования необитаемым подводным аппаратом затонувших объектов в ситуация, когда в районе работ имеется сильное течение.

Изобретение относится к технике наблюдения за подводной средой. В предложенной реактивной системе освещения подводной обстановки в качестве средства доставки используется управляемая ракета.

Изобретение относится к устройствам, предназначенным для океанографических и геологических исследований, ремонтных работ, установки и обслуживания подводного оборудования.
Изобретение относится к области измерительно-исполнительных телеуправляемых роботизированных систем. .
Изобретение относится к области роботизированных комплексов для обследования, обслуживания поверхностей гидротехнических и нефтегазопромысловых сооружений в автоматизированном и телеуправляемом режимах.

Изобретение относится к области производства подводных работ для зондирования морского дна в целях донного профилирования, прокладки трасс трубопроводов с привязкой к географическим координатам, обнаружения заиленных объектов.

Изобретение относится к гидроакустической технике и может быть использовано в составе водолазного оборудования. .

Изобретение относится к способам наблюдения за подводной средой и поиска подводных объектов. Для освещения подводной обстановки осуществляют поиск подводных объектов автономным необитаемым подводным аппаратом. При движении подводного аппарата по заданному маршруту перед пуском обнаруживают подводный объект и сообщают об обнаружении его на надводный корабль или береговой пункт. Определяют упрежденную или расчетную точку расположения необитаемого подводного аппарата и рассчитывают данные для выполнения стрельбы одним или двумя радиогидроакустическими реактивными буями. Уточняют географическое положение необитаемого подводного аппарата по известным координатам надводного корабля или берегового пункта и радиогидроакустического буя реактивного и передают на необитаемый подводный аппарат по действующей линии связи необходимые команды дистанционного управления. Достигается систематическое уточнение местоположения и дистанционного управления необитаемого подводного аппарата. 1 з.п. ф-лы, 2 табл., 8 ил.
Наверх