Система стабилизации космического аппарата

Изобретение относится к космической технике и может быть использовано для стабилизации космических аппаратов (КА). Система стабилизации КА содержит двигательную установку со сферическими баками окислителя и горючего, ракетный двигатель, каналы управления по тангажу и рысканию с датчиками угла, отклонения линейных ускорений и скорости, отклонения угловых ускорений и скорости, суммирующий усилитель, рулевые машинки, интегрирующие устройства, два логических блока, клапаны, двигатели малой тяги. Изобретение позволяет повысить надежность стабилизации КА. 3 ил.

 

Предлагаемое изобретение относится к космической технике и предназначено для обеспечения стабилизации ракетных разгонных блоков и космических аппаратов (КА).

Известны системы стабилизации КА, использующие в качестве исполнительных органов системы стабилизации электродвигатели-маховики, которые располагаются по осям стабилизации и вырабатывают управляющие динамические моменты, величина которых регулируется, например, пропорционально сигналу управления (патент SU 1839975, приоритет от 26.02.1979). Указанные системы нашли широкое применение в космической технике, но их использование связано с ограничениями по максимуму величины восстанавливающего момента, что определяется предельной скоростью вращения маховиков, поэтому при больших возмущениях реакция системы стабилизации может оказаться недостаточной. Это ограничивает применение подобных систем при стабилизации ракетных разгонных блоков.

Известны системы стабилизации КА, использующие в качестве исполнительных органов системы стабилизации маломощные реактивные двигатели, у которых рабочим телом могут служить обычные продукты сгорания химического топлива или какой-либо газ (С.И. Королев, Н.К. Матвеев. Космические аппараты серии Зенит: Уч. пособие / Балт гос. техн. ун-т, СПб., 2005). Величина создаваемого восстанавливающего момента зависит от скорости истечения и массового расхода рабочего тела, а также от размера плеча, на котором приложена сила тяги двигателя.

Такие системы могут создавать большие величины восстанавливающих моментов и быстро реагировать на возмущающие воздействия, но необходимость использования невосстанавливаемого запаса рабочего тела ограничивает их время применения. При этом возможный размер плеча, на котором приложена сила тяги двигателя, во многом определяются выбранной компоновкой КА. Так, например, для стабилизации малых и средних ракетных разгонных блоков (РБ), компоновка которых включает кольцеобразный блок баков с диаметрально противоположным расположением относительно продольной оси блока двух сферических баков окислителя, двух сферических баков горючего и двух сферических приборных отсеков, используют двухкомпонентный ракетный двигатель, установленный во внутреннем проеме блока баков вдоль продольной оси (патент RU 2043956, приоритет от 23.11.1993). Указанная компоновка использована в конструкции ракетного разгонного блока «Фрегат». Особенностью КА, имеющих подобную компоновку, является то, что плечо управляющего момента мало из-за близости точки опоры ракетного двигателя к центру масс КА. При этом кроме возмущения в виде момента возмущение в виде силы также имеет значительную величину. Применение поворотного ракетного двигателя, установленного в кардановом подвесе, при малом плече управления, определяемом расстоянием между центром тяжести КА и точкой приложения силы от двигателя, для получения управляющего момента с целью парирования возмущения, требует значительных углов и угловых скоростей поворота камеры сгорания двигателя. Это неизбежно вызывает большую составляющую боковой (поперечной) возмущающей силы. Указанные недостатки частично устраняются при установке ракетного двигателя в подвесе с возможностью осуществления плоскопараллельного перемещения подвеса с двигателем в плоскости, перпендикулярной продольной оси КА. Перемещение подвеса осуществляется с помощью рулевых машинок. Система стабилизации для КА, содержащего двигательную установку со сферическими баками окислителя и горючего, симметрично расположенными относительно продольной оси КА, и ракетный двигатель, установленный в подвесе вблизи центра масса КА с возможностью осуществления плоскопараллельного перемещения подвеса с двигателем в плоскости, перпендикулярной продольной оси КА, является наиболее близким аналогом к заявленной система стабилизации КА и выбрана в качестве прототипа, (патент RU 2090463, приоритет от 20.09.1997). Система включает канал управления по тангажу и канал управления по рысканию, каждый из которых содержит датчики отклонения линейных ускорений и скорости и датчики отклонения угловых ускорений и скорости, выходы которых через суммирующий усилитель подключены к входам рулевых машинок, обеспечивающих плоскопараллельные перемещения подвеса с двигателем. Указанная система стабилизации была использована при разработке разгонного блока «Фрегат» и позволяет повысить точность стабилизации в режиме кратковременных коррекций траектории за счет повышения точности стабилизации поперечных скоростей центра масс КА. Однако указанная система не позволяет устранить остальные проблемы стабилизации, присущие данной компоновке КА. К одной из таких проблем относится проблема разновыработки топлива из баков окислителя и горючего, что может привести к смещению центра тяжести КА к концу активных маневров до критической для обеспечения стабилизации величины, которая определяется возможно максимальным ходом штока РМ, т.е. зоной прокачки камеры двигателя. Для снижения вероятности такого развития событий приходится конструктивными способами обеспечивать необходимое исходное положение ЦТ в поперечной плоскости и путем замеров и регулировки минимизировать разницу гидравлических сопротивлений в трактах подачи компонентов топлива, что требует значительных технологических и материальных затрат и снижает надежность системы стабилизации.

Технической задачей, решаемой предлагаемым изобретением, является повышение надежности осуществления стабилизации при наличии разновыработки, способной привести к потере стабилизации КА.

Указанная задача обеспечивается тем, что в отличие от известной системы стабилизации космического аппарата (КА), содержащего двигательную установку со сферическими баками окислителя и горючего, симметрично расположенными относительно продольной оси КА, и ракетным двигателем, установленным в подвесе вблизи центра масса КА с возможностью осуществления плоскопараллельного перемещения подвеса с двигателем в плоскости, перпендикулярной продольной оси КА, включающая канал управления по тангажу и канал управления по рысканию, каждый из которых содержит датчики отклонения линейных ускорений и скорости и датчики отклонения угловых ускорений и скорости, выходы которых через суммирующий усилитель подключены к входам рулевых машинок, обеспечивающих плоскопараллельные перемещения подвеса с двигателем, новым является то, что система стабилизации снабжена датчиками угла и интегрирующими устройствами, введенными в каналы управления по тангажу и рысканию, и двумя логическими блоками, подключенными к входам клапанов, управляющих наддувом в каждом баке, что определяет расход топлива из баков окислителя и горючего и подключением двигателей малой тяги, при этом в каждом из каналов управления по тангажу и рысканию вход интегрирующего устройства подключен ко второму выходу датчика отклонения угловых ускорений и скорости, а выходы датчика угла и интегрирующего устройства подключены соответственно к третьему и четвертому входу суммирующего усилителя, пятый вход которого подключен ко вторым выходам рулевых машинок, причем входы каждого логического блока подключены к третьим выходам рулевых машинок обоих каналов.

Снабжение системы стабилизации датчиками угла и интегрирующими устройствами, введенными в каналы управления по тангажу и рысканию, и логическими блоками, подключенными к входам клапанов, управляющих наддувом и, следовательно, расходом топлива из баков окислителя и горючего и подключением двигателей малой тяги, позволяет компенсировать разновыработку топлива из баков, снизить уровень возмущений, действующих на КА, и повысить быстроту и надежность осуществления стабилизации.

При этом подключение двигателей малой тяги к процессу стабилизации позволяет компенсировать на начальном этапе стабилизации определенную инерционность реакции от перераспределения расхода топлива в баках на процесс стабилизации КА.

Сущность изобретения поясняется чертежами, где:

Фиг. 1 - структурная схема системы стабилизации;

Фиг. 2 - принципиальная схема 1-го логического блока;

Фиг. 3 - принципиальная схема 2-го логического блока.

Предлагаемая система стабилизации предназначена для стабилизации космических аппаратов (КА), содержащего двигательную установку (ДУ) со сферическими баками окислителя и горючего, симметрично расположенными относительно продольной оси КА, и ракетный двигатель (РД), установленный в подвесе вблизи центра масса КА с возможностью осуществления плоскопараллельного перемещения подвеса с двигателем в плоскости, перпендикулярной продольной оси КА, например, ракетного разгонного блока «Фрегат». Система включает канал управления по тангажу («Т») и канал управления по рысканию («Р»), каждый из которых содержит датчики отклонения линейных ускорений и скорости 1, 2 и датчики отклонения угловых ускорений и скорости 3, 4, выходы которых через суммирующий усилитель 5, 6 подключены к входам рулевых машинок (РМ) 7, 8, обеспечивающих плоскопараллельные перемещения подвеса с двигателем 9. Канал тангажа («Т») обеспечивает управление линейным перемещением подвеса с двигателем 9 в плоскости YOZ вдоль оси «OZ» (штоком рулевых машинок 7 канала «Т»), а канал рыскания («Р») обеспечивает управление линейным перемещением подвеса с двигателем 9 в плоскости YOZ вдоль оси «OY» (штоком рулевых машинок 8 канала «Р»). Кроме того, каждый из каналов управления по тангажу («Т») и рысканию («Р») включает датчик угла 10, 11 и интегрирующее устройство 12, 13, подключенные к суммирующему усилителю 5, 6. Вход интегрирующего устройства 12, 13 подключен ко второму выходу датчика отклонения угловых ускорений и скорости 2. Пятый вход суммирующего усилителя 5, 6 подключен ко второму выходу рулевой машинки 7, 8. Составы приборов каналов тангажа и рыскания в этой части (блоки 1-13) являются идентичными и могут быть реализованы на базе известных технических решений, см. например, кн. «Управление космическим летательным аппаратом», К.Б. Алексеев, Г.Г. Бебенин, изд. Машиностроение, 1964 (1, 2 - стр. 115, Фиг. 4.2); (3, 4 - стр. 163, Фиг. 4-28); (5, 6 - стр. 217, Фиг. 5.17); (10, 11 - стр. 117, Фиг. 4.3); (12, 13 - стр. 218, Фиг. 5.19). Система снабжена двумя логическими блоками (ЛБ-1, ЛБ-2) 14, 15, подключенными к входам клапанов 16, 17, 18, 19, управляющих наддувом и, следовательно, расходом топлива из баков окислителя и горючего и подключением двигателей малой тяги 20, 21, 22, 23, причем входы каждого логического блока 14, 15 подключены к третьим выходам рулевых машинок 7, 8 обоих каналов. Пример реализации ЛБ-1 приведен на Фиг. 2, где 24 - развязывающие диоды; 25 - настроечные сопротивления, 26 - реле с нормально замкнутыми контактами и нормально разомкнутыми контактами в канале «+» тангаж; 27 - аналогичное реле в канале «-» тангаж; 28 - аналогичное реле в канале «+» рысканье; 29 - аналогичное реле в канале «-» рысканье; 261, 262, 213 - контактные группы реле 26; 271, 272, 273 - контактные группы реле 27; 281, 282, 283 - контактные группы реле 28; 291, 292, 293 - контактные группы реле 29; 30, 31 - соответственно реле управления клапанами наддува в первом и втором баках горючего; 32, 33 - соответственно реле управления клапанами наддува в первом и втором баках окислителя. Пример реализации ЛБ-2 приведен на Фиг. 3, где 24 - развязывающие диоды; 25 - настроечные сопротивления, 34 - реле с нормально замкнутыми контактами и нормально разомкнутыми контактами в канале «+» тангаж; 35 - реле в канала «-» тангаж; 36 - реле канала «+» рысканье; 37 - реле канала «-» рысканье; 341, 351, 361, 371 - контактные группы соответствующих реле 34, 35, 36, 37; 38 - реле управления двигателем малой тяги в канале «+» тангаж; 39 - реле управления двигателем малой тяги в канале «-» тангаж; 40 - реле управления двигателем малой тяги в канале «+» рысканье; 41 - реле управления двигателем малой тяги в канале «-» рысканье.

В процессе работы системы стабилизации на входы суммирующего усилителя 5, 6 помимо сигналов от датчиков 1, 2, 3, 4, 10, 11 и интегрирующего устройства 12, 13 поступает информация о положении штока рулевой машинки (РМ) 7, 8 в каждом канале стабилизации. При достижении в канале стабилизации тангажа первого порога заданной величины хода штока рулевой машины (например, 7), сигнал пропорциональный величине хода штока (например, с потенциометров обратной связи) поступает также на соответствующий вход логического блока ЛБ-1, который выдает команду на клапан управления наддувом в соответствующем баке. Величина наддува в этом баке снижается соответственно, снижается и расход компонента топлива из этого бака. Начинается процесс уменьшения величины эксцентриситета, вызванного накопившейся разновыработкой. Аналогичные процессы могут проходить и в канале стабилизации рысканья, приводя в конечном итоге к сокращению накопленного эксцентриситета до заданного уровня. Поскольку оси стабилизации, вдоль которых установлены РМ, и оси симметрии баков с топливом не совпадают (угол между ними составляет порядка 45°), ЛБ-1 использует для выработки управляющих команд информацию о положении штоков обеих РМ. Система подачи топлива устроена так, что за счет ограничения наддува в баке с меньшим количеством топлива происходит перераспределение расхода топлива из двух одноименных баков с сохранением общего расхода на выходе из турбонасосного агрегата (ТНА). Тяга ДУ при этом остается постоянной. Далее динамика процесса изменения положения ЦТ зависит от степени ограничения наддува. Для конкретной заправки баков степень ограничения может определяться экспериментально. Вследствие перераспределения расхода топлива величина отклонения центра тяжести (ЦТ) будет уменьшаться. В случае максимальной заправки баков и большей продолжительности работы двигательной установки возможен случай, когда предпринятое ограничение наддува в конкретном баке приведет к нарастанию эксцентриситета в противоположном направлении. В этом случае ЛБ-1 отключит клапан и восстановит исходную величину наддува. С целью гарантированного обеспечения стабилизации РБ, учитывая, что реакция перераспределения расхода топлива на ограничение наддува является медленным процессом и возможно, что в течение некоторого времени после включения клапана наддува эксцентриситет, ЦТ будет продолжать увеличиваться, дополнительно предусмотрено по второму уровню управляющего сигнала на входе ЛБ-2 подключение двигателей стабилизации РБ на пассивных участках, что дает некоторый запас по расширению возможной зоны обеспечения стабилизации РБ. Принципиальным является то, что подключение двигателей малой тяги производится в результате анализа положения основного управляющего двигателя, а не по результатам измерения динамических параметров стабилизации РБ. Принцип действия логической схемы следующий: при достижении величины хода штока, например, в канале РМТ соответствующего значения, определяемого настроечным сопротивлением, в зависимости от знака управляющего тока, срабатывает соответствующее реле 26 или 27. Соответствующее положение займут контактные группы этого реле, в результате чего подана команда на отключение клапанов наддува в соответствующем баке топлива. Поскольку в нашем случае оси стабилизации РБ и оси симметрии баков не совпадают, то отключение клапана наддува соответствующего бака определяется исходя из величины и знака ходов штока РМ в каналах тангажа и рыскания, как следует из представленной схемы. На входы логического устройства ЛБ-2 через развязывающие диоды и настроечные сопротивления подаются сигналы, пропорциональные ходу штоков рулевых машинок в каналах тангажа и рыскания. В зависимости от знака входного сигнала в каждом канале стабилизации ЛБ-2 вырабатывает сигналы на подключение соответствующих двигателей малой тяги (ДМТ), создающих дополнительный управляющий момент в канале тангажа и в канале рыскания.

Предлагаемая система стабилизации позволяет снизить уровень возмущений, действующих на КА, и повысить быстроту и надежность осуществления стабилизации.

Система стабилизации космического аппарата (КА), содержащего двигательную установку со сферическими баками окислителя и горючего, симметрично расположенными относительно продольной оси КА, и ракетным двигателем, установленным в подвесе вблизи центра масса КА с возможностью осуществления плоскопараллельного перемещения подвеса с двигателем в плоскости, перпендикулярной продольной оси КА, включающая канал управления по тангажу и канал управления по рысканию, каждый из которых содержит датчики отклонения линейных ускорений и скорости и датчики отклонения угловых ускорений и скорости, выходы которых через суммирующий усилитель подключены к входам рулевых машинок, обеспечивающих плоскопараллельные перемещения подвеса с двигателем, отличающаяся тем, что система стабилизации снабжена датчиками угла и интегрирующими устройствами, введенными в каналы управления по тангажу и рысканию, и двумя логическими блоками, подключенными к входам клапанов, управляющих расходом топлива из баков окислителя и горючего и подключением двигателей малой тяги, при этом в каждом из каналов управления по тангажу и рысканию вход интегрирующего устройства подключен ко второму выходу датчика отклонения угловых ускорений и скорости, а выходы датчика угла и интегрирующего устройства подключены соответственно к третьему и четвертому входу суммирующего усилителя, пятый вход которого подключен ко вторым выходам рулевых машинок, причем входы каждого логического блока подключены к третьим выходам рулевых машинок обоих каналов.



 

Похожие патенты:

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН).

Изобретение относится к космической технике и может быть использовано для ориентации космического аппарата (КА). Устройство для ориентации КА по углу крена содержит одиннадцать сумматоров, пять усилителей, пять интеграторов, три нормально разомкнутых переключателя, шесть нормально замкнутых переключателей, четыре блока памяти, модель основного контура ориентации, двигатель-маховик, КА, два блока чистого запаздывания, астродатчик, основной контур ориентации.

Группа изобретений относится к методам и средствам ориентации космических аппаратов (КА). Способ предусматривает увеличение периода расчета и смены управляющих сигналов на исполнительные органы (ИО) КА.

Изобретение относится к космической технике и может быть использовано для ориентации космических аппаратов (КА). Устройство ориентации КА по углу крена содержит десять сумматоров, четыре усилителя, четыре интегратора, модель двигателя-маховика, двигатель-маховик, два блока памяти, нормально-разомкнутый переключатель, три нормально-замкнутых переключателя, астродатчик, основной контур ориентации (ОКО), КА, модель ОКО.

Изобретение относится к управлению движением связанных тросом космических объектов. Способ включает расстыковку указанных объектов с сообщением спускаемому аппарату (СА) начальной скорости расхождения против вектора орбитальной скорости.

Изобретение относится к области ракетно-космической техники, а именно к двигательным установкам космических аппаратов и разгонных блоков. Модульная двигательная установка малой тяги содержит силовые рамы с закрепленными на них сферическими топливными баками с осями, имеющими наклон к оси установки, и деформируемыми металлическими перегородками, разделяющими их на жидкостные и газовые полости, емкости для хранения сжатого газа, жидкостные реактивные двигатели ориентации и стабилизации, корректирующе-тормозной реактивный двигатель, агрегаты автоматики и управления, трубопроводы, соединяющие между собой элементы системы, закрепленные на силовых рамах.

Изобретение относится к космонавтике, в частности к области управления космическими аппаратами (КА). Бортовыми средствами аппарата определяются координаты включения двигательной установки, величины и ориентации импульсов характеристической скорости КА.

Изобретение относится к системам автоматического управления (САУ) авиационно-космическими объектами, работающими, главным образом, в экстремальных условиях внешней среды.

Изобретение относится к космической технике и может быть использовано для автономной коллокации на геостационарной орбите. Переводят векторы наклонения и эксцентриситета на границы разнесенных относительно друг друга областей прицеливания, измеряют параметры орбиты каждого космического аппарата (КА), определяют текущие значения орбитальных параметров каждого КА, приводят КА с самоколлокацией (КАСК) в заданную область удержания по широте (наклонению) и долготе, выявляют стратегию управления движением центра масс смежного КА, уточняют положение центра области прицеливания по наклонению смежного КА, проводят коррекции наклонения вектора наклонения орбиты КАСК в фазовой плоскости с учетом сезона (текущего прямого восхождения Солнца), линии узлов орбиты смежного КА и центра, корректируют с помощью двигателей малой тяги период обращения, наклонения и эксцентриситета орбиты, или уклонения в случае опасного сближения КА.

Изобретение относится к управлению движением группы (кластера) космических аппаратов (КА), преимущественно геостационарных спутников Земли. Согласно способу линии узлов и линии апсид орбит мониторингового КА (МКА) и смежных КА (СКА) поддерживают ортогональными.

Изобретение относится к управлению ориентацией навигационных спутников с антеннами и солнечными батареями (СБ). Способ включает ориентацию электрической оси антенны (первой оси спутника) на Землю и ориентацию панелей СБ на Солнце. Последняя достигается разворотом спутника вместе с панелями СБ вокруг указанной первой оси и разворотом панелей СБ вокруг второй оси, перпендикулярной первой. При прохождении особых участков орбиты, включающих теневые участки и участки больших углов Солнце-спутник-Земля (больше 175°), организуют прогнозируемое движение спутника. Для этого проводят упреждающие программные развороты вокруг первой оси спутника, симметричные относительно точек орбиты, отвечающих максимальному и минимальному углам Солнце-спутник-Земля. Техническим результатом изобретения является уменьшение ошибки прогнозирования движения центра масс спутника и погрешности знания положения фазового центра антенны. 3 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к космической технике и может быть использовано для ориентации космических аппаратов (КА). Система ориентации КА с использованием бесплатформенного орбитального гирокомпаса (БОГК) содержит прибор ориентации по Земле (ПОЗ), блок гироскопических измерителей угловых скоростей (БИУС), программный модуль управления (ПМУ), одиннадцать сумматоров, три модуля усиления (МУ), пять интеграторов, четыре модуля компенсации взаимовлияния каналов (МКВК), косинусный преобразователь (КП), синусный преобразователь (СП), два ключа. В установившемся режиме ориентации измеряют разности сигналов ПОЗ и выходных сигналов БОГК в каналах крена и тангажа, корректируют показания БИУС в каналах крена и курса, тангажа, поворачивают КА по курсу на девяносто градусов с замещением канала гирокомпасирования крена на канал гирокомпасирования тангажа, продолжают ориентированный орбитальный полет, вводят в сигнал коррекции в канале тангажа сигнал автокомпенсации ошибок ПОЗ по тангажу, вычисляют сигнал коррекции БОГК в канале тангажа, дожидаются завершения переходных процессов в контуре ориентации, запоминают накопленное значение сигнала автокомпенсации в канале тангажа и отключают его накопление, выполняют обратный поворот КА по курсу, производят обратное замещение каналов крена и тангажа БОГК, вводят в канал коррекции БОГК по тангажу значение сигнала автокомпенсации в качестве поправки на детерминированную ошибку ориентации БОГК в канале тангажа, вычисляют сигнал коррекции в канале тангажа, вводят в разностный сигнал для каналов крена и курса сигнал автокомпенсации детерминированных ошибок ПОЗ по крену, вычисляют новый сигнал коррекции БОГК в каналах крена и курса. Изобретение позволяет компенсировать ошибки ориентации КА относительно орбитальной системы координат. 2 н.п. ф-лы, 2 ил.

Изобретение относится к космической технике и может быть использовано для управления космическим аппаратом (КА). Устройство орбитального гирокомпаса (ОГК) для управления угловым движением КА содержит прибор ориентации по Земле (ПОЗ), сумматоры, интеграторы, вновь введенные сумматоры и интеграторы, модули коррекции, модули компенсации взаимовлияний каналов, гироскопический блок измерителей угловых скоростей (БИУС). Измеряют разность сигналов ПОЗ и выходного сигнала ОГК в каналах крена, добавляют сигнал автокомпенсации, определяемый в зависимости от нового и старого сигналов коррекции, сигнала ПОЗ по крену, выходного сигнала ОГК по крену, коэффициентов интегрирования, корректируют показания БИУС одновременно в каналах крена и курса, осуществляют построение ориентации КА в каналах крена и курса. Изобретение позволяет повысить точность управления угловым движением КА. 2 н.п. ф-лы, 4 ил.

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА. При этом скорость закрутки КА изменяют с учетом взаимообусловленных изменений указанных измеряемых параметров. Техническим результатом изобретения является обеспечение возможности изучения влияния уровня микроускорений на процесс конвекции при управлении ориентацией КА.

Изобретение относится к космической технике и может быть использовано при формировании управляющих сигналов включения двигательной установки космического беспилотного летательного аппарата (БПЛА) при выполнении им пространственного маневра на баллистическом участке траектории полета. Запоминают до момента старта многоступенчатой ракеты-носителя (РН) электронно-цифровое полетное задание, измеряют кинематические параметры активного участка траектории полета последней ступени многоступенчатой РН, запоминают измеренные параметры активного участка траектории полета последней ступени многоступенчатой РН, измеряют и запоминают кинематические параметры движения центра масс космического БПЛА и время момента формирования управляющего сигнала отделения космического БПЛА от последней ступени РН, сравнивают измеренные значения кинематических параметров движения центра масс космического БПЛА с расчетными значениями полетного задания, отрабатывают сигнал возможного рассогласования между измеренными и заданными в полетном задании кинематическими параметрами движения центра массы космического БПЛА в сторону его уменьшения до нулевого значения, формируют управляющий сигнал полетного задания включения корректирующего двигателя космического БПЛА для выполнения уклоняющего маневра. 1 ил.

Изобретение относится к способам создания в космосе связки космического аппарата (КА) с космическим объектом (КО). Контролируют положение в пространстве троса (2), развернутого с борта КА (1), используя датчики видеонаблюдения (4) на КА и/или датчики положения (5) на тросе. Вводят в систему управления КА модель троса, описывающую его конфигурацию и её изменение по времени. Перемещают КА по траектории М0, М1, М2 … Мn его центра масс с помощью двигателей ориентации (6) и маршевых (7), формируя конфигурацию узла (8) вокруг КО (3). Конец троса (2) может быть закреплён на КО (3). Затягивание узла на КО производят дальнейшим движением КА, например, подобным буксировке. Технический результат изобретения заключается в расширении возможностей тросовых систем при решении традиционных и новых задач управления движением различных КО. 1 з.п. ф-лы, 7 ил.

Изобретение относится к области технической кибернетики и может быть использовано в автоматизированных системах управления подготовкой к пуску и проведению пусков ракет-носителей космического назначения различного класса, а также в автоматизированных системах управления технологическими процессами сборки и проведения испытаний сложных технических объектов. Технический результат заключается в обеспечении параллельного контроля параметров объекта и хода работ с объектом, что снижает вероятность развития аварийной ситуации. Способ позволяет визуализировать контролируемые параметры объекта, ход работ с объектом и оперативно формировать управляющие и информационные сообщения. В систему в дополнение к блоку визуализации контролируемых параметров и блокам хранения плановых, фактических и архивных графиков операций с объектом включен блок ручного, автоматизированного и автоматического формирования управляющих сообщений. 2 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических объектов (КО). ДУ КО содержит криогенный бак с расходным клапаном и с бустерным турбонасосом, баллон высокого давления с газообразным криогенным компонентом для раскрутки турбины бустерного турбонасоса, маршевый двигатель с турбонасосным агрегатом, гидравлический конденсатор. Гидравлический конденсатор содержит корпус со штуцером, патрубок со стенкой с отверстиями, направленными по потоку жидкого криогенного компонента из криогенного бака в маршевый двигатель. Изобретение позволяет повысить энергомассовые характеристики ДУ КО. 2 н.п. ф-лы, 2 ил.

Изобретение относится к способам защиты космических аппаратов (КА) от столкновения на орбите с другими телами, в частности, космическим мусором. Способ включает импульсное расталкивание и разведение связанных тросом модулей, образующих КА, для их вывода из опасной зоны. После развертывания троса и фиксации его длины связку модулей переводят в режим попутного маятникового движения. По его завершении осуществляют взаимное сближение модулей, выбирая трос, и последующую их стыковку. Подача и выборка троса выполняются с постоянной силой натяжения, перегрузка от которой пропорциональна величине импульса скорости расталкивания модулей. Технический результат изобретения направлен на упрощение технологии, средств и алгоритмов управления данным маневром уклонения КА. 4 ил.

Изобретение относится к управлению спуском космического аппарата (КА) в атмосфере. Способ включает изменение аэродинамического качества КА, обеспечивающее его посадку в заданную область поверхности планеты. Траектория спуска КА делится на два условных участка. На первом из них производят интенсивный разворот КА по курсу в положение, при котором вектор его скорости попадает в вертикальную плоскость, проходящую через заданную точку посадки. Затем осуществляют полет КА в сформированной вертикальной плоскости, где путем управления углом атаки достигают требуемой продольной дальности спуска. Техническим результатом изобретения является повышение точности посадки КА в заданную область поверхности планеты. 2 ил.
Наверх