Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления



Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления
Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления
Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления
Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления

 


Владельцы патента RU 2568555:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)

Изобретение относится к получению наноструктурированного конгломерированного порошкового материала для нанесения износо-коррозионностойких покрытий гизодинамическим и газотермическим напылением. Проводят диспергирование наноструктурного материала в жидкую среду посредством ультразвука и сушку раствора с получением агломерированных наноструктурных частиц. В качестве жидкой среды используют спиртовой раствор, а в качестве наноструктурного материала используют материал, состоящий из 20-80 об.% порошка карбонитрида титана с размером 40-60 нм и остальное - непокрытый алюминиевый порошок с размером частиц 90-100 нм. Полученные агломерированные наноструктурные частицы подвергают аттриторной обработке в течение 30 минут при скоростях вращения 1400-2000 об/мин. Обеспечивается снижение пористости покрытий при использовании полученного порошкового материала. 3 ил., 1 табл., 2 пр.

 

Изобретение относится к порошковой металлургии, главным образом к области получения наноструктурных материалов, позволяющих использовать их при нанесении износо-коррозионностойких наноструктурных покрытий методами микроплазменного или сверхзвукового холодного газодинамического напыления.

Известен порошковый композиционный материал на основе алюминия и способ его получения (патент РФ №2175682 C1, C22C 21/02, С22 С1/04, опубл. 10.11.2001 г.). Композиционный материал содержит компоненты при следующем соотношении, мас.%: кремний 43,5-46; никель 3,5-5,0; бериллий 0,01-0,05; оксид алюминия 1,5-3,0; алюминий - остальное, при соотношении содержания алюминия к кремнию 1,0-1,18. Способ получения материала включает изготовление расплава, содержащего алюминий, кремний, никель, распыление, добавление порошкообразного кремния, при этом при получении расплава в него вводят дополнительно бериллий и кислород.

Известен композиционный уплотнительный материал для плазменного напыления на основе алюминия (патент РФ №2044097 C1, С22С 21/00, С23С 4/04, опубл. 20.09.1995 г.). В качестве уплотнительного материала для плазменного напыления предлагается использовать смесь на основе алюминия, которая содержит графит, силикат натрия и тальк в следующем соотношении, масс.%: графит 2-10; силикат натрия 8-12; тальк 25-35; алюминий - остальное. Композицию получают известным способом путем смешивания алюминия с тальком (тальк марки ТРПВ молотый резиновый по ГОСТ 19729-74), после чего к этой смеси подмешивают графит, затем добавляют водный раствор силиката натрия с плотностью 1250 - 1300 кг/м3 и снова производят размешивание композита до прочности 0,20 0,23 МПа. Перемешанный композит гранулируют, сушат в конвективном кипящем слое, а сухие гранулы дробят и проводят рассев по крупности зерна.

Наиболее близким по технической сущности к заявляемому изобретению является наноструктурный материал для термического напыления (патент РФ №2196846 С2, С23С 4/10, С23С 4/12, B05D 1/10, опубл. 20.01.2003 г., заявка US 96/18467 от 13.11.1996 г.), выбранный в качестве прототипа. В известном патенте предусмотрен способ получения наночастиц агрегированных форм, пригодных для использования по традиционной технологии напыления наноструктурных покрытий. В одном из вариантов его получения наноструктурное исходное сырье содержит сферические агломераты, полученные способом газоконденсационной обработки. Способ является гибким процессом, используемым для синтеза экспериментальных количеств наноструктурных металлических и керамических порошков. Характерной особенностью этого процесса является его способность к образованию неплотно агломерированных наноструктурных порошков, которые можно синтезировать при относительно низких температурах. Используют испаряемый источник для создания частиц порошка, конвективно транспортируемых к холодной подложке и собирающихся на последней. Непосредственно после получения синтезированные порошки сначала диспергируют в жидкую среду с помощью ультразвука и затем подвергают сушке распылением либо испускают в виде высокоскоростного луча из распылителя. Описаны используемые композиции WC/Co, Cr3C2/Ni, Fe3Mo3C/Ре, SiCxNy и др.

К недостаткам известных способов, в том числе и прототипа, относится высокая пористость агломерированных наноструктурных частиц, при напылении которых образуется высокоадгезивное функциональное покрытие, однако из-за высокой пористости (10-15%) существенно снижается когезионная прочность и коррозионная стойкость покрытия. Практика показывает, что для работы в экстремальных условиях эксплуатации исходные порошки и покрытия на их основе должны иметь пористость не более 3-5%, в противном случае имеет место либо механическое, либо коррозионное образование и раскрытие трещин и разрушение покрытий.

Техническим результатом является создание наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напылений, позволяющего получать покрытия с высокими механическими характеристиками и низкой пористостью (до 2%).

Опыт наших разработок в области порошковых материалов [«Высокоскоростной механосинтез с использованием дезинтеграторных установок для получения наноструктурированных порошковых материалов системы металл-керамика износостойкого класса», Бурканова Е.Ю., Фармаковский Б.В., «Вопросы материаловедения», С-Пб, №1 (69), 2012 г.], в том числе с наноразмерными элементами, показывает, что эффективным инструментом для существенного уменьшения пористости является механическое воздействие на материал путем всестороннего сжатия (изостатическое прессование) или за счет ударно-динамического воздействия (обработка в дезинтеграторах или аттриторах). Успех в реализации технологической схемы определяется оптимизацией основных параметров процесса упрочняющей обработки: скорости вращения чашек и времени обработки.

Технический результат достигается за счет того, что в способе получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напылений, включающем диспергирование наноструктурного материала в жидкую среду посредством ультразвука и сушку раствора с получением агломерированных наноструктурных частиц, в соответствии с изобретением производят дополнительную аттриторную обработку агломерированных наноструктурных частиц в течение 30 минут при скоростях вращения 1400-2000 об/ мин.

В качестве наноструктурного материала используют карбонитрид титана в количестве 20-80 об.% и непокрытый алюминиевый порошок - остальное, а в качестве жидкой среды - спиртовой раствор.

Карбонитрид титана используют в виде частиц размером 40-60 нм, а непокрытый алюминиевый порошок - в виде частиц размером 90-100 нм, при следующем соотношении размеров частиц карбонитрид титана/непокрытый алюминиевый порошок=1,0/(1,7-2,3).

В процессе аттриторной обработки при заявленных скоростях формируются плотные сферические гранулы с образованием прочной связи между наноразмерными частицами карбонитрида титана и частицами алюминиевого порошка. При скоростях аттриторной обработки менее 1400 об/мин, на материал не передается достаточного количества механической энергии для внедрения карбонитрида титана в частицы алюминиевого порошка и образования плотных агломерированных гранул не происходит. При скоростях обработки более 2000 об/мин происходит значительный нагрев и последующее окисление обрабатываемого материала. В образованную на поверхности частиц алюминиевого порошка твердую оксидную пленку не происходит внедрения карбонитрида титана, и как следствие, не происходит образования гранул. Для образования наноструктурированного конгломерированного порошкового материала из всего объема исходного материала, загружаемого в аттритор, достаточно 30-минутной обработки. При менее длительной обработке не весь агломерированный материал переходит в плотные конгломераты, что ведет к потерям материала на стадии рассеивания, а более длительная обработка заметно удорожает получаемый материал в связи с заметным повышением энергоемкости процесса.

При добавлении карбонитрида титана более 80% не обеспечивается прочная механическая связь между наноразмерными частицами TiCN, что приводит к повышению пористости до 10% и охрупчиванию напыляемого покрытия. При добавлении менее 20% не достигается необходимого значения твердости напыляемого покрытия.

Эквивалентный диаметр нанокристаллических компонентов не должен превышать 100 нм. В противном случае объемная энергия будет преобладать над поверхностной, что делает невозможным образование плотных гранул за счет высокой поверхностной энергии нанокристаллических компонентов.

При изменении соотношения размеров частиц в сторону уменьшения размеров алюминиевого порошка (в частности, при соотношении 1,0:1,6) наблюдается заметное увеличение пористости гранул, в связи с недостаточным количеством материала для внедрения в него карбонитрида титана, из-за чего не происходит образования механической связи между компонентами. При изменении соотношения размеров частиц в сторону увеличения размеров алюминиевого порошка (в частности, при соотношении 1,0:2,4) наблюдается образование не агломерированного порошкового материала, а однородной массы, непригодной для дальнейшего рассева и напыления.

Практическая реализация предлагаемого технического решения выполнялась по следующей разработанной схеме: обработка наноразмерного TiCN в ультразвуковой ванне ПСБ-4 мощностью 0,45кВт в течение 15-20 минут в 92% растворе этилового либо изопропилового спирта, диспергирование в суспензию наноразмерного алюминиевого порошка - материала ALEX™ с использованием установки ЛДУ-3 МПР мощностью 1 кВт; сушка суспензии в муфельной лабораторной электропечи типа СНОЛ-1 до полного удаления спирта; высокоэнергетическая аттриторная обработка порошка в течение 30 минут при скорости вращения чашек в пределах 1400-2000 об/мин.

Сущность изобретения поясняется чертежами, где изображено:

на фиг. 1 - СЭМ изображение наноструктурированного конгломерированного порошкового материала;

на фиг. 2 - СЭМ изображение шлифа наноструктурированного конгломерированного порошкового материала;

на фиг. 3 - СЭМ изображение поперечного шлифа покрытия, полученного на основе наноструктурированного конгломерированного порошкового материала.

При детальном рассмотрении фиг. 1 четко видно, что нанокристаллические составляющие конгломерированного порошкового материала имеют прочные механические связи внедрения. Так, наноразмерные составляющие кубической формы, что по проведенному микрорентгеноспектральному анализу идентифицируются как TiCN, плотно соединены с наноразмерными частицами сферической формы, что идентифицируются как ALEX™. При рассмотрении фиг. 2 также заметны прочные связи между наноразмерными составляющими различной морфологии. СЕМ изображение поперечного шлифа покрытия представлено на фиг. 3. Покрытие получается плотным, беспористым, также в нем наследуется наноструктурное состояние с равномерным распределением компонентов, что дает безградиентную твердость в продольном и поперечном направлениях.

Пример 1.

К диспергированному в 92% растворе этилового спирта наноразмерному порошку TiCN добавляли наноразмерный материал alextm в количестве 80% об. (в расчете на сухие компоненты), при соотношении между размерами частиц TICN/ALEX™=1,0/1,7. Диспергирование в спиртовую суспензию наноразмерного материала ALEX™ производилось с использованием установки ЛДУ-3 МПР мощностью 1 кВт в течение 20 минут. Суспензия подвергалась сушке в муфельной лабораторной электропечи типа СНОЛ-1 до полного удаления спирта. Сухая порошковая композиция подвергалась аттриторной обработке в течение 30 минут, причем скорость вращения чашек была в пределах 1400-2000 об/мин. После обработки порошковый материал подвергался рассеиванию с выделением фракции для напыления 20-40 мкм.

Напыление покрытий из предлагаемого наноструктурированного конгломерированного порошкового материала размерностью от 20 до 40 мкм производилось на установке ХГДН типа Димет-3. Состав напыляемого материала, определенный на рентгеновском дифрактометре Bruker D8 Advance, в масс.%:

Al - 88,3;

Al2O3 - 8,3;

TiCN - 3,4.

Толщина покрытий, формируемых этим способом, составляет 50-500 мкм, что обеспечивает требуемые эксплуатационные характеристики. Пористость такого рода покрытий, измеренная с помощью компьютеризированного анализа изображения поперечного шлифа на микроскопе LeicaDM-2500, составила 0,3%. Результаты исследований микротвердости, производимые на универсальном исследовательском комплексе «НаноСкан-3Д», показали, что покрытия имеют микротвердость 10,31 ГПа.

Пример 2.

К диспергированному в 92% растворе изопропилового спирта наноразмерному порошку TiCN добавляли наноразмерный материал ALEX™ в количестве 20% об. (в расчете на сухие компоненты), при соотношении между размерами частиц TiCN/ALEX™=1,0/2,3. Диспергирование в спиртовую суспензию наноразмерного материала ALEX™ производилось с использованием установки ЛДУ-3 МПР мощностью 1 кВт в течение 15 минут. Суспензия подвергалась сушке в муфельной лабораторной электропечи типа СНОЛ-1 до полного удаления спирта. Сухая порошковая композиция подвергалась аттриторной обработке в течение 30 минут, причем скорость вращения чашек была в пределах 1400-2000 об/мин. После обработки порошковый материал подвергался рассеиванию с выделением фракции для напыления 20-40 мкм.

Напыление покрытий из предлагаемого наноструктурированного конгломерированного порошкового материала размерностью от 20 до 40 мкм производилось на установке микроплазменного напыления типа УГНП 2/2250. Состав напыляемого материала, определенный на рентгеновском дифрактометре Bruker D8 Advance, в масс.%:

Al - 64,4;

Al2O3 - 6,4;

TiCN - 29,2.

Незначительный нагрев напыляемого материала из-за кратковременного пребывания порошка в плазменной струе обеспечивает частичное проплавление порошка, что способствует сохранению наноструктуры в напыляемом конгломерате. Толщина покрытий, формируемых таким способом, составляет 50-500 мкм, что обеспечивает требуемые эксплуатационные характеристики.

Исследования микротвердости и пористости покрытий измерялись методами, описанными в примере 1, и составили 14,24 ГПа и 1,3% соответственно. Исследования адгезии проводились методом испытания на сдвиг. Результаты исследований приведены в таблице.

Применение предлагаемого способа получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напылений позволяет понизить пористость покрытий по сравнению с прототипом и обеспечить их высокие прочностные характеристики.

Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий газодинамическим и газотермическим напылением, включающий диспергирование наноструктурного материала в жидкую среду посредством ультразвука и сушку раствора с получением агломерированных наноструктурных частиц, отличающийся тем, что в качестве жидкой среды используют спиртовой раствор, а в качестве наноструктурного материала используют материал, состоящий из 20-80 об.% порошка карбонитрида титана с размером 40-60 нм и остальное - непокрытый алюминиевый порошок с размером частиц 90-100 нм, при следующем соотношении размеров частиц упомянутых порошков:
порошок карбонитрида титана/непокрытый алюминиевый порошок = 1,0/(1,7-2,3),
при этом производят аттриторную обработку агломерированных наноструктурных частиц в течение 30 минут при скоростях вращения 1400-2000 об/мин.



 

Похожие патенты:
Изобретение относится к области порошковой металлургии и предназначено для производства износостойких сплавов на основе карбонитридов титана, работающих в сложных условиях динамического нагружения, высоких контактных давлений и скоростей.

Изобретение относится к порошковой металлургии, в частности к спеченным твердым безвольфрамовым сплавам. .
Изобретение относится к спеченным твердым сплавам и может быть использовано для изготовления универсального режущего инструмента, абразивных шлифпорошков, мерительного инструмента в т.п.

Изобретение относится к порошковой металлургии, в частности к спеченным твердым сплавам для изготовления металлорежущего инструмента и износостойких деталей. .

Изобретение относится к области порошковой металлургии, в частности может применяться для изготовления износостойких, коррозионно-стойких и жаростойких узлов механизмов, а также изделий, работающих в условиях сухого трения.

Изобретение относится к получению упрочненных легких сплавов на основе алюминия. В расплав алюминиевого сплава при температуре 750÷800ºС вводят 6 мас.% порошка криолита Na3AlF6, через промежуток времени не менее 10 мин в расплав вводят 5÷6 мас.% модификатора при одновременной активации расплава в течение не менее 20 мин механическим перемешиванием и/или воздействием ультразвуковых колебаний частотой 10 кГц, и/или воздействием электромагнитного поля частотой 40 Гц.

Группа изобретений относится к получению сплава на основе титана из водной суспензии частиц руд, содержащих соединения титана. Способ включает генерацию магнитных полей, накладываемых на порции перерабатываемой сырьевой массы, восстановление металлов из руд при непрерывном перемешивании сырьевой массы с последующим накоплением и формированием продукта в виде кольцевого столбчатого монокристалла, состоящего из интерметаллида, выбранного из ТiАl3, TiFeAl2, TiAl2Fe, TiFe3, и его выгрузку.

Изобретение относится к получению литого композиционного материала на основе алюминиевого сплава для изготовления деталей сложной формы. Расплавляют основу, вводят в нее композицию, включающую армирующие частицы Аl2О3, на поверхности которых механической активацией предварительно сформирован слой Аl, и разливают в форму.

Изобретение относится к литейному производству, в частности к карбонатным смесям, используемым при рафинировании и модифицировании алюминиевых сплавов. Карбонатная смесь содержит, мас.%: 50-95 карбоната кальция и 5-50 карбоната стронция, при этом смесь состоит из частиц фракции 40-60 мкм.
Изобретение относится к области металлургии и может быть использовано при переработке цирконийсодержащих оксидных материалов для получения алюминий-циркониевого сплава.

Изобретение относится к деформируемым сплавам на основе алюминия, предназначенным для применения в паяных конструкциях. Деформируемый сплав на основе алюминия для паяных конструкций содержит, мас.

Изобретение относится к способу изготовления многослойного материала для высокотемпературной пайки и может быть использовано, например, для изготовления тонких листов в теплообменниках.

Изобретение относится к производству изделий из алюминиевых сплавов, в частности к изготовлению алюминиевой фольги, которая может быть использована в качестве бытовой фольги, для изготовления упаковочной тары и т.д.
Изобретение относится к области металлургии и может быть использовано для обработки расплавов медных сплавов и чугуна. Модифицирующая смесь содержит, мас.%: углекислый барий 40-50, кальцинированную соду 10-20, карбонат стронция 40-45.

Изобретение относится к области порошковой металлургии сплавов на основе алюминия, используемых в подшипниках скольжения. Cпособ получения антифрикционного износостойкого сплава на основе алюминия включает получение смеси чистых порошков алюминия и олова, содержащей 35-45% вес.
Изобретение относится к области металлургии, а именно к высокотемпературным композиционным материалам на основе ниобия, упрочненным оксидными волокнами, применяемым для изготовления конструкционных деталей авиационного назначения.

Изобретение относится к получению упрочненных легких сплавов на основе алюминия. В расплав алюминиевого сплава при температуре 750÷800ºС вводят 6 мас.% порошка криолита Na3AlF6, через промежуток времени не менее 10 мин в расплав вводят 5÷6 мас.% модификатора при одновременной активации расплава в течение не менее 20 мин механическим перемешиванием и/или воздействием ультразвуковых колебаний частотой 10 кГц, и/или воздействием электромагнитного поля частотой 40 Гц.

Изобретение относится к области цветной металлургии, в частности к производству графитсодержащих композиционных материалов электротехнического назначения на основе меди, и может быть использовано для изготовления электрических разрывных контактов низковольтной аппаратуры.

Изобретение относится к изготовлению породоразрушающего инструмента. Формируют в графитовой форме композиционную матрицу инструмента, содержащую включения в виде алмаза или твердого сплава, прессуют, затем проводят нагрев спрессованного инструмента до температуры пропитки с горячим прессованием и охлаждают инструмент на воздухе до 350°C.
Изобретение относится к изготовлению электротехнических изделий из композиционного материала. Электротехническое изделие изготовлено из токопроводящего композиционного материала формованием методом холодного прессования, при этом токопроводящий композиционный материал содержит 40÷55 мас.% порошка естественного графита, 30÷15 мас.% связующего на основе новолачной смолы, 30 мас.% медного порошка и дополнительно поливинилацетат в качестве пластификатора в количестве 9÷35 мас.% от суммарной массы порошкообразных компонентов.

Изобретение относится к металлургии, а именно к получению пористых металлических материалов методом самораспространяющегося высокотемпературного синтеза, и может использоваться в медицинской имплантологии.
Наверх