Способ глазурования автоклавных стеновых материалов



Способ глазурования автоклавных стеновых материалов
Способ глазурования автоклавных стеновых материалов

 


Владельцы патента RU 2568618:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" (RU)

Изобретение относится к области получения глазурованных автоклавных стеновых материалов и может быть использовано в промышленности строительных материалов. Технический результат - повышение морозостойкости и снижение энергозатрат. Способ глазурования автоклавных стеновых материалов включает полусухое прессование, автоклавную обработку и плазменное оплавление их лицевой поверхности с помощью плазмотрона, причем лицевую поверхность автоклавных стеновых материалов покрывают 20-40 об. %-ным водным раствором жидкого стекла и цветным стеклопорошком при массовом соотношении 1:3 при мощности работы плазмотрона 9 кВт и расходе плазмообразующего газа 0,8 м3/час. 2 табл.

 

Изобретение относится к области получения глазурованных автоклавных стеновых материалов и может быть использовано в промышленности строительных материалов.

Известен способ глазурования силикатного кирпича электродуговым оплавлением его лицевой поверхности [Громов Ю.Е., Лежепеков В.П., Северинова Г.В. Индустриальная отделка фасадов зданий. - М.: Стройиздат, 1980. - с. 59-60].

Однако способ имеет следующие недостатки: высокая энергоемкость процесса, низкая скорость обработки электродуговой горелки лицевой поверхности силикатного кирпича, равная 0,03 м/с, и, как следствие, высокая стоимость конечного продукта.

Наиболее близким техническим решением является способ глазурования автоклавных стеновых материалов, заключающийся в полусухом прессовании, автоклавной обработке, плазменном оплавлении лицевой поверхности плазменным факелом до автоклавной обработки и контролем качества готовых изделий [Патент RU 2354631 от 26.06.2007].

Недостатком данного способа является низкая морозостойкость глазурного слоя и высокая энергоемкость процесса.

Задачей предлагаемого способа является повышение качества конечного продукта за счет повышения его морозостойкости, снижение энергоемкости производства и, как следствие, получение высококачественной конкурентоспособной продукции.

Поставленная задача достигается тем, что способ глазурования автоклавных стеновых материалов включает полусухое прессование, автоклавную обработку и плазменное оплавление лицевой поверхности силикатного кирпича, покрытой 20-40 об. %-ным водным раствором жидкого стекла и цветным стеклопорошком при массовом соотношении 1:3 с последующей плазменной обработкой при мощности работы плазмотрона 9 кВт и расходе плазмообразующего газа 0,8 м3/час.

Водный раствор жидкого стекла при взаимодействии с лицевой поверхностью силикатного кирпича повышает термостойкость конечного продукта, что в свою очередь повышает морозостойкость глазурного слоя, а также снижает температуру образования расплава, следовательно, снижает энергозатраты.

20-40% водный раствор жидкого стекла является оптимальным, так как при содержании жидкого стекла менее 20% в растворе содержится недостаточное количество оксида натрия для образования легкоплавких эвтектик, что не позволяет снизить энергозатраты при плазменном глазуровании. Водный раствор жидкого стекла, содержащий более 40% жидкого стекла, не позволяет получить качественную глазурную лицевую поверхность на силикатном кирпиче из-за интенсивного вспенивания расплава при плазменной обработке лицевой поверхности силикатного кирпича.

Массовое соотношение водного раствора жидкого стекла со стеклопорошком цветного стекла 1:3 является оптимальным. При большем содержании стеклопорошка исходная смесь имеет густую консистенцию с наличием в ней комков стеклопорошка, что не позволяет ее равномерно нанести на лицевую поверхность силикатного кирпича перед плазменным оплавлением.

При более низком содержании стеклопорошка образуется неравномерная цветовая гамма покрытия после плазменной обработки за счет недостаточного количества в смеси стеклопорошка цветного стекла.

Сопоставительный анализ технологических операций известного и предлагаемого способов представлены в таблице 1.

Сопоставительный анализ известных способов плазменного глазурования автоклавных стеновых материалов позволяет сделать заключение о соответствии заявляемого изобретения критерию «новизны».

Экспериментально полученными оптимальными условиями плазменного глазурования являются: мощность работы плазмотрона 9 кВт и расход плазмообразующего газа 0,8 м3/час (таблица 2).

Пример. Плазменное глазурование автоклавных стеновых материалов.

Для глазурования использовали полнотелый силикатный кирпич размером 250×120×65 мм, полученный полусухим прессованием и прошедший технологическую автоклавную обработку.

Лицевую поверхность покрывали с помощью валика 30% водным раствором жидкого стекла и стеклопорошка зернового состава 60-250 мкм из цветного синего кобальтового стекла при массовом соотношении 1:3. Смесь готовили в лабораторной пропеллерной мешалке.

Силикатный кирпич устанавливали на пластинчатый конвейер. Над пластинчатым конвейером устанавливали плазменную горелку ГН-5р электродугового плазмотрона с возвратно-поступательным механизмом.

Параметры работы плазмотрона приведены в таблице 2. Оптимальными параметрами стали следующие: мощность 9 кВт, расход плазмообразующего газа 0,8 м3/час.

После плазменного глазурования осуществляли контроль качества продукции.

Пример осуществления контроля качества.

Морозостойкость осуществляли по ГОСТ 7025-91 в морозильной камере с принудительной вентиляцией и автоматическим регулированием температуры от -15°C до -20°C при объемном замораживании. Для испытаний брали 5 образцов. Продолжительность замораживания 4 часа.

Контроль качества осуществляли по степени повреждений и потере массы (п. 7.4.1 и 7.4.2 ГОСТ 7025-91).

Среднюю морозостойкость изделий, полученных при оптимальном режиме, определяли как среднее арифметическое:

Результаты представлены в таблице 2. Оптимальным режимом работы плазмотрона является мощность работы 9 кВт, расход плазмообразующего газа 0,8 м3/час, что дает максимальную морозостойкость 100 циклов.

Способ глазурования автоклавных стеновых материалов, включающий полусухое прессование, автоклавную обработку и плазменное оплавление их лицевой поверхности с помощью плазмотрона, отличающийся тем, что лицевую поверхность автоклавных стеновых материалов покрывают 20-40 об. %-ным водным раствором жидкого стекла и цветным стеклопорошком при массовом соотношении 1:3 при мощности работы плазмотрона 9 кВт и расходе плазмообразующего газа 0,8 м3/час.



 

Похожие патенты:

Изобретение относится к области получения автоклавных стеновых материалов, покрытых глазурью. Технический результат изобретения заключается в повышении морозостойкости материалов.
Изобретение относится к композиции, включающей кислотостойкое неорганическое связующее и волокна. Композиционный строительный материал, содержащий по меньшей мере одно неорганическое связующее и волокнистый материал, где неорганическое связующее представляет собой растворимое стекло, доля содержания растворимого стекла в композиционном строительном материале составляет 2-99 мас.
Изобретение относится к строительным материалам и может быть использовано для приготовления строительных и кладочных растворов, а также производства внутренних и наружных штукатурных работ.
Изобретение относится к строительным материалам и может быть использовано для приготовления строительных и кладочных растворов, для производства внутренних и наружных штукатурных работ.
Изобретение относится к получению строительных изделий, в том числе покрытий, и может быть использовано для утилизации крупнотоннажных отходов производства лесной, химической и металлургической промышленности.
Изобретение относится к промышленности строительных материалов. Технический результат - увеличение прочности сцепления оболочки с поверхностью крупного заполнителя.
Изобретение относится к средствам, используемым для увеличения водонепроницаемости бетона, а именно к разработке новой композиции, кольматирующей бетон (заращивающей поры бетона).
Изобретение касается составов штукатурок, применяемых для декоративно-художественных работ. Технический результат - повышение удобства процарапывания рисунка на оштукатуренной поверхности.
Изобретение относится к области очистки бетонных изделий от токсичных веществ и может быть использован, преимущественно, для снижения содержания карбамида в бетонных стенах и перекрытиях в жилых и производственных помещениях.
Изобретение относится к промышленности строительных материалов. Технический результат - повышение водостойкости оболочки крупного заполнителя.

Изобретение относится к области изготовления бетонных изделий и может быть использовано в промышленности строительных материалов. Технический результат - повышение качества конечного продукта за счет снижения временного и постоянного напряжения в покрытии и повышения прочности сцепления покрытия с основой с одновременным снижением энергозатрат. Способ глазурования изделий из бетона включает укладку и уплотнение смеси, выдержку и тепловлажностную обработку изделий, плазменное оплавление их лицевой поверхности, причем на лицевую поверхность напыляют цветной стеклопорошок при одновременном плазменном оплавлении лицевой поверхности при мощности работы плазмотрона 7 кВт, расходе плазмообразующего газа 1,4 м3/ч и расходе стеклопорошка 1,75-2,25 г/с. 3 табл., 2 пр.

Изобретение относится к способам ангобирования стеновых строительных материалов, в том числе изделий из бетона. Способ ангобирования изделий из бетона включает в себя измельчение и рассев каолинов или беложгущихся глин, подачу порошка в плазменную горелку и плазменное напыление. Причем предварительно готовят механическую смесь каолинов и беложгущихся глин с керамическими пигментами и порошком высушенного жидкого стекла при соотношении 10:1:2. Плазменное напыление производят при мощности 5 кВт и расходе плазмообразующего газа 2,0 м3/час. Техническим результатом является снижение энергоемкости, повышение прочности сцепления и морозостойкости покрытия. 2 пр., 3 табл.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат - повышение прочности при сжатии изготавливаемого бетонного изделия. Способ изготовления бетонных изделий включает формование изделия, пропитку изделия с последующим твердением, причем пропитку осуществляют в золе метакремниевой кислоты H2SiO3 с плотностью ρ=1,014 г/см3, водородным показателем pH=5-6 в течение 72 часов при температуре 20-30°C. 2 табл., 3 пр.

Изобретение относится к огнезащитным составам, используемым для защиты деревянных конструкций от возгорания. Технический результат - повышение защитных функций состава при огневом воздействии. Огнезащитный состав содержит, мас.%: жидкое стекло 18-25; кремнегель 35-45; просеянный через сетку № 008 глинозем 10-15; измельченные и просеянные через сетку № 008 асбестоцементные отходы 22-28. 1 табл.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат - уменьшение водопоглощения изготавливаемого бетонного изделия. Способ изготовления бетонных изделий включает формование изделия, пропитку изделия с последующим твердением, причем пропитку осуществляют в растворе, состоящем из золя метакремниевой кислоты H2SiO3 с плотностью ρ=1,014 г/см3, водородным показателем рН=5-6 и нитрата кальция Са(NO3)2, при следующем соотношении компонентов, мас.%: золь метакремниевой кислоты 87,50-90,50; нитрат кальция 9,50-12,50, в течение 72 часов при температуре 20-30°C. 2 табл., 9 пр.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат - повышение морозостойкости изготавливаемого бетонного изделия. Способ изготовления бетонных изделий, включающий формование изделия, пропитку изделия с последующим твердением, причем пропитку осуществляют в золе берлинской лазури с плотностью ρ=1,013 г/см3 и водородным показателем pH=4,5-5,5 в течение 72 часов при температуре 20-30°C. 2 табл., 3 пр.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат - уменьшение водопоглощения изготавливаемого бетонного изделия. Способ изготовления бетонных изделий включает формование изделия, пропитку изделия с последующим твердением, причем пропитку осуществляют в золе гидроксида железа(III) Fe(OH)3 с плотностью ρ=1,021 г/см3, водородным показателем pH=4,5-5,5 в течение 72 часов при температуре 20-30°C. 2 табл., 3 пр.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат - уменьшение истираемости изготавливаемого бетонного изделия. Способ изготовления бетонных изделий включает формование изделия, пропитку изделия с последующим твердением, причем пропитку осуществляют в золе гидроксида алюминия Al(OH)3 с плотностью ρ=1,12 г/см3, водородным показателем pH=3,5-4,5 в течение 72 часов при температуре 20-30°С. 2 табл., 3 пр.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат - повышение прочности при сжатии изготавливаемого бетонного изделия. Способ изготовления бетонных изделий включает формование изделия, пропитку изделия с последующим твердением, причем пропитку осуществляют в течение 72 часов при температуре 20-30°С в растворе, состоящем из жидкого натриевого стекла с плотностью ρ=1,45 г/см3, водородным показателем рН=12 и золя метакремниевой кислоты Н2SiO3 с плотностью ρ=1,014 г/см3, водородным показателем рН=5-6, при следующем соотношении компонентов, мас. %: указанное жидкое стекло 81,00-85,00; указанный золь метакремниевой кислоты 15,00-19,00. 2 табл., 9 пр.

Изобретение относится к области строительных материалов и может быть использовано для защиты поверхности карналлитовой породы. Технический результат - повышение трещиностойкости и адгезионной прочности к поверхности пород, представленных смесью хлоридов калия, натрия и магния. Сырьевая смесь, состоящая из портландцемента, заполнителя, комплексной добавки и воды, в качестве заполнителя содержит микрокальцит фракции 100 мк, а комплексная добавка состоит из полимера, представленного винилацетатом, суперпластификатора трихлорэтилфосфата и полипропиленового волокна длиной 6 мм, при следующем соотношении компонентов, мас. %: 93,2-94,2; 0,4-0,5; 5,4-6,3 соответственно, при следующем соотношении компонентов сырьевой смеси, мас. %: портландцемент 34,4-36,48; указанный заполнитель 43,72-44,82; указанная добавка 6,4-6,9; вода 13,4-13,8. 2 табл.
Наверх