Самонастраивающийся электропривод

Изобретение относится к области автоматического управления электроприводами, в которых существенно повышаются величины моментов сухого трения. Технический результат заключается в обеспечении инвариантности электропривода к величине момента сухого трения, что обеспечивает неизменное качество в процессе эксплуатации. Самонастраивающийся электропривод содержит первый сумматор, последовательно соединенные корректирующее устройство с усилителем, электродвигатель с редуктором, выходной вал которого соединен с датчиком скорости и датчиком положения, выход которого подключен к первому входу первого сумматора, второй вход которого соединен с входом электропривода, последовательно соединенные релейный элемент, вход которого соединен с выходом датчика скорости, второй сумматор, последовательно соединенные датчик тока якорной обмотки электродвигателя и третий сумматор. В него дополнительно введены последовательно соединенные интегратор, вход которого соединен с выходом третьего сумматора, второй вход которого подключен к выходу релейного элемента, и четвертый сумматор, второй вход которого подключен к выходу датчика скорости, а выход - к третьему входу третьего сумматора и второму входу второго сумматора, третий вход которого соединен с выходом первого сумматора, а выход - с входом усилителя. 1 ил.

 

Изобретение относится к области автоматического управления электроприводами, в которых существенно повышаются величины моментов сухого трения.

Известно устройство для управления приводом робота, содержащее блок умножения, последовательно соединенные усилитель, электродвигатель, датчик тока, первый сумматор, второй выход электродвигателя соединен с исполнительным механизмом, датчиком положения и датчиком скорости, выходы датчика положения и датчика скорости соединены соответственно со вторыми входами второго сумматора и блока деления, второй вход первого сумматора соединен с выходом измерителя внешнего момента, последовательно соединенные инерционное дифференцирующее звено, вход которого подключен к выходу второго сумматора и к входу апериодического звена, а выход соединен с первым входом блока умножения, второй вход которого соединен с выходом блока деления, первый вход которого соединен с выходом интегратора, вход которого соединен с выходом первого сумматора, выход блока умножения соединен с первым входом третьего сумматора, второй вход которого соединен с выходом апериодического звена, а выход - с входом усилителя (см. авт. св. СССР №1142810, МПК G05B 11/01, 1985 г.).

Недостатком данного устройства является то, что оно позволяет улучшить точность и качество процесса управления электроприводом при любом значении его суммарного момента инерции, но при этом не обеспечивает инвариантность привода к изменению его момента сухого трения.

Известен самонастраивающийся электропривод, содержащий первый сумматор, последовательно соединенные корректирующее устройство с усилителем, электродвигатель с редуктором, выходной вал которого соединен с датчиком скорости и датчиком положения, выход которого подключен к первому входу первого сумматора, второй вход которого соединен с входом электропривода, последовательно соединенные релейный элемент, вход которого соединен с выходом датчика скорости, второй сумматор, последовательно соединенные датчик тока якорной обмотки электродвигателя и третий сумматор (см. патент РФ №2060530, МПК G05B 13/02, 1996 г.).

Указанное устройство по своей технической сущности является наиболее близким к предлагаемому изобретению. Но его недостатком является то, что оно позволяет улучшить точность и качество процесса управления, когда значительно изменяются инерционность объекта управления и активное сопротивление якорной обмотки электродвигателя, но при этом не обеспечивает сохранения заданной динамической точности управления при увеличении момента сухого трения. Это увеличение может произойти по различным многочисленным причинам, затрудняющим поворот выходного вала электропривода.

В результате возникает задача построения такой самонастраивающейся системы, которая обеспечила бы неизменную динамическую точность работы рассматриваемого электропривода при значительном изменении (увеличении) величины момента сухого трения.

Технический результат, который может быть получен при реализации заявляемого технического решения, выражается в формировании дополнительного сигнала управления, подаваемого на вход электропривода, который обеспечивает инвариантность качественных показателей и динамических свойств рассматриваемого привода к возможному увеличению момента сухого трения.

Поставленная задача решается тем, что в самонастраивающийся электропривод, содержащий первый сумматор, последовательно соединенные корректирующее устройство с усилителем, электродвигатель с редуктором, выходной вал которого соединен с датчиком скорости и датчиком положения, выход которого подключен к первому входу первого сумматора, второй вход которого соединен с входом электропривода, последовательно соединенные релейный элемент, вход которого соединен с выходом датчика скорости, второй сумматор, последовательно соединенные датчик тока якорной обмотки электродвигателя и третий сумматор, дополнительно вводятся последовательно соединенные интегратор, вход которого соединен с выходом третьего сумматора, второй вход которого подключен к выходу релейного элемента, и четвертый сумматор, второй вход которого подключен к выходу датчика скорости, а выход - к третьему входу третьего сумматора и второму входу второго сумматора, третий вход которого соединен с выходом первого сумматора, а выход - с входом усилителя.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналога и прототипа свидетельствует о его соответствии критерию "новизна".

При этом отличительные признаки формулы изобретения обеспечивают инвариантность электропривода к изменению (в том числе и к значительному) величины момента сухого трения, что обеспечивает неизменное качество в процессе его эксплуатации.

Изобретение поясняется чертежом, на котором представлена структурная схема самонастраивающегося электропривода и введены следующие обозначения: α - угол поворота выходного вала редуктора, - задающий (входной) сигнал, - скорость вращения выходного вала редуктора, ε - ошибка электропривода, i - ток якорной обмотки электродвигателя.

Самонастраивающийся электропривод содержит первый сумматор 1, последовательно соединенные корректирующее устройство 2 с усилителем, электродвигатель 3 с редуктором 4, выходной вал которого соединен с датчиком 5 скорости и датчиком 6 положения, выход которого подключен к первому входу первого сумматора 1, второй вход которого соединен с входом электропривода, последовательно соединенные релейный элемент 7, вход которого соединен с выходом датчика 5 скорости, второй сумматор 8, последовательно соединенные датчик 9 тока якорной обмотки электродвигателя и третий сумматор 10, последовательно соединенные интегратор 11, вход которого соединен с выходом третьего сумматора 10, второй вход которого подключен к выходу релейного элемента 7, и четвертый сумматор 12, второй вход которого подключен к выходу датчика 5 скорости, а выход - к третьему входу третьего сумматора 10 и второму входу второго сумматора 8, третий вход которого соединен с выходом первого сумматора 1, а выход - с входом усилителя 2. Объект управления 13 соединен с выходным валом редуктора.

Электропривод работает следующим образом. На второй положительный вход сумматора 1 с единичным коэффициентом усиления подается управляющее воздействие обеспечивающее требуемый закон изменения угла α. Поскольку первый отрицательный вход этого сумматора имеет также единичный коэффициент усиления, то на его выходе вырабатывается сигнал ε ошибки электропривода, который поступает на третий положительный вход сумматора 8, имеющий единичный коэффициент усиления.

Выходной сигнал нелинейного элемента 7 определяется выражением где - номинальное значение момента сухого трения электропривода, приведенное к валу электродвигателя при его вращении в одну из сторон. Этот сигнал, поступая с коэффициентом усиления R/(KУKM) (где R - активное сопротивление якорной обмотки электродвигателя, КУ - коэффициент усиления элемента 2, KM - коэффициент крутящего момента электродвигателя) на первый положительный вход сумматора 8, в установившемся состоянии компенсирует отрицательное влияние номинального значения момента сухого трения на точность работы электропривода.

Сформированный на выходе сумматора 8 сигнал, усиливаясь, поступает на электродвигатель 3, приводя его вал во вращательное движение с направлением и скоростью (ускорением), зависящими от величины и знака этого сигнала.

Для сохранения заданной точности работы электропривода при возрастании момента сухого трения в процессе выполнения им конкретных технологических операций в электроприводе формируется дополнительный сигнал, который подается на второй отрицательный вход сумматора 8. Этот сигнал формируется следующим образом. Первый положительный вход сумматора 10 (со стороны датчика 9) имеет коэффициент усиления KM/J, второй отрицательный (со стороны элемента 7) - коэффициент усиления 1/J, а третий положительный - коэффициент усиления ω (J - момент инерции вала электродвигателя и вращающихся частей редуктора, приведенный к валу электродвигатля). В результате на выходе этого сумматора формируется сигнал

а на выходе интегратора 11, имеющего единичный коэффициент усиления, - сигнал

где - выходной сигнал сумматора 12, имеющего первый отрицательный (со стороны интегратора 11) и второй положительный входы с единичными коэффициентами усиления.

Взяв производные от левой и правой частей выражения (2), с учетом выражения (1), а также того, что при номинальном значении момента сухого трения и введении указанного выше сигнала, компенсирующего это номинальное сухое трение, имеет место выражение несложно получить: Если же величина момента сухого трения, повышаясь, становится отличной от номинальной, то ускорение вращения вала электродвигателя должно замедлиться, и становится справедливым выражение

где - величина, характеризующая значение, на которое возрастает величина момента сухого трения.

Решение уравнения (3) имеет вид: Поскольку положительная величина ω может быть выбрана достаточно большой, то в быстро наступающем установившемся режиме работы системы (спустя малое время t) имеет место соотношение δ=ωr.

На выходе сумматора 8, второй вход которого имеет коэффициент усиления формируется сигнал u=u1+uc, который помимо основного содержит сигнал самонастройки обеспечивающий инвариантность электропривода к изменению величины момента сухого трения, что обеспечивает неизменное качество в процессе его эксплуатации.

Самонастраивающийся электропривод, содержащий первый сумматор, последовательно соединенные корректирующее устройство с усилителем, электродвигатель с редуктором, выходной вал которого соединен с датчиком скорости и датчиком положения, выход которого подключен к первому входу первого сумматора, второй вход которого соединен с входом электропривода, последовательно соединенные релейный элемент, вход которого соединен с выходом датчика скорости, второй сумматор, последовательно соединенные датчик тока якорной обмотки электродвигателя и третий сумматор, отличающийся тем, что в него дополнительно введены последовательно соединенные интегратор, вход которого соединен с выходом третьего сумматора, второй вход которого подключен к выходу релейного элемента, и четвертый сумматор, второй вход которого подключен к выходу датчика скорости, а выход - к третьему входу третьего сумматора и второму входу второго сумматора, третий вход которого соединен с выходом первого сумматора, а выход - с входом усилителя.



 

Похожие патенты:

Изобретение относится к области автоматического управления электроприводами, в датчиках скорости которых возникают дефекты. Технический результат заключается в обеспечении нечувствительности работы электропривода к искажению показаний в датчике скорости вращения вала электропривода за счет формирования дополнительного управляющего воздействия, подаваемого на вход электропривода.

Изобретение относится к области управления непрерывными технологическими процессами. Техническим результатом является повышение эффективности самонастройки и улучшение качества регулирования инерционных объектов.

Группа изобретений относится к области управления. Технический результат - увеличение точности процесса регулирования.

Изобретение относится к контролю и организации оптимального управления и может быть использовано в системах контроля и управления различных динамических систем в реальном масштабе времени.

Изобретение относится к автоматическому управлению и регулированию. Технический результат - обеспечение работоспособности системы регулирования объекта с рециклом при числе управляющих воздействий объекта больше числа целевых выходных переменных.

Изобретения относятся к химической и топливной отраслям промышленности, а также к охране окружающей среды. Сначала сравнивают данные об исходном образце твердого топлива с одной или более требуемых характеристик после обработки.

Изобретение относится к следящим системам, предназначенным для обнаружения, определения, текущего контроля и анализа данных. Технический результат - расширение функциональных возможностей и удобство эксплуатации.

Изобретение относится к области электромеханики и может быть использовано для реализации циклических движений. Технический результат - повышение точности реализации циклических движений.

Устройство относится к вычислительной технике. Технический результат заявленного изобретения заключается в обеспечении заданной динамической точности скоростного движения динамического объекта (ДО) на всех участках криволинейной пространственной траектории независимо от динамических свойств этого объекта и его системы управления.

Изобретение относится к системам автоматического регулирования, поддерживающим ориентацию солнечных батарей. Технический результат заключается в повышении точности ориентации и слежения солнечных батарей.

Изобретение относится к производству прецизионных изделий сложной формы из полимерных композиционных материалов. В процессе изготовления изделия, осуществляемого в течение нескольких технологических этапов, измеряют контролируемые параметры обрабатываемого изделия, сравнивают значения измеренных параметров с заданными и формируют управляющее воздействие, обеспечивающее корректировку технологических параметров. При этом на каждом этапе технологического процесса измеряют контролируемые параметры, характерные для данного этапа, определяют по известным экспериментальным зависимостям качество готового изделия от этих параметров путем оптимизационных вычислений значения возможных показателей качества изделия, сравнивают их с заданными и производят корректировку технологических параметров последующего этапа. Достигается повышение качества готового изделия. 2 ил.

Изобретение относится к области систем автоматического управления сложными многосвязными динамическими объектами и может быть использовано в системах автоматического управления газотурбинными двигателями, энергетическими комплексами, синхронными генераторами. Технический результат: повышение быстродействия и уменьшение перерегулирования в переходном режиме, а также увеличение точности функционирования в установившемся режиме за счет формирования логического корректирующего сигнала для подсистем в составе сложного многосвязного динамического объекта. Посредством нелинейного корректора формируют логический корректирующий сигнал на основе анализа динамики подсистемы по сигналу ошибки εi(t) и ее производной ε i ' ( t ) , а также, посредством дополнительного нелинейного корректора формируют сигнал логической корректирующей ошибки, полученный по результатам анализа влияния выбранной максимальной динамики y′(t) среди j-x подсистем (j=1,…,n, j≠i) на динамику выходной координаты y i ' ( t ) i-й подсистемы (i=1,…,n), тем самым стабилизируют, координируют и согласовывают все подсистемы и управляют сложным многосвязным динамическим объектом. 4 ил.

Изобретение относится к системам радиационной безопасности АЭС. Система содержит блок контроля за аварийной ситуацией с регулирующим клапаном и цилиндрический металлический кожух для сбора высокотемпературных радиоактивных газов и водяного пара, дисперсного материала и радиоактивной пыли, обрамляющий реактор. Кожух своей верхней конусной частью через отвод подсоединяется к центральной трубе конденсатора-дезактиватора первой ступени. Система содержит после кожуха две ступени дезактивации: конденсаторы-дезактиваторы первой и второй ступени, исключающие выбросы после реактора в атмосферу, которые заполняются через регулирующие клапаны дезактивирующим раствором Конденсатор-дезактиватор первой ступени служит для дезактивации дисперсного материала и радиоактивной пыли, а конденсатор-дезактиватор второй ступени - для дезактивации и конденсации высокотемпературного радиоактивного газа, водяного пара, который барботируется через слой дезактивирующей жидкости. Технический результат - повышение надежности работы системы при аварии атомного реактора. 8 з.п. ф-лы, 1 ил.

Изобретение относится к области сельскохозяйственного машиностроения, в частности к системе почвообрабатывающе-посевного орудия и способу ее управления. Орудие содержит высевающую секцию, датчик, выполненный с возможностью выдачи сигнала, указывающего на почву, смещенную высевающей секцией, и контроллер орудия, соединенный с возможностью сообщения с датчиком. Контроллер орудия выполнен с возможностью определения гладкости обработки почвы позади высевающей секции на основании сигнала и с возможностью регулирования параметра, влияющего на обработку почвы, когда гладкость находится за пределами требуемого диапазона. Такое конструктивное решение направлено на повышение эффективности посева. 3 н. и 14 з.п. ф-лы, 6 ил.

Изобретение может быть использовано для непрерывного контроля, оценки и прогнозирования состояния неопределенности взаимодействия судна с внешней средой. Техническим результатом является повышение степени надежности функционирования бортовых систем для обеспечения безопасности мореплавания судов при возникновении экстремальных ситуаций. Для достижения технического результата в предлагаемом способе регистрируют сигналы в блоке измерений параметров судна и внешней среды в экстремальной ситуации, устанавливают уровень неопределенности ситуации и сравнивают текущие значения параметров энтропии с заранее зафиксированными значениями. При возникновении экстремальной ситуации в условиях большой неопределенности определяют базовое значение определяющего параметра, относительно которого рассматривается состояние неопределенности, энтропийного потенциала и его приращения с использованием конкурентного отношения, осуществляют распознавание уровня неопределенности и формируют математические модели динамики изменения неопределенности, рассчитывают величину комплексного энтропийного потенциала и определяют изменение характеристик энтропии, прогнозируют развитие ситуации. 4 ил.
Наверх