Способ вскрытия шлака


 


Владельцы патента RU 2568796:

Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) (RU)

Изобретение относится к области металлургии цветных металлов и может быть наиболее эффективно использовано при переработке вскрытием шлаков, содержащих тяжелые цветные металлы, железо, кремний и серу. Способ включает выщелачивание шлака при повышенной температуре путем равномерной загрузки шлака в раствор соляной кислоты с образованием пульпы и ее выдержки с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния в твердую фазу. Затем проводят разделение жидкой и твердой фаз. При этом перед загрузкой шлак измельчают до крупности частиц не более 100 мкм. Выщелачивание ведут в присутствии окислителя при величине окислительно-восстановительного потенциала, равной 350-450 мВ. После отделения твердой фазы осуществляют ее промывку при Т:Ж=1:5-30. Техническим результатом является обеспечение стабильно высоких показателей извлечения в раствор цветных металлов и железа и получение диоксида кремния, содержащего не более 2,9% суммы металлов и не более 0,6% хлора, а также улучшение условий труда. 6 з.п. ф-лы, 7 пр.

 

Изобретение относится к области металлургии цветных металлов и может быть наиболее эффективно использовано при переработке шлаков, содержащих тяжелые цветные металлы, железо, кремний и серу.

При пирометаллургической переработке никелевых и сульфидных медно-никелевых руд образуются шлаки, содержащие помимо железа и кремния цветные металлы и серу. Переход цветных металлов в шлак связан как с их частичной растворимостью, так и наличием некоторого количества серосодержащего штейна. Присутствие серы в шлаках обусловлено, помимо наличия штейна, также частичной растворимостью в них сульфида меди и образованием сульфидно-металлической взвеси (см. Резник И.Д., Ермаков Г.П., Шнеерсон Я.М. Никель: в 3 т. - М.: ООО «Наука и технологии», 2001. Т. 3. - С. 92-107). В связи с низким содержанием цветных металлов шлаки в большинстве случаев направляют в отвал или используют в стройиндустрии, что приводит к полной потере цветных металлов. В некоторых случаях для извлечения из шлаков цветных металлов их подвергают флотации или магнитной сепарации. Однако из-за того что только незначительная часть цветных металлов ассоциирована с сульфидами и металлизированной магнитной фазой, степень их извлечения из шлаков обычно невысока. Повысить степень извлечения из шлаков цветных металлов возможно путем их гидрометаллургической переработки.

Известен способ вскрытия шлака (см. з-ка 101126123 Китай, МПК С22В 3/10 (2006.01), 2008), содержащего никель и железо, включающий предварительную обработку шлака водой при Т:Ж=1:5 и температуре 75-85°C, добавление в образовавшуюся пульпу 4 М (13,6%) соляной кислоты в течение 30-50 минут до обеспечения рН 2,0-3,5 с переводом никеля в раствор и получением железистого остатка. Степень извлечения никеля в раствор составила 66,9-83,3% при содержании никеля в железистом остатке 1,33-2,34%.

Известный способ не обеспечивает высокого извлечения никеля в раствор и не предусматривает возможность удаления токсичных газов при его осуществлении, что ухудшает условия труда.

Известен также принятый в качестве прототипа способ вскрытия шлака (см. а.с. 1171549 СССР, МКИ4 С22В 7/04, 1985), включающий равномерную загрузку отвального шлака от переработки сульфидных медно-никелевых руд, содержащего, мас. %: Ni - 0,2, Со - 0,1, Cu - 0,3, Fe - 35,3, SiO2 - 36,0, в предварительно нагретую до 55-90°C 15-20% соляную кислоту. Загрузку ведут в течение 1-2 часов со скоростью 0,4 г/мин с образованием пульпы и переводом цветных металлов и железа в раствор, а диоксида кремния в твердую фазу. Пульпу выдерживают в течение 0,5-1,0 часа и затем фильтруют с отделением раствора от кремнийсодержащего остатка. Степень извлечения в раствор составила, %: Ni 65,8-98,5, Со 82,1-99,4, Cu 68,4-99,8, Fe 95,1-99,9.

Известный способ характеризуется нестабильным извлечением в раствор цветных металлов, а также тем, что на стадии кислотной обработки шлака происходит образование токсичного сероводорода и при максимальной температуре - паров соляной кислоты, что ухудшает условия труда. Способ не предусматривает промывку кремнийсодержащего остатка, в котором присутствует некоторое количество хлоридов металлов, что понижает содержание в нем кремния.

Настоящее изобретение направлено на достижение технического результата, заключающегося в обеспечении стабильно высокой степени извлечения в раствор цветных металлов и железа и повышении содержания кремния в остатке. Технический результат заключается также в улучшении условий труда за счет ограничения выделения вредных газов.

Технический результат достигается тем, что в способе вскрытия шлака, содержащего цветные металлы, железо, кремний и серу, включающем выщелачивание шлака при повышенной температуре путем равномерной загрузки шлака в раствор соляной кислоты с образованием пульпы и ее выдержки с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния - в твердую фазу, и разделение жидкой и твердой фаз, согласно изобретению, перед загрузкой шлак измельчают до крупности частиц не более 100 мкм, выщелачивание ведут в присутствии окислителя при величине окислительно-восстановительного потенциала (ОВП), равной 350-450 мВ, а после отделения твердой фазы осуществляют ее промывку при Т:Ж=1:5-30.

Достижению технического результата способствует то, что загрузку шлака в раствор соляной кислоты ведут со скоростью 1,1-4,2 г/мин в расчете на 1 л раствора.

Достижению технического результата способствует также то, что используют раствор соляной кислоты с концентрацией 15-30%, а выщелачивание ведут при температуре 60-85°C.

Достижению технического результата способствует также и то, что выдержку пульпы ведут при перемешивании в течение 1-3 часов.

Достижению технического результата способствует и то, что в качестве окислителя используют пероксид водорода, газообразный хлор, хлорид железа (III).

На достижение технического результата направлено также то, что промывку твердой фазы ведут водой.

На достижение технического результата направлено и то, что промывку твердой фазы ведут в две стадии, причем на первой стадии промывку ведут соляной кислотой с концентрацией 20-30%, а на второй стадии - водой, при этом отработанный промывной раствор первой стадии используют для выщелачивания шлака.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Измельчение шлака перед загрузкой до крупности частиц не более 100 мкм обеспечивает стабильно высокое извлечение в раствор цветных металлов и железа. При крупности частиц более 100 мкм не достигается высокая степень вскрытия шлака вследствие снижения величины поверхности контакта твердой фазы и раствора, а также блокирования поверхности частиц шлака образующимся кремнегелем.

Предварительное введение окислителя в раствор соляной кислоты в количестве, обеспечивающем величину окислительно-восстановительного потенциала 350-450 мВ, позволяет ограничить выделение сероводорода в реакционном объеме и предотвратить его выделение в атмосферу рабочей зоны в процессе выщелачивания шлака. При величине ОВП менее 350 мВ начинается выделение сероводорода, что ухудшает условия труда. При величине более 450 мВ происходит окисление сульфидной серы до сульфатной, что нежелательно по причине загрязнения хлоридного раствора сульфат-ионами и требует повышенного расхода окислителя.

Промывка твердой фазы при Т:Ж=1:5-30 существенно повышает содержание кремния в остатке. При избытке промывной жидкости менее 5 уменьшается содержание кремния в остатке. Промывка твердой фазы при избытке промывной жидкости более 30 нежелательна по причине неоправданно высокого расхода реагентов без заметного повышения извлечения в раствор металлов.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в обеспечении стабильно высокой степени извлечения в раствор цветных металлов и железа, повышении содержания кремния в остатке, а также в улучшении условий труда за счет ограничения выделения вредных газов.

В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.

Проведение загрузки шлака в раствор соляной кислоты со скоростью 1,1-4,2 г/мин в расчете на 1 л раствора обеспечивает хорошую фильтруемость твердофазного остатка и исключает переход диоксида кремния в раствор. При скорости загрузки шлака более 4,2 г/мин ухудшается фильтруемость остатка и несколько снижается степень извлечения в раствор цветных металлов и железа. Скорость загрузки шлака менее 1,1 г/мин нежелательна по причине излишне высокой продолжительности операции выщелачивания шлака без существенного повышения степени извлечения металлов.

Выщелачивание шлака раствором соляной кислоты с концентрацией 15-30% обеспечивает высокую степень извлечения в раствор цветных металлов и железа и хорошую фильтруемость остатка на основе диоксида кремния. При концентрации соляной кислоты менее 15% снижается извлечение в раствор цветных металлов и железа и ухудшается фильтруемость остатка. Концентрация кислоты более 30% нежелательна по причине возможного ее закипания, что ухудшает условия труда.

Выщелачивание шлака при температуре 60-85°C обеспечивает стабильно высокую степень извлечения в раствор цветных металлов и железа и хорошую фильтруемость остатка. При температуре менее 60°C снижается степень извлечения в раствор цветных металлов и железа, а также падает скорость фильтрации. При температуре более 85°C существенно возрастает парение соляной кислоты, что ухудшает условия труда.

Выдержка пульпы при перемешивании в течение 1-3 часов обеспечивает стабильно высокую степень извлечения в раствор цветных металлов и железа и хорошую фильтруемость остатка. Выдержка пульпы в течение менее 1 часа приводит к снижению извлечения цветных металлов в раствор, а более 3 часов - не ведет к повышению эффективности способа.

Использование пероксида водорода, газообразного хлора и раствора хлорида железа(III) в качестве окислителя обусловлено тем, что эти реагенты обеспечивают достижение требуемого окислительно-восстановительного потенциала и являются технологически доступными. В качестве раствора хлорида железа(III) может быть использована жидкая фаза от выщелачивания шлака.

Промывка твердой фазы водой обеспечивает отмывку в одну стадию от примесей кислоты и металлов, повышая тем самым чистоту диоксида кремния.

Промывка твердой фазы в две стадии: на первой стадии соляной кислотой и водой на второй стадии с использованием отработанного промывного раствора первой стадии для выщелачивания шлака способствует увеличению концентрации в растворе выщелачивания цветных металлов и железа и повышению содержания кремния в остатке. Использование для промывки соляной кислоты с концентрацией 20-30% обеспечивает возможность применения промывного раствора первой стадии для выщелачивания шлака.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения обеспечения стабильно высокой степени извлечения в раствор цветных металлов и железа, повышения содержания кремния в остатке, а также ограничения выделения вредных газов.

Сущность и преимущества заявленного способа могут быть проиллюстрированы следующими Примерами.

Пример 1. 200 г отвального шлака медно-никелевого производства, содержащего, мас. %: Fe - 24,1, Cu - 0,16, Ni - 0,22, Co - 0,075, SiO2 - 38,9, S - 0,81, измельченного до крупности 74 мкм и менее, загружают равномерно со скоростью 1,1 г/мин в течение 3 часов в 950 мл 15% раствора соляной кислоты. Процесс ведут при 85°C и ОВП 350-400 мВ, который поддерживают путем постепенной подачи в пульпу 50 мл пероксида водорода. После окончания загрузки пульпу выдерживают при перемешивании в течение 1 часа с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния - в твердую фазу. Образовавшийся твердофазный остаток отфильтровывают на нутч-фильтре при скорости фильтрации 120 л/м2·ч. Влажный остаток промывают на фильтре водой с температурой 60°C при Т:Ж=1:5 и сушат при 105°C. Вес сухого остатка - 85,44 г. Он содержит, мас. %: SiO2 - 73,2, Fe - 1,10, Cu - 0,016, Ni - 0,019, Co - 0,003, S - 1,8, Cl - 0,6. Степень извлечения из шлака в раствор составила, %: Fe - 97,8, Cu - 95,7, Ni - 96,2, Со - 98,2. В атмосфере рабочей зоны присутствия сероводорода не зафиксировано.

Пример 2. 200 г шлака передела конвертирования никелевого штейна, содержащего, мас. %: Fe - 49,4, Cu - 0,061, Ni - 0,45, Со - 1,36, SiO2 - 25,1, S - 3,89, измельченного до крупности 74 мкм и менее, загружают равномерно со скоростью 1,7 г/мин в 900 мл 30% раствора соляной кислоты течение 2 часов. Процесс ведут при 60°C и ОВП 360-420 мВ, который поддерживают путем постепенной подачи в пульпу 90 мл пероксида водорода. После окончания загрузки пульпу выдерживают при перемешивании в течение 1 часа с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния в твердую фазу. Образовавшийся твердофазный остаток отфильтровывают на нутч-фильтре при скорости фильтрации 151,5 л/м2·ч. Влажный остаток промывают 20% соляной кислотой на фильтре при Т:Ж=1:10 с получением 640 мл промывного раствора, содержащего, г/л: Fe - 26,2, Cu - 0,02, Ni - 0,20, Со - 0,62. После отделения промывного раствора, остаток дополнительно промывают водой при Т:Ж=1:10 и сушат при 105°C. Вес остатка после сушки - 63,35 г. Он содержит, мас. %: SiO2 - 75,2, Fe - 2,80, Cu - 0,006, Ni - 0,044, Co - 0,02, S - 9,2, Cl - 0,2. Степень извлечения из шлака в раствор составила, %: Fe - 98,2, Cu - 96,7, Ni - 96,9, Со - 98,6. В атмосфере рабочей зоны присутствия сероводорода не зафиксировано.

Пример 3. 250 г шлака состава по Примеру 1, измельченного до крупности 74 мкм и менее, загружают равномерно со скоростью 4,2 г/мин в течение 1 часа в 1000 мл 20% раствора соляной кислоты. Процесс ведут при 70°C и ОВП 380-450 мВ, который поддерживают путем постепенной подачи в раствор газообразного хлора. После окончания загрузки пульпу выдерживают при перемешивании в течение 3 часов с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния в твердую фазу. Образовавшийся твердофазный остаток отфильтровывают на нутч-фильтре при скорости фильтрации 136 л/м2·ч. Влажный остаток промывают на фильтре 30% соляной кислотой при Т:Ж=1:9 с получением 950 мл промывного раствора, содержащего, г/л: Fe - 12,4, Cu - 0,1, Ni - 0,14, Co - 0,048. После отделения промывного раствора, остаток дополнительно промывают водой при Т:Ж=1:11 и сушат при 105°C. Вес остатка - 106,5 г. Он содержит, мас. %: SiO2 - 74,8, Fe - 0,51, Cu - 0,01, Ni - 0,015, Со - 0,003, S - 1,71, Cl - 0,19. Степень извлечения из шлака в раствор составила, %: Fe - 99,1, Cu - 97,7, Ni - 97,1, Со - 98,9. В атмосфере рабочей зоны присутствия сероводорода не зафиксировано.

Пример 4. 200 г состава по Примеру 1, измельченного до крупности 74 мкм и менее, загружают равномерно со скоростью 1,7 г/мин в течение 2 часов в 1000 мл 20% раствора соляной кислоты, содержащего 25 г/л железа(III). Процесс ведут при 70°C и ОВП 380-400 мВ. После окончания загрузки пульпу выдерживают при перемешивании в течение 2 часов с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния в твердую фазу. Образовавшийся твердофазный остаток отфильтровывают на нутч-фильтре при скорости фильтрации 150 л/м2·ч. Влажный остаток промывают на фильтре 25% соляной кислотой при Т:Ж=1:10 с получением 830 мл промывного раствора, содержащего, г/л: Fe - 19,7, Cu - 0,086, Ni - 0,11, Со - 0,04. После отделения промывного раствора, остаток дополнительно промывают водой при Т:Ж=1:10 и сушат при 105°C. Вес остатка - 85,20 г. Он содержит, мас. %: SiO2 - 78,5, Fe - 0,60, Cu - 0,009, Ni - 0,007, Co - 0,001, S - 1,75, Cl - 0,2. Степень извлечения из шлака в раствор составила, %: Fe - 98,8, Cu - 97,9, Ni - 98,9, Со - 99,6. В атмосфере рабочей зоны присутствия сероводорода не зафиксировано.

Пример 5. 200 г шлака передела конвертирования никелевого штейна, содержащего, мас. %: Fe - 46,4, Cu - 0,064, Ni - 0,42, Со - 1,29, SiO2 - 26,8, S - 1,54, измельченного до крупности 100 мкм и менее, загружают равномерно со скоростью 2,1 г/мин в течение 2 часов в 1000 мл 30% раствора соляной кислоты, и приготовленного путем смешения 930 мл оборотного промывного раствора, и 70 мл 34% соляной кислоты. Процесс ведут при 80°C и ОВП 380-450 мВ, который поддерживают путем постепенной подачи в раствор газообразного хлора. После окончания загрузки пульпу выдерживают при перемешивании в течение 1 часа с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния в твердую фазу. Образовавшийся твердофазный остаток отфильтровывают на нутч-фильтре при скорости фильтрации 165 л/м2·ч. Влажный остаток промывают на фильтре 30% соляной кислотой при Т:Ж=1:15 с получением 930 мл промывного раствора, содержащего, г/л: Fe - 13,1, Cu - 0,057, Ni - 0,073, Co - 0,027. После отделения промывного раствора, остаток дополнительно промывают водой при Т:Ж=1:15 и сушат при 105°C. Вес остатка - 62,20 г. Он содержит, мас. %: SiO2 - 73,9, Fe - 1,50, Cu - 0,003, Ni - 0,041, Co - 0,02, S - 4,05, Cl - 0,1. Степень извлечения из шлака в раствор составила, %: Fe - 99,1, Cu - 96,8, Ni - 97,7, Со - 99,0. В атмосфере рабочей зоны присутствия сероводорода не зафиксировано.

Пример 6 (по прототипу). 50 г шлака состава по Примеру 1, измельченного до крупности 74 мкм и менее, загружают равномерно в течение 2 часов со скоростью 0,4 г/мин на 215 мл 20% раствора соляной кислоты и выдерживают в течение 1 часа с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния в твердую фазу. Величина ОВП - 150-240 мВ. В процессе выщелачивания шлака и выдержки пульпы наблюдается активное выделение сероводорода. Образовавшийся твердофазный остаток отфильтровывают на нутч-фильтре при скорости фильтрации 136,8 л/м2·ч. Влажный остаток сушат при 110°C. Вес сухого остатка - 25,2 г. Он содержит, мас. %: SiO2 - 60,31, Fe - 6,51, Cu - 0,055, Ni - 0,070, Co - 0,007, S - 0,8, Cl - 12,7. Степень извлечения из шлака в раствор составила, %: Fe - 96,70, Cu - 82,9, Ni - 84,1, Co - 92,8.

Пример 7 (по прототипу). 50 г шлака состава по Примеру 5, измельченного до крупности 100 мкм и менее, загружают равномерно в течение 2 часов со скоростью 0,4 г/мин на 215 мл в 1000 мл 20% раствора соляной кислоты и выдерживают в течение 1 часа с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния в твердую фазу. Величина ОВП - 150-200 мВ. В процессе выщелачивания шлака и выдержки пульпы наблюдается активное выделение сероводорода. Образовавшийся твердофазный остаток отфильтровывают на нутч-фильтре при скорости фильтрации 140,7 л/м2·ч. Влажный остаток сушат при 110°C. Вес сухого остатка - 21,0 г. Он содержит, мас. %: SiO2 - 56,0, Fe - 8,9, Cu - 0,081, Ni - 0,089, Co - 0,450, S - 2,9, Cl - 13,0. Степень извлечения из шлака в раствор составила, %: Fe - 92,1, Cu - 46,7 Ni - 90,2, Со - 91,2.

Из анализа вышеприведенных Примеров видно, что предлагаемый способ по сравнению с прототипом позволяет при вскрытии шлаков металлургического производства обеспечить стабильно высокие показатели извлечения в раствор цветных металлов (Cu 95,7-97,9%, Ni 96,2-98,9%, Со 98,2-99,6%) и железа (97,8-99,1%) и получить диоксид кремния, содержащий не более 2,9% суммы металлов и не более 0,6% хлора. Способ также обеспечивает улучшение условий труда за счет ограничения или исключения выделения сероводорода и паров соляной кислоты. Заявляемый способ может быть реализован в промышленных условиях с использованием стандартного оборудования, устойчивого в хлоридных средах.

1. Способ переработки шлака, содержащего цветные металлы, железо, кремний и серу, включающий выщелачивание шлака при повышенной температуре путем равномерной загрузки шлака в раствор соляной кислоты с образованием пульпы и ее выдержки с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния в твердую фазу, и разделение жидкой и твердой фаз, отличающийся тем, что перед загрузкой шлак измельчают до крупности частиц не более 100 мкм, выщелачивание ведут в присутствии окислителя при величине окислительно-восстановительного потенциала, равной 350-450 мВ, а после отделения твердой фазы осуществляют ее промывку при Т:Ж=1:5-30.

2. Способ по п.1, отличающийся тем, что загрузку шлака в раствор соляной кислоты ведут со скоростью 1,1-4,2 г/мин в расчете на 1 л раствора.

3. Способ по п.1, отличающийся тем, что используют раствор соляной кислоты с концентрацией 15-30%, а выщелачивание ведут при температуре 60-85°C.

4. Способ по п.1, отличающийся тем, что выдержку пульпы ведут при перемешивании в течение 1-3 ч.

5. Способ по п.1, отличающийся тем, что в качестве окислителя используют пероксид водорода, газообразный хлор, хлорид железа (III).

6. Способ по п.1, отличающийся тем, что промывку твердой фазы ведут водой.

7. Способ по п.1, отличающийся тем, что промывку твердой фазы ведут в две стадии, причем на первой стадии промывку ведут соляной кислотой с концентрацией 20-30%, а на второй стадии - водой, при этом отработанный промывной раствор первой стадии используют для выщелачивания шлака.



 

Похожие патенты:
Изобретение относится к переработке шлаков при выполнении доменной плавки титаномагнетитовых концентратов. В шлаковую чашу доменной печи подают полученный в процессе доменной плавки титаномагнетитовых концентратов жидкий горячий доменный шлак, содержащий двуокись титана TiO2 и глинозем Al2O3, подают восстановитель и флюс, из полученного расплава проводят восстановление железа, титана и кремния и сливают шлак.

Изобретение относится к черной металлургии, а именно к переработке отвального металлургического шлака. Установка для переработки шлака содержит бункер, устройство для извлечения «коржей» и кусков шлака более 350 мм и шаровую мельницу.

Изобретение может быть использовано в металлургии. Способ переработки бериллийсодержащих отходов производства медно-бериллиевой лигатуры включает плавление с флюсом, выдержку расплава и последующее разделение продуктов плавки с получением металлической фазы и вторичного шлака.

Изобретение относится к пирометаллургической переработке меднолитейных шлаков. Готовят шихту, содержащую шлак, графитированный коксик в количестве 10% от массы шлака, медный коллектор и карбонаты щелочных и щелочно-земельных металлов в качестве активатора процесса восстановления при расходе медного коллектора 0,1-0,3 от массы шлака.

Изобретение относится к области извлечения цветных металлов из шлака. Устройство для сжатия горячего шлака цветного металла содержит размещенные в корпусе раму со сжимающей шлак головкой, выполненной со штоком гидроцилиндра, изложницу для сбора отжатого из шлака цветного металла и шлаковницу, выполненную в донной части с одним или несколькими сквозными дренажными отверстиями и установленную сверху на изложницу.
Изобретение относится к металлургии, в частности к способам переработки печных отвальных никелевых шлаков для получения товарного ферроникеля и литейного чугуна марок Л1-Л6.

Изобретение относится к области цветной металлургии и может быть применено для обеднения медных шлаков. Способ обеднения медных шлаков включает обработку шлака оксидом кальция в присутствии восстановителя при повышенной температуре.

Изобретение относится к вторичной металлургии, в частности, к способу переработки алюминиевого шлака. Способ включает измельчение алюминиевого шлака, выделение металлического алюминия, смешивание остатка после выделения металлического алюминия с компонентом, содержащим окислы железа, спекание, разделение оксидной и солевой составляющей спека для выделения солевой составляющей оксида алюминия, которое ведут с использованием восходящего потока с переменным гидродинамическим режимом в пульсационной колонне, работающей в замкнутом цикле с коническим отстойником, при этом осветленный раствор отстойника возвращают в колонну для создания восходящего потока, а твердую фазу нижней разгрузки пульсационной колонны подвергают магнитной сепарации.
Изобретение относится к утилизации металлосодержащих отходов с содержанием железа 15% и более, таких как шлаки медного и никелевого производства, шламы флотации медной руды и подобные материалы, и может быть использовано при производстве строительных материалов и извлечении металла.

Изобретение относится к металлургии. Способ извлечения металлов из шлаков, содержащих частицы из стали или железа, с зернистостью до 150 мм включает сухое измельчение шлака, дезагломерацию, классификацию и сортировку с формированием металлической фракции и, по крайней мере, одной силикатной фракции.

Изобретение относится к способу извлечения и восстановления ванадия из руд. Способ включает стадию (i) кислотного выщелачивания руды, содержащей ванадий, титан и железо, с экстракцией ванадия и железа в раствор.
Изобретение относится к способу получения свинца. Способ включает обработку свинецсодержащего сырья раствором хлорида щелочного металла и соляной кислоты, отделение нерастворимого осадка от раствора, кристаллизацию из раствора хлористого свинца, его отделение, очистку полученного маточного раствора от сульфат-иона и возвращение его на обработку свинецсодержащего сырья, получение свинца и соляной кислоты, которую возвращают на обработку свинецсодержащего сырья.
Изобретение относится к способу переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана. Твердые медно-ванадивые отходы выщелачивают водой с получением медно-ванадиевой пульпы, в которую подают гипохлорит кальция или осветленную пульпу газоочистных сооружений титано-магниевого производства с концентрацией активного хлора, равной 15-90 г/дм3, при соотношении гипохлорита кальция к медно-ванадиевой пульпе, равном (1,5-2,0):1.

Изобретение относится к области гидрометаллургии и может быть использовано при переработке концентратов, промпродуктов и твердых отходов, содержащих металлы. Способ извлечения ионов тяжелых металлов железа, золота и серебра из сульфатного кека включает выщелачивание спека 3 н.

Предложен обогащенный титаном остаток после выщелачивания ильменита соляной кислотой как сырье для получения титансодержащего пигмента при помощи сернокислотного способа.
Изобретение относится к области переработки алюмосиликатного сырья, в частности кианита, и может быть использовано при производстве глинозема, пригодного для получения корундовых огнеупоров, мелкодисперсного аморфного кремнезема, керамики, силумина и алюминия.
Изобретение относится к технологии получения соединений циркония из бадделеитового концентрата, в частности оксохлорида и диоксида циркония, и может найти применение в волоконной оптике при получении функциональной керамики, специальных стекол, монокристаллов фианита.

Настоящее изобретение относится к способам комплексной переработки отработанных катализаторов. Заявлен способ, в котором извлечение молибдена и церия проводят в две стадии, на первой стадии проводят извлечение соединения молибдена, после чего проводят стадию извлечения соединения церия.

Настоящее изобретение относится к способу извлечения церия из отработанных железокалиевых катализаторов дегидрирования олефиновых углеводородов. Способ заключается в том, что извлечение церия осуществляют после предварительной подготовки катализатора.

Изобретение относится к металлургии благородных металлов и может быть использовано при утилизации отработанных катализаторов, содержащих соединения палладия и других металлов.

Способ извлечения меди (+2) из отработанных растворов относится к промышленной экологии и к химической технологии органических веществ. Способ может быть использован для утилизации жидких отходов производства, в частности отработанных растворов анодного оксидирования алюминия и его сплавов, отработанных растворов гальванического меднения, отработанных растворов травления меди и ее сплавов, отработанных растворов травления печатных плат.
Наверх