Способ очистки опускных трубопроводов барабан-сепараторов ядерного канального реактора

Изобретение относится к области атомной энергетики, а именно к способам очистки внутренних поверхностей трубопроводов от радиоактивных загрязнений, например опускных трубопроводов барабан-сепараторов контура многократной принудительной циркуляции ядерного канального реактора, и может быть использовано при проведении ремонтных и регламентных работ на энергоблоках атомных электростанций. В способе очистки опускных трубопроводов барабан-сепараторов ядерного канального реактора путем промывки водой промывку опускных трубопроводов каждого барабан-сепаратора производят поочередно чистой, химически обессоленной водой, подаваемой с расходом 200…250 м3/ч в течение 12…14 минут. Кроме того, разделяют общее время промывки на две стадии. Первую промывку проводить с расходом 240…250 м3/ч в течение 7…8 минут, а вторую - с расходом 200…210 м3/ч в течение 5…6 минут. Технический результат - сокращение продолжительности очистки в 4…5 раз, снижение объема используемой воды для очистки опускных трубопроводов всех барабан-сепараторов 8…10 раз. 1 з.п. ф-лы, 3 ил.

 

Заявляемое изобретение относится к области атомной энергетики, а именно к способам очистки внутренних поверхностей трубопроводов от радиоактивных загрязнений, например, опускных трубопроводов барабан-сепараторов контура многократной принудительной циркуляции ядерного канального реактора, и может быть использовано при проведении ремонтных и регламентных работ на энергоблоках атомных электростанций.

Ионизирующее излучение оказывает влияние на безопасное выполнение ремонтных и регламентных работ, зависит от степени загрязненности теплоносителя и мощности дозы. Для решения проблемы доступа в зону проведения работ необходимо снижать мощность дозы излучения до уровня, обеспечивающего безопасность персонала. В общем случае снижение радиационного воздействия обеспечивают посредством реализации мероприятий, направленных на снижение активности теплоносителя и удаления с поверхности оборудования радиоактивного загрязнения. Снижение активности теплоносителя и мощности дозы ионизирующего излучения выполняют путем проведения кислотной промывки контура многократной принудительной циркуляции (КМПЦ) с использованием химических реагентов. Однако при кислотной промывке химически активные растворы оказывают негативное воздействие на оборудование. Из уровня техники известны способы очистки КМПЦ ядерного канального реактора путем промывки. Один из них приведен в патенте РФ на изобретение №2245587. Для получения эффекта дезактивации КМПЦ по снижению негативного влияния реагентов на оборудование в определенной последовательности выполняют динамическое и химическое рыхление. Недостатками указанного способа является значительное время проведения этапов промывки (порядка 25 часов). В другом известном способе по патенту РФ на изобретение №2126182 время промывки составляет 35 часов, при этом наблюдаются высокие коррозионные потери углеродистой стали и цветных металлов. Дальнейшим усовершенствованием данного способа является решение, основанное на использовании химических реагентов при температуре 85…100°С в две стадии с общей продолжительностью 35 часов, изложенное в книге «Атомные станции», Санкт-Петербург, издание Политехнического университета, 2007, с. 169…198 и патенте РФ на изобретение №2126182. Недостатками способа являются также значительные коррозионные потери углеродистой стали и цветных металлов, химическая активация металла при обработке перекисью водорода, что приводит к депассивации (интенсивной коррозии) оборудования. Учитывая влияние кислотной промывки на возникновение дефектов оборудования, реагентную промывку на энергоблоках в настоящее время не проводят.

Ближайшим аналогом заявленного изобретения является процесс промывки КМПЦ, описанный в инструкции по эксплуатации КМПЦ и его вспомогательных систем инв. № Р-110ИЭ, ЛАЭС, г. Сосновый Бор от 20.06.2013, стр. 77-81. В соответствии с указанной инструкцией после останова реактора перед началом выполнения ремонтных работ производят промывку КМПЦ, включающего все четыре барабана-сепаратора с 48 опускными трубопроводами теплоносителя контура реактора.

Недостатками ближайшего аналога являются высокая продолжительность (40…50 часов) и низкая эффективность промывки из-за использования воды, загрязненной радиоактивными продуктами. Значительную часть КМПЦ составляют опускные трубопроводы барабан-сепараторов, имеющие протяженные горизонтальные участки, трудно поддающиеся очистке от радиоактивных загрязнений. Другим недостатком являются большие энергозатраты, связанные с продолжительной работой главных циркуляционных насосов (ГЦН), т.к. расход воды, прокачиваемой в период промывки, составляет 13…14 тыс. м3/ч.

Целью предлагаемого изобретения является повышение эффективности очистки опускных трубопроводов барабан-сепараторов КМПЦ путем снижения мощности дозы излучения, сокращения процесса промывки и расхода воды.

Сущность предлагаемого изобретения состоит в том, что в способе очистки опускных трубопроводов барабан-сепараторов ядерного канального реактора путем промывки водой предложено промывку опускных трубопроводов каждого барабан-сепаратора производить поочередно чистой, химически обессоленной водой, подаваемой с расходом 200…250 м3/ч в течение 12…14 минут. Кроме того, предложено разделить общее время промывки на две стадии. Первую промывку проводить с расходом 240…250 м3/ч в течение 7…8 минут, а вторую - с расходом 200…210 м3/ч в течение 5…6 минут.

В обоснование способа приводим следующее. По способу, изложенному в ближайшем аналоге, промывали весь КМПЦ, включающий четыре барабана-сепаратора (БС) с 48 опускными трубопроводами в течение длительного времени. При очистке предложенным способом промывают опускные трубопроводы (локальные участки КМПЦ) каждого БС в течение 12…14 минут, что позволяет снизить мощность дозы на опускных трубопроводах: со 100 до 20 мЗв/ч для ближнего по ходу подачи промывочной воды ОТ-1, со 100 до 50 мЗв/ч для дальнего по ходу подачи промывочной воды ОТ-12. Значительно меньший по сравнению с ближайшим аналогом расход промывочной воды (200-250 м3/ч) по предложенному способу позволяет использовать чистую, химически обессоленную воду (ХОВ). Оптимальность промывки достигается за счет поочередной промывки каждого БС в отдельности.

Графический материал, иллюстрирующий изобретение, представлен на фиг. 1, 2, 3, где на фиг. 1 изображена схема промывки (выделено жирным), которая состоит из источника ХОВ 1, задвижки 2, насоса 3, задвижки 4, питательного трубопровода 5, обратного клапана (ОК) 6, БС 7, коллектора питательной воды 8, двенадцати опускных трубопроводов (ОТ) 9 (показаны одной линией), промежуточной приемной емкости (коллектор) 10, задвижки 11, резервуара трапных вод (РТВ) 12. На фиг. 2 представлена таблица, отображающая дозы на ОТ 9 после каждой промывки. На фиг. 3 изображен график зависимости эффективности очистки от количества промывок.

Способ осуществляется следующим образом. Экспериментально определяют оптимальные параметры расхода и времени подачи ХОВ. Затем опорожняют участок, включающий ОТ 9 одного из БС и коллектор 10. Для очистки ОТ 9 используют химически обессоленную воду ХОВ, которую из емкости 1 (фиг. 1) подают на всасывающую часть насоса 3, при этом задвижки 2, 4 открывают, обратный клапан 6 другого БС 7, не участвующего в промывке, закрывают. Включают насос 3 и в течение 12…14 минут подают промывочную воду по питательному трубопроводу 5 в коллектор питательной воды 8 промываемого БС 7, а из коллектора питательной воды 8 в ОТ 9. При промывке продукты радиоактивного загрязнения смывают в коллектор 10 и далее при открытой задвижке 11 в РТВ 12. Промывку осуществляют в две стадии последовательно с расходом 240…250 м3/ч и 200…210 м3/ч. После проведения каждой промывки выполняют дозиметрический контроль ОТ 9 по всей протяженности. После завершения промывки ОТ 9 БС 7 выполняют промывку ОТ 9 следующего БС 7 и так до завершения промывки ОТ 9 всех БС 7.

Использование предложенного способа позволяет снизить мощность дозы на опускных трубопроводах БС в 2…3 раза, сократить продолжительность очистки в 4…5 раз. Заявленный способ в 8…10 раз снижает объем используемой воды для очистки опускных трубопроводов всех барабан-сепараторов, а также затраты на ее подачу и последующую очистку. Экономический эффект от использования данного изобретения составит порядка 10 млн. руб. в год.

1. Способ очистки опускных трубопроводов барабан-сепараторов ядерного канального реактора путем промывки водой, отличающийся тем, что промывку опускных трубопроводов каждого барабан-сепаратора производят поочередно чистой, химически обессоленной водой, подаваемой с расходом 200…250 м3/ч в течение 12…14 минут.

2. Способ по п. 1, отличающийся тем, что промывку проводят в две стадии, причем первую промывку проводят с расходом 240…250 м3/ч в течение 7…8 минут, а вторую - с расходом 200…210 м3/ч в течение 5…6 минут.



 

Похожие патенты:

Изобретение относится к ядерной энергетике и может быть использовано для оценки и контроля радиационно-экологической обстановки на АЭС и радиохимических производствах в ходе переработки радиоактивных отходов, а также в районах ядерных аварий на суше и на море.

Изобретение относится к средствам удаления двуокиси урана, используемой в качестве ядерного топлива, из теплоносителя первого и основных контуров исследовательских и энергетических ядерных реакторов.

Изобретение относится к нанокомпозитному твердому материалу на основе гекса- и октацианометаллатов, способам их получения и применгению в качестве минеральных фиксаторов.
Изобретение относится к способу регенерации твердого фильтра, содержащего йод в форме йодида и/или йодата серебра и возможно физически сорбированный молекулярный йод в твердом фильтре, содержащем серебро в форме нитрата.

Заявленное изобретение относится к способу электрокинетической дезактивации твердой пористой среды. Заявленный способ включает выделение загрязняющих веществ, присутствующих в этой твердой среде, в электролит, имеющий вид в основном неорганического геля, причем это выделение осуществляют путем пропускания электрического тока между двумя электродами, расположенными на поверхности и/или внутри твердой среды При этом контакт между, по меньшей мере, одним из этих электродов и указанной твердой средой обеспечивает слой указанного геля, высыхание геля, содержащего выделенные таким образом загрязняющие вещества до получения ломкого сухого остатка и удаление полученного таким образом сухого остатка указанной твердой среды.

Изобретение относится к обработке углеродсодержащих радиоактивных отходов. .

Изобретение относится к области ядерной энергетики, касается, в частности, вопросов обращения с жидкими радиоактивными отходами (ЖРО). .
Изобретение относится к способам переработки облученного ядерного топлива (ОЯТ) с целью выделения и локализации трития и может быть использовано в атомной промышленности при переработке ОЯТ.

Изобретение относится к области обращения с радиоактивно заряженными материалами, а именно с радиоактивно загрязненными металлическими и графитовыми отходами, и предназначено для использования на атомных электростанциях, на предприятиях радиохимического производства и пунктах захоронения радиоактивных отходов.

Изобретение относится к области охраны окружающей среды, в частности к устройствам для переработки высокоактивных источников ионизирующего излучения путем включения их в металлическую матрицу непосредственно в хранилище, и может быть использовано на централизованных пунктах захоронения радиоактивных отходов.

Изобретение относится к способу обработки твердых радиоактивных отходов, образованных при переработке ядерного топлива водо-водяных реакторов и реакторов РБМК. Способ заключается в хлорировании отходов молекулярным хлором при температуре 400-500°С и разделении полученных продуктов, при этом огарок и отфильтрованные пылевидные продукты направляют в пурекс-процесс, газовую смесь с целью очистки от ниобия и других легирующих элементов обрабатывают водородом при температуре 450-550°С и пропускают через керамический фильтр, нагретый до 500-550°С, очищенный тетрахлорид циркония кристаллизуют в конденсаторе при температуре не выше 150°С. Изобретение обеспечивает минимизацию объема и перевод большей радиоактивных отходов в более безопасные категории, а также снижение затрат, связанных с захоронением отходов. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к способам удаления радиоактивного иода, присутствующего в жидкости и/или твердом теле, образующегося в атомной электростанции или в установке для переработки отработанного ядерного топлива. Предложен способ удаления радиоактивного иода с помощью гидрофильной смолы, которая адсорбирует радиоактивный иод, где гидрофильная смола представляет собой по меньшей мере одну, выбранную из группы, состоящей из гидрофильной полиуретановой смолы, гидрофильной полимочевинной смолы и гидрофильной полиуретан-полимочевинной смолы, и имеет гидрофильный сегмент в количестве 30-80 % мас. и в главной цепи и/или боковой цепи своей структуры третичную аминогруппу в количестве 0,1-50 экв./кг. Предложены также варианты способа и варианты используемой в способе гидрофильной смолы. Технический результат - предложенный способ удаления радиоактивного иода является простым и недорогим, не требует источника энергии, такого как электричество, может захватывать и стабильно иммобилизировать удаленный радиоактивный иод в виде твердого вещества и соответственно уменьшать объем радиоактивных отходов. 6 н. и 6 з.п. ф-лы, 4 ил., 15 табл., 9 пр.

Изобретение относится к области дезактивации оборудования, используемого при переработке облученного ядерного топлива атомных электростанций (ОЯТ АЭС). Способ дезактивации экстракционного оборудования путем его промывки раствором комплексона кислотного характера в разбавленной азотной кислоте заключается в том, что в многоступенчатый экстрактор или каскад экстракторов, работающий в режиме противоточной кислотной промывки, после полной реэкстракции и вытеснения радионуклидов вводят водный раствор комплексона или соли комплексона. Комплексон способен извлекаться раствором экстрагента и распределяется с органической фазой по экстрактору или каскаду экстракторов, вызывая переход в органическую фазу компонентов осадков или поверхностных пленок, накапливающихся в экстракторе, включая перетоки органической фазы. Далее радионуклиды вместе с комплексоном выводят из экстракционного каскада. Технический результат - дезактивация экстракционного оборудования без удаления экстрагента. 5 з.п. ф-лы, 1 ил.
Изобретение относится к области ядерной энергетики, в частности к области переработки облученного ядерного топлива (ОЯТ). Способ переработки ОЯТ включает термическую обработку путем нагрева фрагментов ОЯТ в газовоздушной смеси, содержащей кислород, диоксид углерода и пары воды, с проведением в две стадии при постоянной или периодической механоактивации реакционной смеси. Процесс проводят путем спекания ОЯТ с карбонатом щелочного металла чередованием этих двух стадий. Одну из стадий проводят при температуре 400-500°C, а другую при температуре 600-800°C в реакционной камере и термообработку проводят в смеси с карбонатами щелочных металлов. Изобретение позволяет повысить технологическую устойчивость процесса и устранить ограничения по его аппаратурному оформлению. 7 з.п. ф-лы, 5 пр.

Изобретение относится к способу получения оксихлорида и/или оксида актинида(ов), и/или лантанида(ов) из хлорида актинида(ов), и/или лантаноида(ов), присутствующего в среде, содержащей по крайней мере одну расплавленную соль типа хлорида. Способ включает стадию взаимодействия хлорида актинида(ов) и/или лантанида(ов) с влажным инертным газом. Изобретение обеспечивает эффективное получение оксигалогенидов и/или оксида актинида(ов), и/или лантанида(ов), а также образование с элементами актинидов или лантанидов, продуктов, отличных от оксигалогенидов или оксидов, и исключение загрязнения катионами среды, содержащей расплавленную соль, упрощая рециркуляцию расплавленных солей. 10 з.п. ф-лы, 3 пр.

Изобретение относится к пригодному для обработки ядерных отходов способу обработки оболочки для проведения ядерных реакций, содержащей прокаленный материал, состоящий полностью или частично из прокаленного гидрида кальция. Предложенный способ включает фазу контакта прокаленного материала с реагентной смесью, в молярных долях состоящей из 0,5-5% пара, 5-25% двуокиси углерода и 74,5-94,5% химически инертного газа, при этом контакт обеспечивают при температуре 40-55°С в течение времени, которое позволит прокаленному гидриду кальция преобразоваться в порошок карбоната кальция. Предложен новый эффективный способ получения химически инертного отхода, позволяющий минимизировать объем отходов в потоках обработки ядерных отходов. 10 з.п. ф-лы, 4 ил., 1 пр.

Группа изобретений относится к обработке радиоактивных углеродных отходов. Способ обработки радиоактивных углеродных отходов включает в себя доставку отходов до одного или нескольких участков разделения радиоактивных изотопов, по меньшей мере, углерода 14, хлора 36 и трития. Доставку отходов к каждому из участков осуществляют во влажном состоянии, причем обработке углерода 14 предшествует отделение хлора 36 и трития, для чего отходы смешивают с водой в виде суспензии, затем подвергают механической фильтрации и сушке, при этом полученная после сушки вода содержит весь или часть хлора 36, который присутствовал в отходах до сушки, и после отделения хлора 36 отходы прокаливают путем обжига, затем промывают, с получением после промывки воды, которая содержит весь или часть трития, который присутствовал в отходах до обжига. Имеется также установка для обработки радиоактивных углеродных отходов. Группа изобретений позволяет доставлять отходы к каждому из участков во влажном состоянии, при этом вода является общей средой-носителем отходов для доставки к каждому из участков разделения. 2 н. и 6 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к мембране на подложке, к способу получению мембраны и способу выделению с помощью указанной мембраны твердых частиц и катионов металлов, более точно, к способу фильтрации твердых частиц и экстракции катионов металлов, в частности радиоактивных, содержащихся в жидкости. Мембрана на подложке содержит твердую пористую неорганическую фильтрационную мембрану, нанесенную на твердую пористую неорганическую подложку. Мембрана на подложке содержит наночастицы металлокоординационного полимера с CN-лигандами, содержащего катионы Mn+, где М есть переходный металл, и n равно 2 или 3; и анионы Alk+y[M'(CN)m]x-, где Alk означает щелочной металл, y равно 0, 1 или 2, М' означает переходный металл, x равно 3 или 4, и m равно 6 или 8. Указанные катионы Mn+ координационного полимера соединены металлоорганической или координационной связью с органической группой органической прививки, химически связанной с поверхностью фильтрационной мембраны, внутри пор фильтрационной мембраны и, возможно, внутри пор подложки. Способ выделения по меньшей мере одного катиона металла и твердых частиц из жидкой среды, в которой они находятся, с применением указанной мембраны на подложке, включает контакт потока жидкой среды с первой противоположной подложке стороной мембраны на подложке. Вторая часть потока жидкой среды, не прошедшая через мембрану на подложке, собирается на первой стороне мембраны и образовывает реагент, обогащенный твердыми частицами. Катион металла иммобилизован на поверхности твердой пористой неорганической фильтрационной мембраны, внутри пор мембраны и, возможно, внутри пор твердой пористой неорганической подложки. Изобретение позволяет с высокой эффективностью осуществить одновременно отделение твердых частиц и катионов металлов, в частности радиоактивных, содержащихся в жидкости. 3 н. и 25 з.п. ф-лы, 8 ил, 3 табл, 4 пр.

Изобретение относится к мембране на подложке, к способу получению мембраны и способу выделению с помощью указанной мембраны твердых частиц и катионов металлов, более точно, к способу фильтрации твердых частиц и экстракции катионов металлов, в частности радиоактивных, содержащихся в жидкости. Мембрана на подложке содержит твердую пористую неорганическую фильтрационную мембрану, нанесенную на твердую пористую неорганическую подложку. Мембрана на подложке содержит наночастицы металлокоординационного полимера с CN-лигандами, содержащего катионы Mn+, где М есть переходный металл, и n равно 2 или 3; и анионы Alk+y[M'(CN)m]x-, где Alk означает щелочной металл, y равно 0, 1 или 2, М' означает переходный металл, x равно 3 или 4, и m равно 6 или 8. Указанные катионы Mn+ координационного полимера соединены металлоорганической или координационной связью с органической группой органической прививки, химически связанной с поверхностью фильтрационной мембраны, внутри пор фильтрационной мембраны и, возможно, внутри пор подложки. Способ выделения по меньшей мере одного катиона металла и твердых частиц из жидкой среды, в которой они находятся, с применением указанной мембраны на подложке, включает контакт потока жидкой среды с первой противоположной подложке стороной мембраны на подложке. Вторая часть потока жидкой среды, не прошедшая через мембрану на подложке, собирается на первой стороне мембраны и образовывает реагент, обогащенный твердыми частицами. Катион металла иммобилизован на поверхности твердой пористой неорганической фильтрационной мембраны, внутри пор мембраны и, возможно, внутри пор твердой пористой неорганической подложки. Изобретение позволяет с высокой эффективностью осуществить одновременно отделение твердых частиц и катионов металлов, в частности радиоактивных, содержащихся в жидкости. 3 н. и 25 з.п. ф-лы, 8 ил, 3 табл, 4 пр.
Наверх