Способ преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей с р- и n-типами проводимости в области р-n перехода, нанесение на поверхность полупроводникового материала в разных его областях слоев различных металлов, присоединение к ним проводников и воздействие на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза ионизирующим излучением с одновременным снятием электричества с помощью проводников, при этом в качестве ионизирующего излучения используют высокоэнергетические источники альфа-излучения мощностью не менее 0,567 Вт/г, а в качестве полупроводникового материала изготавливают синтетический алмаз р-типа с содержанием бора 1014-1016 атомов на см3 и на его поверхностях в разных областях с р- и n-типами проводимости в вакууме наносят неразрывные металлические контакты, один из которых трехслойная система металлизации вида титан-платина-золото для съема положительного заряда и другой с потенциальным барьером Шоттки - из платины, золота или иридия для снятия отрицательного заряда, на который воздействуют ионизирующим излучением, в результате чего внутри алмаза создают область пространственных зарядов, последние в электрическом поле разлетаются на отрицательные заряды, собираемые на металле контакта Шоттки, и положительные, собираемые на контакте из титана-платины-золота, и с них снимают электричество. Техническим результатом изобретения является создание способа преобразования ионизирующего излучения в электрическую энергию, обладающего более простой схемой изготовления полупроводниковой структуры, более высокой радиационной стойкостью, а также более высоким сроком службы полупроводникового материала. 2 з.п. ф-лы, 1 табл., 1 ил.

 

Изобретение относится к способу преобразования энергии ионизирующего излучения в электрическую энергию с помощью полупроводникового алмаза. Способ может быть использован в электронике, приборостроении и машиностроении при создании автономных источников электроэнергии с большим сроком службы.

Изучение процессов и методов преобразования энергии ионизирующего излучения в электрическую энергию актуально по нескольким причинам. Во-первых, такие исследования имеют фундаментальное значение для изучения электронных свойств алмаза. Во-вторых, в России и в мире наблюдается потребность в источниках электроэнергии с большим сроком службы для нужд промышленности, в частности оборонной; такие источники могут быть созданы на основе заявляемого изобретения. В-третьих, автономные источники электроэнергии необходимы для исследовательских целей, в частности для исследования космоса и для глубоководных исследований.

Известен способ создания источника электроэнергии с помощью радиоактивного материала, используемого в электрическом генераторе, преобразующем энергию электронов радиоактивного распада в электроэнергию. Сущность изобретения заключается в выборе органического материала, а именно 1-этилэтилена, насыщении атомами трития 3Н (тритированиии) его таким образом, что соотношение количества атомов трития к количеству атомов углерода составляет по меньшей мере 1:1. Процесс тритирования заключается в добавлении или замещении атомов трития или сочетает оба процесса. Полученный полимерный материал используется в устройстве для генерации электрического тока за счет преобразования энергии, выделяющейся при распаде радиоактивного материала, в состав которого входит по меньшей мере один слой полупроводникового пористого материала, в поры которого вышеуказанный полимерный материал помещается путем пропитки. К недостаткам данного изобретения можно отнести сложность и многостадийность процесса изготовления как собственно тритированного полимерного материала, так и устройства для генерации электрического тока, существенно повышающие стоимость изделия (Патент US 7622532 B2, МПК C08F 38/00, C08F 138/00, C08F 238/00, публикация 24.11.2009).

Известный способ генерации электрической мощности в ходе процесса распада радиоактивного материала, при этом радиоактивный материал и область полупроводникового р-n перехода объединены в ячейку. Область р-n перехода образована соответствующей структурой множества участков с р- и n-проводимостью. По меньшей мере часть одной из областей р-n перехода представляет собой область, насыщенную порами с соотношением глубины к диаметру больше 20:1 и расположенных под углом более 55 градусов к поверхности, на которой они сформированы. Размеры и формы областей с макропорами и улучшенные области р-n перехода способствуют улучшению параметров электрического тока, генерируемого устройством. В качестве полупроводникового материала используется кремний, а в качестве радиоактивного материала - тритий или изотопы 63Ni или 241Am. К недостаткам данного изобретения можно отнести использование в качестве полупроводникового материала кремния, обладающего радиационной стойкостью, в 100 раз меньшей, чем алмаз, а также использование в качестве источника излучения высокотоксичного 241Am, являющегося α-излучателем с энергией излучаемых частиц 5,5 МэВ, которые вызовут радиационное повреждение кремния в ходе длительной эксплуатации устройства (Патент US 6949865 B2, МПК G21F, G21H 1/00, H01L 31/04, H01M 14/00, H02P 9/04, G21H 1/06, публикация 27.09.2005).

Наиболее близким по технической сущности и принятым за прототип является автономный источник питания и способ изготовления источника преобразования энергии ионизирующего излучения в электрическую энергию, патент US №7663288, публ. 2010.02.16, МПК G21H 01/06, по заявке №20090026879, публ. 2009.01.29, включающий изготовление полупроводникового материала с использованием карбида кремния, состоящего из областей р- и n-типами проводимости в области р-n перехода, нанесение на поверхность полупроводникового материала в разных его областях слоев различных металлов, присоединение к ним проводников, воздействие на один из слоев металла ионизирующим бета-излучением и снятие электричества с помощью проводников.

К недостаткам известного изобретения можно отнести сложную, многостадийную схему изготовления полупроводниковой структуры, использование низкоэнергетических источников бета-излучения, использование в качестве полупроводникового материала карбида кремния, обладающего существенно более низкой радиационной стойкостью, что определяет более низкий срок службы полупроводникового материала.

Техническим результатом предлагаемого изобретения является создание способа преобразования ионизирующего излучения в электрическую энергию, обладающего более простой схемой изготовления полупроводниковой структуры, более высокой радиационной стойкостью, а также более высоким сроком службы полупроводникового материала.

Поставленный технический результат достигается за счет того, что в способе преобразования ионизирующего излучения в электрическую энергию, включающем изготовление полупроводникового материала состоящего из областей с р- и n-типами проводимости в области р-n перехода, нанесение на поверхность полупроводникового материала в разных его областях слоев различных металлов, присоединение к ним проводников и воздействие на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза ионизирующим излучением и снятие электричества с помощью проводников, согласно изобретению в качестве ионизирующего излучения используют высокоэнергетические источники альфа-излучения, а в качестве полупроводникового материала берут синтетический алмаз р-типа с содержанием бора в количестве 1014-1016 атомов на см3.

На поверхностях алмаза в областях р- и n-типами проводимости в вакууме наносят неразрывные металлические контакты, один из них - трехслойная система металлизации вида титан-платина-золото толщиной 5-100 нм для съема положительного заряда и другой с потенциальным барьером Шоттки - из платины, золота или иридия толщиной 5-100 нм, на который воздействуют ионизирующим излучением, в результате чего внутри алмаза создают область пространственных зарядов, последние в электрическом поле разделяются на отрицательные, собираемые на металле контакта Шоттки, и положительные собираемые на контакте из титана-платины-золота, и с них снимают электричество.

Алмаз отличается от других полупроводниковых материалов повышенной радиационной стойкостью, что позволит создавать не деградирующие с течением времени гетероструктуры под действием радиоизотопов, испускающих высокоэнергетические электроны, и использовать их в сравнительно жестких радиационных условиях. Наибольший интерес представляет пороговая энергия электронов, достаточная для возникновения дефектов в алмазе, - она составляет 165-220 кэВ и меняется в зависимости от кристаллографической ориентации поверхности алмаза. Для сравнения в кремнии дефекты образуются уже при энергии электрона несколько десятков кэВ. Алмаз также характеризуется уникально высокой подвижностью носителей заряда, что значительно уменьшает вероятность рекомбинации электронов и дырок при работе алмазного источника тока и приводит к повышению эффективности преобразования энергии. Кроме того, уникально высокая теплопроводность алмаза значительно упрощает решение задачи об отводе тепла от любых электронных устройств на его основе. Система титан-платина-золото выступает в роли омического контакта, ее выбор обусловлен следующими требованиями: во-первых, данный контакт не должен приводить к существенному падению напряжения на нем, чтобы исключить дополнительные резистивные потери. Во-вторых, данный слой должен обладать высокой адгезией к алмазу и высокой стойкостью к термоциклированию, т.к. планируется, что он будет использоваться для соединения кристалла преобразователя с корпусом источника тока. Для формирования контакта с барьером Шоттки ключевой является максимальная разность работ выхода электрона из алмаза и из металла контакта - высота этого барьера определяет разность потенциалов на границах области пространственного заряда, от нее зависит напряжение, генерируемое базовым элементом. Именно платина (металлы платиновой группы) обеспечивает достижение максимального напряжения.

В качестве ионизирующего излучения взято альфа-излучение 238Pu, так как один грамм чистого 238Pu генерирует 0,567 Вт мощности, что обеспечивает достижение необходимого напряжения, также период полураспада 238Pu обеспечивает длительный срок службы приборов, использующих способ преобразования энергии ионизирующего излучения в электрическую энергию.

Изобретение поясняется чертежом, иллюстрирующим предлагаемое техническое решение.

Преобразование энергии ионизирующего излучения в электрическую энергию с помощью полупроводникового алмаза осуществляется следующим образом. Источник 1 ионизирующего излучения испускает ионизирующее излучение 2. На пути ионизирующего излучения 2 располагается синтетический полупроводниковый алмаз р-типа 3 с контактом Шоттки 4 и омическим контактом 5 так, чтобы ионизирующее излучение 2 полностью или частично попадало на контакт Шоттки 4. При помощи проводников 6 электрический ток снимается с контактов 4 и 5 и передается потребителю 7.

Была создана сборка из 130 преобразователей ионизирующего излучения, разделенная на 4 неравных сектора. В каждом секторе преобразователи были присоединены омическим контактом к медной подложке проводящим клеем и объединены параллельно при помощи микросварки к контактам Шоттки золотым проводом толщиной 40 мкм. Сектора были объединены последовательно-параллельно для достижения рабочего напряжения. Сборка была собрана в пластиковом корпусе для защиты от внешних воздействий.

Технико-экономическая эффективность изобретения по сравнению с прототипом выразится в повышении степени генерации электрической энергии за счет использования высокоэнергетических ионизирующих источников с альфа-излучением, а также в увеличении срока службы приборов, использующих способ преобразования энергии ионизирующего излучения в электрическую энергию за счет использования синтетического алмаза в качестве полупроводникового материала, имеющего более высокую радиационную стойкость в условиях ионизирующего излучения по сравнению с карбидом кремния.

Пример конкретного выполнения способа

Для проведения испытаний были изготовлены образцы полупроводникового материала, состоящего из синтетического алмаза с содержанием бора в количестве 1014-1016 атомов на см3, на который воздействовали альфа-излучением активностью 0,2 Ки.

В результате получена на выходе мощность 25 мкВт.

Одновременно проведены испытания известного способа. Результаты испытаний сведены в таблице.

Источники информации

1. Патент US 7622532 B2, МПК C08F 38/00, C08F 138/00, C08F 238/00, публикация 24.11.2009.

2. Патент US6949865 B2, МПК G21F, G21H 1/00, H01L 31/04, H01M 14/00, H02P 9/04, G21H 1/06, публикация 27.09.2005.

3. Патент US №7663288, публ. 2010.02.16, МПК G21H 01/06, по заявке №20090026879, публ. 2009.01.29.

1. Способ преобразования энергии ионизирующего излучения в электрическую энергию, включающий изготовление полупроводникового материала, состоящего из областей с р- и n-типами проводимости в области р-n перехода, нанесение на поверхность полупроводникового материала в разных его областях слоев различных металлов, присоединение к ним проводников и воздействие на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза ионизирующим излучением с одновременным снятием электричества с помощью проводников, отличающийся тем, что в качестве ионизирующего излучения используют высокоэнергетические источники альфа-излучения мощностью не менее 0,567 Вт/г, а в качестве полупроводникового материала изготавливают синтетический алмаз р-типа с содержанием бора 1014-1016 атомов на см3 и на его поверхностях в разных областях с р- и n-типами проводимости в вакууме наносят неразрывные металлические контакты, один из которых трехслойная система металлизации вида титан-платина-золото для съема положительного заряда и другой с потенциальным барьером Шоттки - из платины, золота или иридия для снятия отрицательного заряда, на который воздействуют ионизирующим излучением, в результате чего внутри алмаза создают область пространственных зарядов, последние в электрическом поле разлетаются на отрицательные заряды, собираемые на металле контакта Шоттки, и положительные, собираемые на контакте из титана-платины-золота, и с них снимают электричество.

2. Способ преобразования энергии ионизирующего излучения в электрическую энергию по п. 1, отличающийся тем, что неразрывные металлические контакты из трехслойной системы металлизации вида титан-платина-золото и металла платиновой группы наносят толщиной 5-100 нм каждый.

3. Способ преобразования энергии ионизирующего излучения в электрическую энергию по п. 1, отличающийся тем, что в металле контакта Шоттки формируют отверстия различной формы и размеров для лучшего прохождения ионизирующего излучения.



 

Похожие патенты:

Группа изобретений относится к области медицины. Искусственная сетчатка представляет собой матрицу сенселей, каждый из которых содержит светочувствительный элемент в виде фотодиода и электрод.

Изобретение относится к области светотехники и может быть использовано как источник энергии, создаваемой солнечной панелью и линейной люминесцентной или линейной светодиодной лампами, имеющими высокотемпературные области на обеих сторонах ламповой трубки и низкотемпературную область между ними.

Изобретение относится к 8-алкил-2-(тиофен-2-ил)-8H-тиофен[2,3-6]индол замещенным 2-цианоакриловым кислотам формулы (I) которые могут быть использованы как перспективные красители для сенсибилизации неорганических полупроводников в составе цветосенсибилизированных солнечных батарей, способу их получения, а так же промежуточным соединениям, которые используют для синтеза данных соединений.

Изобретение относится к электротехнике альтернативных источников энергии, в частности к устройствам для генерирования электрической и тепловой энергии путем преобразования энергии светового излучения, и предназначено для использования в конструкциях солнечных панелей.

Солнечный элемент содержит стеклянную подложку; первый проводящий слой на основе CNT, расположенный непосредственно или косвенно на стеклянной подложке; первый полупроводниковый слой в контакте с первым проводящим слоем на основе CNT; по меньшей мере, один поглощающий слой, расположенный непосредственно или косвенно на первом полупроводниковом слое; второй полупроводниковый слой, расположенный непосредственно или косвенно на, по меньшей мере, одном поглощающем слое; второй проводящий слой на основе CNT в контакте со вторым полупроводниковым слоем и контакт к тыльной поверхности, расположенный непосредственно или косвенно на втором проводящем слое на основе CNT.

Изобретение обеспечивает фотогальваническое устройство и способ изготовления такого устройства. Фотогальваническое устройство согласно изобретению включает в себя комбинацию полупроводниковых структур и защитный слой.

Изобретение относится к композиционным материалам, используемым в сверхлегких каркасах солнечных батарей и элементов конструкций космических аппаратов, и касается трехслойной панели.

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотопреобразователей, преобразующих энергию света в электрическую энергию.

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств состоит из полупроводниковой подложки (1) с лицевой поверхностью, разориентированной от плоскости (100) на (0,5-10) градусов и, по меньшей мере, одного р-n перехода (2), включающего, по меньшей мере, один активный полупроводниковый слой (3), заключенный между двумя барьерными слоями (4) с шириной запрещенной зоны Eg0.

Настоящее изобретение относится к способу нанесения покрытия на субстрат (2), содержащий на своей поверхности материал, отличный от силиконового каучука, или состоящий из такого материала, методом химического осаждения из паровой фазы с помощью пламени.

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза.

Изобретение относится к устройствам для получения электрической энергии от радиоактивных источников и может использоваться в энергетике. Подземный ядерно-энергетический комплекс содержит наклонные У-образно расположенные скважины.

Изобретение относится к устройствам, преобразующим энергию ядерного распада в электрическую энергию, и может быть использовано в производстве компактных источников электрического тока длительного пользования.

Изобретение относится к использованию локальной электрической станции-преобразователя энергии излучения радиоактивного вещества в электрическую. .

Изобретение относится к области преобразователей энергии оптических и радиационных излучений бета-источников в электрическую энергию. Создание оригинальной планарной конструкции высоковольтного преобразователя реализуется по стандартной микроэлектронной технологии. Особенностью такой конструкции является размещение нескольких элементов p-i-n-структур, изолированных друг от друга микроканалами и соединенных последовательно, причем каждая структура собирает излучение р-n-переходов на обеих сторонах кремниевой пластины как от светового источника, так и от бета-источника. Такой преобразователь может быть использован в труднодоступных местах, шахтах, для питания биосенсоров, внедряемых внутрь организма, и т.д., а также для зарядки микроаккумуляторов на основе химических источников тока с твердотельным электролитом. Планарный фото- и бета-вольтаический преобразователь согласно изобретению обеспечивает высокое значение выходного напряжения ЭДС. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области преобразователей энергии оптических и радиационных излучений - бетаисточников в электрическую энергию. Изобретение обеспечивает создание двухсторонней конструкции комбинированного накопительного элемента фото- и бетавольтаики, состоящей из совмещенных на одной пластине кремния с одной стороны - фотоэлемента и подключенного параллельно к нему планарного плоского конденсатора, с другой стороны - бетавольтаического элемента, бета-источник никель-63 которого помещается в микроканалы для увеличения КПД и тока генерации. Такой преобразователь может быть использован в труднодоступных местах, шахтах, для питания биосенсоров, внедряемых внутрь организма, и т.д. 2 н.п. ф-лы, 3 ил.

Бета-вольтаический полупроводниковый генератор электроэнергии, содержащий полупроводниковую пластину с развитой поверхностью и слой никеля-63 на этой поверхности. Поверхность пластины полупроводника выполнена в виде множества микропор и «колодцев», имеющих разную форму, при этом слой никеля покрывает стенки микропор и общей поверхности до 95-99%. Поверхность полупроводника содержит микропоры с размерами: ширина - 20÷40 нм, длина - 400÷600 нм; глубина - 100÷250 нм; количество пор до 2500-3000 на 1 см2. Способ изготовления бета-вольтаического генератора включает этап нанесения радиоактивного вещества в микропоры пластин полупроводника с развитой поверхностью, при этом напыляют слой металлического цинка, а затем помещают пластины в водный раствор хлорида никеля-63 на 8-60 часов при температуре 10-50°C и pH 4,5. Изобретение обеспечивает возможность создания бета-вольтаического генератора электроэнергии с повышенной энергоемкостью, сроком службы 50-70 лет, при минимальной трудоемкости, затраченной на изготовление изделия. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к полупроводниковой технике, в частности к созданию компактных источников электроэнергии с использованием радиоактивных изотопов и полупроводниковых преобразователей. Бета-вольтаический полупроводниковый генератор электроэнергии, содержащий пластину с развитой поверхностью, выполненной в виде множества микропор, имеющих разную форму. Никель-63 покрывает стенки микропор и остальную поверхность пластины с максимально высоким уровнем радиоактивности. Пластины полупроводника с текстурированной поверхностью, имеющего глухие микропоры и «колодцы», заполненные слоем металлического цинка, закрепляют на стальную пластину, обладающую магнитными свойствами, помещают в водный раствор хлорида никеля-63 на 8-10 часов при температуре 10-20°C и pH 4,5. Уровень радиоактивности на поверхности пластины при данном способе нанесения может достигать 10 mCu/см2. Изобретение обеспечивает возможность создания бета-вольтаического генератора электроэнергии с повышенной энергоемкостью, сроком службы 50-70 лет, при минимальной трудоемкости, затраченной на изготовление изделия. 2 н.п. ф-лы, 3 ил.

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги, который окружен, по меньшей мере, одним прилегающим к нему полупроводниковым преобразователем. Преобразователь выполнен в виде фольги из вентильного металла (например, Ni, Nb, Zr, V), на поверхности которой, обращенной к источнику излучения, сформирован слой полупроводникового оксида упомянутого вентильного металла, пропускающий электрический ток только в одном направлении, снабженный, по меньшей мере, одним электрическим контактом, нанесенным на этот слой. Способность слоя полупроводникового оксида вентильного металла пропускать ток только в одном направлении обеспечивается либо тем, что электрический контакт, нанесенный на этот слой, выполнен в виде сплошного металлического покрытия, образующего с упомянутым полупроводниковым оксидом барьер Шоттки, либо тем, что в упомянутом слое сформирована выпрямляющая гетероструктура. Техническим результатом является возможность оптимизации весогабаритных характеристик бета-вольтаического элемента. 3 з.п. ф-лы, 2 ил.
Наверх