Способ разделения водонефтяной эмульсии с применением ультразвукового воздействия


 


Владельцы патента RU 2568980:

Открытое акционерное общество "Татнефть" имени В.Д. Шашина (RU)

Изобретение может быть использовано в нефтяной промышленности для обезвоживания нефти. Способ разделения водонефтяной эмульсии с применением ультразвукового воздействия включает обработку эмульсии ультразвуком, при этом предварительно определяют оптимальные частоты ультразвукового воздействия в зависимости от размера капель воды в эмульсии, позволяющие достичь минимальной доли воды в нефти. Обработку эмульсии проводят с изменением оптимальной частоты ультразвукового воздействия в зависимости от изменения размера капель воды в процессе обработки. Изобретение обеспечивает повышение степени обезвоживания нефти и сокращение времени отстаивания, что позволяет снизить капитальные затраты на обезвоживание нефти. 1 пр., 3 табл.

 

Предложение относится к нефтяной промышленности, в частности к способам обезвоживания нефти.

Известно, что под влиянием звуковых колебаний между частицами, колеблющимися в акустическом поле, возникают силы притяжения и отталкивания. В водонефтяных эмульсиях такие силы притяжения между каплями воды способствуют их сближению, при оптимальных условиях воздействия - коалесценции и последующему осаждению в отдельную фазу. Приводится, что эмульсии глицерина с водой и гексана с парафином расслаиваются при обработке ультразвуком с частотой 1 МГц и интенсивностью 2 Вт/см2 (Бергман Л. Ультразвук и его применение в науке и технике / под ред. B.C. Григорьева и Л.Д. Розенберга. - М.: Издательство иностранной литературы, 1957. - 727 с.).

Недостатками данного способа являются низкая степень разделения веществ и длительное время обработки.

Наиболее близким по технической сущности является способ для деэмульсификации эмульсии вода-нефть посредством воздействия ультразвука (пат. RU №2339679, МПК C10G 33/00, опубл. 27.11.2008), включающий этап формирования потока эмульсий вода-нефть через область воздействия ультразвука вдоль направления потока. При этом создают попутную ультразвуковую волну, направление распространения которой совпадает с направлением потока эмульсий, и противоточную ультразвуковую волну, направление распространения которой противоположно направлению потока эмульсий. На передней и задней сторонах устройства установлены ультразвуковые преобразователи. После деэмульсификации эмульсии вода-нефть осаждают под действием силы тяжести и разделяют или осаждают и разделяют в электрическом поле для обезвоживания.

Недостатками данного способа являются невысокая степень обезвоживания нефти и длительное время отстаивания.

Техническими задачами предлагаемого способа являются повышение степени обезвоживания нефти, сокращение времени обработки и снижение капитальных затрат на обезвоживание нефти.

Технические задачи решаются способом разделения водонефтяной эмульсии с применением ультразвукового воздействия, включающим обработку эмульсии ультразвуком.

Новым является то, что предварительно определяют оптимальные частоты ультразвукового воздействия в зависимости от размера капель воды в эмульсии, позволяющие достичь минимальной доли воды в нефти, а обработку эмульсии проводят с изменением оптимальной частоты ультразвукового воздействия в зависимости от изменения размера капель воды в процессе обработки.

Для определения оптимальной частоты ультразвукового воздействия для эмульсии с определенным размером капель воды образец водонефтяной смеси, состоящей из воды и нефти или воды, нефти и деэмульгатора (Смирнов Ю.С. Применение деэмульгаторов для подготовки нефти на промыслах // Нефтепромысловое дело: - обзорная информация. - 1987. - вып.20 - 44 с.), подвергается обработке ультразвуком при разных частотах. Экспериментально определяется оптимальная частота ультразвукового воздействия, при которой достигается минимальная доля воды в нефти. Для исходной эмульсии определяется дисперсный состав, например, микроскопическим методом (РД 34.44.215-96 «Методы определения качества водомазутных эмульсий, используемых в виде жидкого котельного топлива». - М.: Изд-во стандартов, 1997. - 18 с.), и выбирается значение размера преобладающего количества капель воды, для которого устанавливается соответствующая начальная оптимальная частота ультразвукового воздействия. Устанавливаются значения размеров, при достижении которых преобладающим количеством капель воды в эмульсии происходит изменение частоты ультразвука на оптимальную для данного размера. Выбор устанавливаемых значений размеров капель воды определяется возможностями ультразвукового оборудования по изменению частоты. В процессе обработки эмульсии определяется ее дисперсный состав, и при достижении преобладающим количеством капель воды установленных размеров частота ультразвукового воздействия меняется на оптимальную для данного размера капель. Установлено, что с уменьшением размера капель воды в эмульсии возрастает оптимальная частота ультразвукового воздействия. В процессе обработки эмульсии происходит укрупнение капель воды, и для эффективного обезвоживания нефти целесообразно проводить обработку со снижением оптимальной частоты ультразвука, что способствует дальнейшему укрупнению капель и их отделению от нефти.

В табл.1 приведены результаты обезвоживания сверхвязкой нефти Ашальчинского месторождения при постоянных частотах ультразвукового воздействия. Исходная обводненность водонефтяной эмульсии - 52%, размер капель воды - 1-5 мкм. Условия процесса: частота ультразвука - 20-1000 кГц, температура нагрева эмульсии - 85°C, концентрация деэмульгатора - 100 г/т. На каждой частоте ультразвука эмульсия обрабатывалась отдельно до достижения конечной остаточной массовой доли воды в нефти. При частоте ультразвукового воздействия от 20 до 1000 кГц время обработки эмульсии составило от 3 до 2 ч, массовая доля воды в нефти после обработки - от 3,6 до 0,35% соответственно.

Таблица 1
Наименование показателя Значение показателя
1. Исходная обводненность эмульсии, % 52
2. Размер капель воды в эмульсии, мкм 1-5
3. Частота ультразвукового воздействия, кГц 20 50 100 1000
4. Время обработки, ч 3 2 2 2
5. Массовая доля воды в нефти после обработки, % 3,6 1,5 0,42 0,35

Предлагаемый способ разделения водонефтяной эмульсии иллюстрируется следующим примером. Для эмульсии Ашальчинского месторождения экспериментально определены значения оптимальных частот ультразвукового воздействия при размерах преобладающего количества капель воды 1; 5; 10; 50 мкм (табл.2). Искусственно приготавливался образец эмульсии с определенным размером преобладающего количества капель воды от 1 до 50 мкм и подвергался обработке ультразвуком при разных частотах для определения оптимальной, при которой достигается минимальная доля воды в нефти. Температура нагрева составляла 85°C, концентрация деэмульгатора - 100 г/т. Видно, что с уменьшением размера преобладающего количества капель воды в исходной эмульсии от 50 до 1 мкм оптимальная частота ультразвукового воздействия возрастает от 32 до 1000 кГц.

Таблица 2
Наименование показателя Значение показателя
1. Исходная обводненность эмульсии, % 50
2. Размер преобладающего количества капель воды в эмульсии, мкм 1 5 10 50
3. Оптимальная частота ультразвукового воздействия, кГц 1000 75 60 32
4. Массовая доля воды в нефти после обработки, % 0,37 0,32 0,41 0,36

В табл.3 приведены результаты обезвоживания сверхвязкой нефти Ашальчинского месторождения с применением ультразвукового воздействия с изменением оптимальной частоты колебаний в зависимости от изменения размера капель воды. Температура нагрева составляла 85°C, концентрация деэмульгатора - 100 г/т. Исходная обводненность эмульсии сверхвязкой нефти - 52%, размер капель воды - 1-5 мкм. Установленные значения размеров, при достижении которых преобладающим количеством капель воды в эмульсии происходит изменение частоты ультразвука: 1; 5; 10; 50 мкм. Оптимальные частоты ультразвукового воздействия для установленных размеров капель воды представлены в табл.2.

Таблица 3
Наименование показателя Значение показателя
1. Исходная обводненность эмульсии, % 52
2. Размер капель воды в эмульсии, мкм 1-5
3. Размер преобладающего количества капель воды до обработки, мкм 1 5 10 50
4. Оптимальная частота ультразвукового воздействия, кГц 1000 75 60 32
5. Размер преобладающего количества капель воды после обработки, мкм 5 10 50 -
6. Время обработки, мин 5 15 20 15
7. Массовая доля воды в нефти после обработки, % 35 19 7 0,24

В исходной эмульсии преобладают капли воды размером 1 мкм, для которых устанавливается начальная оптимальная частота ультразвукового воздействия 1000 кГц. После 5 мин обработки эмульсии при частоте 1000 кГц происходит укрупнение преобладающего количества капель воды до размера 5 мкм, при этом массовая доля воды в нефти снижается с 52 до 35%. Для эмульсии с размерами капель воды 5 мкм устанавливается оптимальная частота ультразвука 75 кГц. Последующие 15 мин обработки эмульсии при частоте 75 кГц приводят к укрупнению преобладающего количества капель воды до размера 10 мкм, при этом массовая доля воды в нефти снижается до 19%. В течение следующих 20 мин обработки эмульсии с размерами капель воды 10 мкм при оптимальной частоте ультразвукового воздействия 60 кГц преобладающее количество капель воды укрупняется до размера 50 мкм, при этом массовая доля воды в нефти снижается до 7%. Заключительные 15 мин обработки эмульсии с размерами капель воды 50 мкм при оптимальной частоте ультразвукового воздействия 32 кГц приводят к обезвоживанию нефти до массовой доли воды 0,24%. Обработка эмульсии с изменением оптимальной частоты ультразвукового воздействия по сравнению с обработкой при постоянных частотах, где массовая доля воды в нефти после обработки составляет 0,35-3,6% (см. табл.1), позволяет повысить степень обезвоживания нефти. Общее время обработки эмульсии с изменением оптимальной частоты ультразвукового воздействия составляет 55 мин, что в 2-3 раза меньше по сравнению с обработкой при постоянных частотах. Сокращение времени обработки ультразвуком позволяет уменьшить объем оборудования для отстаивания нефти и в 2-3 раза снизить капитальные затраты.

Предлагаемый способ разделения водонефтяной эмульсии с применением ультразвукового воздействия позволяет повысить степень обезвоживания нефти и в 2-3 раза сократить время отстаивания и капитальные затраты на обезвоживание нефти.

Способ разделения водонефтяной эмульсии с применением ультразвукового воздействия, включающий обработку эмульсии ультразвуком, отличающийся тем, что предварительно определяют оптимальные частоты ультразвукового воздействия в зависимости от размера капель воды в эмульсии, позволяющие достичь минимальной доли воды в нефти, а обработку эмульсии проводят с изменением оптимальной частоты ультразвукового воздействия в зависимости от изменения размера капель воды в процессе обработки.



 

Похожие патенты:
Изобретение относится к энергосберегающим и экологически безопасным технологиям нефтеперерабатывающей промышленности и теплоэнергетики и может быть использовано при тепловой обработке водосодержащих нефтяных отходов с содержанием водной фракции не менее 60% низкопотенциальными теплоносителями с температурой 100-250°C с целью последующей утилизации нефтешламов путем сжигания в топках энергетических установок.

Изобретение относится к способу подготовки нефти и может быть использовано в нефтегазодобывающей промышленности. Изобретение касается способа подготовки нефти, включающего предварительную сепарацию, блок обезвоживания и обессоливания и концевую сепарацию, в котором в качестве концевого сепаратора используют колонну с насадкой и рибойлер.

Изобретение относится к способу обработки потока жидких углеводородов, содержащего воду, в котором поток жидких углеводородов вводится в первый сепаратор, отделяющий по меньшей мере свободную воду из указанного потока жидких углеводородов.

Изобретение относится к области обработки нефтепродуктов. Изобретение касается способа обезвоживания водонефтяной эмульсии с использованием сверхвысокочастотной (СВЧ) энергии, подающейся через волновод, выполненный в виде металлической трубы, и системы коалесценторов, в волноводы подают помимо СВЧ энергии в диапазоне от 100 МГц до 3000 МГц и с плотностью потока мощности от 50 до 200 Вт/см2, ультразвуковую (УЗ) энергию, интенсивностью от 1 до 10 Вт/см2 и с частотой от 300 кГц до 2000 кГц, а в коалесценторах используют УЗ энергию, интенсивностью от 0,8 до 1,2 Вт/см2 и частотой от 18 до 40 кГц.

Изобретение относится к нефтяной промышленности и может найти применение при подготовке нефти на нефтепромысле. Способ обработки нефтяной эмульсии промежуточных слоев емкостного оборудования подготовки нефти и воды включает помещение нефтяной эмульсии в подземную накопительную емкость, дозирование в подземную накопительную емкость растворителя нефти в соотношении от 1:100 до 1:1 к объему нефтяной эмульсии, перекачивание насосом через узел учета в наземную емкость, на участке от насоса до наземной емкости в поток перекачиваемой жидкости с помощью дозаторной установки подачу деэмульгатора в дозировке 50-5000 г/тонну, нагревание смеси нефтяной эмульсии, растворителя и деэмульгатора в теплообменнике, прохождение нагретой смеси осложненной нефтяной эмульсии, растворителя и деэмульгатора в наземной емкости через теплообменник в виде змеевика, отражатель потока жидкости с расслоением на нефть с растворителем и воду, отделение механических примесей, раздельный отбор нефти с растворителем, воды и механических примесей, подачу нефти с растворителем в зависимости от допустимого уровня содержания воды в поток сырой нефти для дальнейшей подготовки по традиционной схеме на установке подготовки нефти либо на повторную подготовку в подземную емкость.

Изобретение относится к области переработки и утилизации нефтешламов, представляющих собой старые нефтезагрязненные грунты с высоким содержанием смол, асфальтенов и парабенов.

Изобретение относится к переработке устойчивых нефтяных эмульсий и застарелых нефтешламов в нефтедобывающей и нефтеперерабатывающей промышленности. .

Изобретение относится к процессу утилизации попутного нефтяного газа в газогидратной форме с одновременной сепарацией нефти и воды и может быть использовано в нефтедобывающей, нефтеперерабатывающей промышленности и в энергетике.

Изобретение относится к нефтяной промышленности, в частности к установкам подготовки тяжелых нефтей на нефтепромыслах. .

Изобретение относится к способам для подготовки нефти к переработке и может быть использовано на нефтяных промыслах как устройство для обезвоживания нефти и нефтепродуктов, а также в химической, нефтедобывающей и нефтеперерабатывающей промышленности, где требуется разделение углеводородсодержащих смесей.

Изобретение предназначено для получения доброкачественной питьевой воды и может быть использовано для очистки воды из водопровода и природных пресноводных источников от механических взвесей, органических и неорганических соединений с сопутствующим ее обеззараживанием, в том числе в полевых условиях, как с использованием емкости с очищаемой водой, так и непосредственно из источников.

Изобретение относится к очистке воды и может быть использовано для ее дезинфекции. Устройство (1) содержит источник (20) испускания ультрафиолетового света, вход (30) для ввода текучей среды в устройство (1), выход (40) для вывода текучей среды из устройства (1) и средства выпрямления потока, содержащие по меньшей мере один элемент (51, 52) выпрямления потока, имеющий входные отверстия для ввода текучей среды на одной стороне и выходные отверстия для вывода текучей среды на другой стороне.

Изобретение относится к устройству для подготовки воды, в частности для питания проводящих воду и/или нагревающих воду бытовых электроприборов, или устройств для получения и подготовки еды и/или напитков с подготовленной питьевой водой, таких как автоматы для напитков, автоматические кофеварки, льдогенераторы, устройства для готовки и выпечки, парогенераторы или очистители высокого давления, кондиционеры воздуха или подобные с подготовленной водой, содержащее находящееся в твердой форме средство (3) для уменьшения минерального осадка, причем предусмотрена оказывающая влияние на растворимость средства для уменьшения минерального осадка первая среда (4), которая образована водой при протекании и контакте с участком подготовки, при этом предусмотрена вторая оказывающая влияние на растворимость средства (3) для уменьшения минерального осадка среда (5).

Изобретение относится к канализации (водоотведению) и может применяться для регулирования (усреднения) расходов и очистки бытовых, производственных и дождевых сточных вод.

Настоящее изобретение относится к способу очистки воды. Способ очистки воды от сероводорода, сульфидов и нефтепродуктов заключается в следующем.

Изобретение относится к устройству для спрямления потока (спрямления профиля скорости потока) в закрытых трубопроводах. Закрытый трубопровод для УФ-облучения содержит канал (1), в котором установлено устройство (6) для УФ-облучения, выше по потоку от устройства (6) для УФ-облучения расположено устройство (10) для спрямления потока, содержащее, по меньшей мере, один внутренний первый направляющий элемент (11) и, по меньшей мере, один внешний второй направляющий элемент (13), который расположен на некотором расстоянии от внешней стенки и выполнен в виде трубы, проходное сечение которой, расположенное выше по потоку, меньше ее проходного сечения, расположенного ниже по потоку.

Изобретение относится к переносному водоочистителю. Переносной водоочиститель содержит корпус с закрытой верхней и открытой нижней поверхностями.

Изобретение может быть использовано в производстве дезинфицирующих и дезодорирующих средств, отбеливателей, при дезинфекции воды. Способ получения водного раствора диоксида хлора включает стадии получения хлорита, получения пероксодисульфата, соединения хлорита и пероксодисульфата в водной системе при мольном отношении пероксодисульфата к хлориту [S2O8 2-]/[ClO2 -] больше 1.

Изобретение относится к технике опреснения морских, соленых и минерализованных вод и может быть использовано для получения опресненной воды без затрат дополнительной энергии.

Изобретение может быть использовано при очистке воды от ионов тяжелых металлов сорбцией. Для осуществления способа сточные воды, содержащие ионы тяжелых металлов, пропускают через слой сорбента, в качестве которого используют предварительно обработанный природный цеолит.

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для переработки нефтесодержащих отходов эмульсионного и эмульсионно-суспензионного типа, отработанных моторных масел и т.п.
Наверх