Способ неразрушающего контроля дефектов с помощью поверхностных акустических волн



Способ неразрушающего контроля дефектов с помощью поверхностных акустических волн
Способ неразрушающего контроля дефектов с помощью поверхностных акустических волн
Способ неразрушающего контроля дефектов с помощью поверхностных акустических волн

 


Владельцы патента RU 2569039:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Южный федеральный университет" (RU)

Использование: для неразрушающего контроля дефектов. Сущность изобретения заключается в том, что посылают зондирующий электромагнитный сигнал на преобразователь, возбуждающий в контролируемом образце поверхностные акустические волны, при этом на преобразователь периодически подается зондирующий электромагнитный импульс, в котором частота дискретно меняется по линейному закону, производится измерение частотной зависимости комплексного коэффициента отражения S11 этого преобразователя ПАВ и последующее Фурье- преобразование полученной частотной зависимости, по которому можно определить местоположение и величину дефекта по амплитуде и задержке отраженных от него ПАВ, причем длительность зондирующего электромагнитного импульса выбирается таким образом, что измерения на каждой частоте ведется некоторое время, за которое ПАВ проходит расстояние большее, чем удвоенное расстояние между преобразователем и дефектом, частота заполнения электромагнитного импульса формируется с помощью цифрового синтезатора частоты. Технический результат: обеспечение возможности измерения не только задержек, но и амплитуд отраженных ПАВ даже при наличии различных помех. 3 ил.

 

Изобретение относится к способам исследования или анализа поверхности материалов с помощью поверхностных акустических волн, в частности к способам неразрушающего контроля путем облучения поверхности материалов длинными акустическими радиоимпульсами с линейно-частотной модуляцией.

Известен способ неразрушающего контроля [1] (Неразрушающий контроль в 5 кн. Кн.2. Практ. Пособие / И.Н Ермолов, Н.П. Алешин, А.И. Потапов; под ред. Проф. В.В. Сухорукова. - М: «Высшая школа», 1991. - 283 с: - ил.), включающий излучение зондирующего акустического импульса поверхностных акустических волн (ПАВ) с помощью преобразователя ПАВ и приема отраженных от различных дефектов импульсов ПАВ, измерения задержки и амплитуды отраженных сигналов. При наличии помех сигналы, отраженные от небольших дефектов, могут быть на их уровне и они не могут быть обнаружены, так как усреднять принятые импульсы невозможно из-за невозможности синхронизации по частоте заполнения зондирующих импульсов, что является недостатком данного метода. Устранить указанный недостаток можно в способе неразрушающего контроля [2] (Патент РФ 2231057, МПК7 G01N 29/20 от 10.02.2004), принимаемом за прототип, в котором производится не измерение амплитуд отраженных импульсов, а времени задержки. Определение времени задержки поверхностной волны производят на поверхности нового элемента, в зоне разрушения элемента и в контролируемой зоне эксплуатируемого элемента, а затем определяют критерий степени поврежденности эксплуатируемого элемента из соотношения

K п = W 1 W 0 W р W 0 W р W 1 ,

где Kп - критерий степени поврежденности металла в относительных единицах; W0 - среднестатистическое время задержки ультразвуковой поверхностной волны на поверхности новых элементов, нс; Wp - среднестатистическое время задержки ультразвуковой поверхностной волны на поверхности металла в зоне разрушения элемента, нс; W1 - время задержки ультразвуковой поверхностной волны на поверхности эксплуатируемого элемента, нс, причем замену эксплуатируемого элемента производят при условии Kп=0,7-0,9. В этом способе измеряются только задержки сигнала, а не амплитуды, что повышает помехоустойчивость этого метода. К недостаткам данного способа можно отнести наличие дополнительных образцов (нового и элемента с разрушениями), что существенно усложняет измерения или делает их невозможными при невозможности иметь дополнительные образцы. Задача, на решение которой направлено изобретение, состоит в упрощении способа измерения дефектов. Технический результат изобретения, который дает осуществление изобретения, заключается в возможности измерения не только задержек, но и амплитуд отраженных ПАВ даже при наличии различных помех.

Это достигается за счет того, что в способе неразрушающего контроля, включающем посылку зондирующего электромагнитного сигнала на преобразователь, возбуждающий в контролируемом образце поверхностные акустические волны, при периодической подаче на преобразователь ПАВ зондирующего электромагнитного импульса, в котором частота дискретно меняется по линейному закону, производится измерение частотной зависимости комплексного коэффициента отражения S11 этого преобразователя ПАВ и последующее Фурье-преобразование полученной частотной зависимости, по которому можно определить местоположение и величину дефекта по амплитуде и задержке отраженных от него ПАВ, причем длительность зондирующего электромагнитного импульса выбирается таким образом, что измерения на каждой частоте ведется некоторое время, за которое ПАВ проходит расстояние большее, чем удвоенное расстояние между преобразователем и дефектом, частота заполнения электромагнитного импульса формируется с помощью цифрового синтезатора частоты.

На фиг.1 показана последовательность осуществления способа неразрушающего контроля дефектов с помощью поверхностных акустических волн в соответствии с изобретением. На фиг.2 показана частотная зависимость модуля коэффициента отражения S11, а на фиг.3 - Фурье-преобразование измеренной частотной зависимости. На этом Фурье-преобразовании по горизонтальной оси отложено расстояние до дефекта, которое определяется по формуле: s=τVПАВ/2, где τ - задержка отраженных ПАВ, VПАВ - скорость ПАВ.

Измеритель комплексных коэффициентов передачи (ИККП) 1 периодически посылает длинный электромагнитный импульс с линейной частотной модуляцией 2 на преобразователь ПАВ 3, расположенный на исследуемой поверхности 4, на которой имеются дефекты 5, от которых могут отражаться ПАВ 6.

Способ контроля дефектов заключается в следующем. При подаче от ИККП 1 на преобразователь ПАВ 3 длинного электромагнитного импульса с линейной частотной модуляцией 2 с определенным периодом он начинает излучать ПАВ с последовательно различными частотами. Эти волны, распространяясь по поверхности, отражаются от дефектов 5 и вновь попадают на преобразователь 3. Там они преобразуются в электромагнитный сигнал и попадают в ИКПП 1, который производит измерение параметра S11. Преобразованный электромагнитный сигнал начинает интерферировать с электромагнитным сигналом, который отражается непосредственно от электрического входа (выхода) преобразователя ПАВ, что приводит к изрезанности (появлению множества максимумов и минимумов) зависимости параметра S11 от частоты (см. фиг.2), пределы изменения которой задаются полосой частот импульса с линейной частотной модуляцией. Причем расстояние между максимумом и минимумом ΔS зависит от амплитуды отраженных ПАВ (чем больше отражение ПАВ от дефекта, тем больше ΔS), а расстояние между соседними минимумами или максимумами Δf - от расстояния между дефектом, от которого отражаются ПАВ, и преобразователем ПАВ (см. фиг.2), чем больше это расстояние, тем меньше Δf. Дискретность перестройки частоты в 1 Гц позволяет определять расстояние между ближайшими максимумами или минимумами Δf c дискретностью в 1 Гц, что повышает точность измерения. Фурье-преобразование полученной частотной зависимости показано на фиг.3. Из этой фигуры видно, что наличие изрезанности на частотной зависимости приводит к появлению пиков отражения, величина и местоположение которых зависит от величины отражения ПАВ от дефектов и расстояния до них. При таком методе измерения определение значения параметра S11 в каждой частотной точке производится некоторое время, за которое ПАВ проходит расстояние большее, чем удвоенное расстояние между преобразователем и дефектом. Это приводит к повышению точности измерений потому, что амплитуды отраженного сигнала измеряются на определенной частоте более 1-го раза, а также потому, что фазы сигналов помех носят случайный характер и взаимно ослабляются за время измерения. Кроме того, из-за периодичности посылки частотно-модулированных импульсов измерение в каждой частотной точке производится несколько раз и эти измерения могут также суммироваться, что также приводит к уменьшению влияния помех на результаты измерений, а следовательно, к повышению точности измерений.

Пример выполнения. В качестве ИКПП использовался прибор «Обзор-103». Зондирующий электромагнитный импульс с линейной частотной модуляцией и с дискретностью перестройки частоты в 1 Гц от этого прибора подается на клиновидный преобразователь ПАВ, который их возбуждает в алюминиевом профиле толщиной 3 мм и шириной 15 см, на котором имеются дефекты, от которых отражаются ПАВ. Измерения производятся в диапазоне частот 1,8-2,3 МГц. В этом диапазоне частот длина ПАВ будет меньше толщины алюминиевого профиля, что дает возможность распространяться ПАВ вдоль поверхности алюминиевого профиля. Измерения проводились при разных длительностях импульса с линейной частотной модуляцией: 0,55 с, 1,25 с и 24,8 с. При этом уровень шумов при наименьшем времени составил 40 дБ, а при наибольшем - более 120 дБ. На Фурье-преобразованиях частотных зависимостей параметра S11 хорошо видны отраженные ПАВ как от сквозных отверстий диаметром от 3 до 8 мм, так и от несквозных дефектов типа круглых углублений и пропилов.

Источники информации

1. Неразрушающий контроль в 5 кн. Кн.2. Практ. Пособие / И.Н Ермолов, Н.П. Алешин, А.И. Потапов; под ред. Проф. В.В. Сухорукова. - М.: «Высшая школа», 1991. - 283 с: - ил.

2. Патент РФ 2231057, МПК7 G01N 29/20 от 10.02.2004.

Способ неразрушающего контроля дефектов с помощью поверхностных акустических волн, включающий посылку зондирующего электромагнитного сигнала на преобразователь, возбуждающий в контролируемом образце поверхностные акустические волны, отличающийся тем, что на преобразователь периодически подается зондирующий электромагнитный импульс, в котором частота дискретно меняется по линейному закону, производится измерение частотной зависимости комплексного коэффициента отражения S11 этого преобразователя ПАВ и последующее Фурье-преобразование полученной частотной зависимости, по которому можно определить местоположение и величину дефекта по амплитуде и задержке отраженных от него ПАВ, причем длительность зондирующего электромагнитного импульса выбирается таким образом, что измерения на каждой частоте ведутся некоторое время, за которое ПАВ проходит расстояние большее, чем удвоенное расстояние между преобразователем и дефектом, частота заполнения электромагнитного импульса формируется с помощью цифрового синтезатора частоты.



 

Похожие патенты:

Изобретение относится к способу изготовления снабженной полым профилем конструктивной детали из волокнистого композиционного материала (варианты). Техническим результатом данного изобретения является исключение операции дополнительной обработки заготовки конструктивной детали для закрытия открытых концов полого профиля и исключение отрицательного действия заглушки на испытание без разрушения материала заготовки конструктивной детали посредством ультразвука.

Изобретение относится к измерительной технике и представляет собой способ и устройство для обнаружения дефектов на поверхности ферромагнитных материалов и изделий.

(57) Использование: для ультразвукового контроля. Сущность изобретения заключается в том, что выполняют формирование первого и второго измерительных каналов, содержащих пары генератор-приемник электроакустических преобразователей и смещенных в пространстве по оси движения, при этом центры акустических осей всех преобразователей располагают по одной линии в ряд так, что смещение между центрами приемников равно смещению между центрами генераторов, получают разностный сигнал с выходов указанных каналов и сравнивают уровень данного сигнала с браковочным уровнем, а о присутствии дефекта судят по падению уровня разностного сигнала.

Группа изобретений относится к текущему контролю вращающихся компонентов в центробежных насосах или в системах, их содержащих. Устройство контроля состоит из первого блока (1) и второго блока (9).

Использование: для автоматизированного ультразвукового контроля плоских изделий. Сущность изобретения заключается в том, что осуществляют сканирование плоских изделий ультразвуковым преобразователем в двух взаимно перпендикулярных направлениях: возвратно-поступательное поперек и дискретное прямолинейное вдоль контролируемого изделия.

Использование: для измерения толщины контактного слоя при ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что излучают пучок ультразвуковых колебаний в призму пьезопреобразователя, принимают отраженные от контактной поверхности объекта контроля продольные колебания дополнительной пьезопластиной, характеризующийся тем, что измеряют временное смещение отраженных колебаний и по его величине судят о толщине слоя.

Использование: для определения длины патрубка, выступающего внутрь трубы тройникового соединения, посредством эхо-сигнала. Сущность изобретения заключается в том, что создают в стенке патрубка возмущающее воздействие с помощью излучателя ультразвуковых колебаний, установленного на наружной поверхности патрубка, и измеряют величину параметра входного сигнала путем снятия величины амплитуды и определяют на линии А-развертки местоположение отраженного ультразвукового импульса с жидкокристаллического экрана ультразвукового дефектоскопа, при этом дополнительно получают длину пути отраженного эхо-сигнала от торца патрубка до места установки излучателя путем перемещения излучателя ультразвуковых колебаний вдоль патрубка по наружной стенке для получения максимального эхо-сигнала с последующим расчетом длины выступающей части патрубка по соответствующей формуле.

Использование: для ультразвуковой толщинометрии с высоким разрешением. Сущность изобретения заключается в том, что в процессе обследования трубопровода устройство ультразвуковой толщинометрии с высоким разрешением с использованием пьезоэлектрических преобразователей регистрирует отраженные сигналы от внутренней или внешней поверхностей стенки трубопровода, превышающие программно задаваемый порог, при этом выбираются отраженные сигналы по максимальному значению амплитуды, привязанной ко времени прихода от излученного импульса, далее из полученных сигналов выбирают не менее четырех сигналов по максимальным значениям амплитуд и регистрируют как значения времени от излученного импульса, так и амплитуды, при этом определяют границы начала изменения толщины стенки так называемой «зоны неопределенности границы дефекта» и в зависимости от структуры сигнала в «зоне неопределенности» вычисляют величину коррекции и далее корректируют сигналы отступа и толщины стенки трубопровода.

Использование: для автоматизированного ультразвукового контроля крупногабаритных изделий, имеющих форму тел вращения. Сущность изобретения заключается в том, что выполняют настройку чувствительности дефектоскопической аппаратуры в ручном режиме, ее проверку в автоматическом режиме, размещение на предметном столе установки контролируемого изделия, центрирование его, установку ультразвукового преобразователя на поверхности изделия в зоне начала контроля, включение автоматического режима контроля, сканирование преобразователем поверхности изделия по спирали, ввод - прием акустических колебаний контактно-щелевым методом с применением преобразователей с локальной ванной в изделие и в эталоны при настройке на них и проверке чувствительности аппаратуры, а также фиксирование наличия или отсутствия дефектов, при этом для контроля куполообразных изделий со сферическими поверхностями, преобразователь перемещают по дугообразной траектории, сканируют преобразователем поверхность изделия по выпуклой спирали Архимеда, и при обнаружении дефектов считывают их угловые координаты в двух взаимно-перпендикулярных направлениях.

Использование: для динамической калибровки ультразвукового дефектоскопа. Сущность изобретения заключается в том, что проводят динамическую калибровку УЗ дефектоскопа, содержащего рядный блок электроакустических преобразователей, первый из которых является генератором УЗ излучения, а последующий преобразователь или преобразователи являются приемниками УЗ излучения, при этом пороговый уровень срабатывания дефектоскопа задают исходя из текущего значения амплитуды опорного сигнала, излучаемого зеркально по отношению к основному зондирующему сигналу и представляющего собой остаточное УЗ излучение генератора в текущем такте или принудительное УЗ излучение генератора в дополнительном такте.

Устройство относится к средствам для дистанционного контроля высоковольтного электрооборудования, находящегося под напряжением, и может быть применено в электроэнергетике. Устройство работает по принципу обнаружения ультразвукового сигнала, содержащегося в спектре излучения высоковольтного разряда. Устройство контроля высоковольтного оборудования под напряжением содержит приемник сигналов частичных разрядов, в качестве которого используется ультразвуковой датчик, диаграмму направленности которого формирует приемный рупор, оптический визир, блок лазерной наводки, жидкокристаллический индикатор, блок автоматической регулировки чувствительности сигналов от частичных разрядов, блок обработки сигналов. Для достижения технического результата приемный рупор выполнен из пластика с волокнисто-пористой структурой, получаемой по 3Д технологии. Использование такого материала обеспечивает существенно более высокое значение отношения сигнал/шум и увеличивает возможную предельную дальность определения наличия частичных разрядов на высоковольтном оборудовании. 6 ил.

Изобретение относится к области неразрушающего ультразвукового контроля изделий и используется при контроле качества продольных и кольцевых швов, а также контроле качества изделий. Устройство для ультразвукового контроля изделий содержит основание с закрепленной на нем стойкой, на которой установлена каретка с датчиком для проведения контроля. Каретка смонтирована на стойке с возможностью осевого перемещения посредством привода и фиксации в заданном положении, на основании с возможностью вращения посредством привода установлен стол, предназначенный для размещения контролируемого изделия, вилка скреплена с рычагом, установленным с возможностью поворота на каретке, на вилке с возможностью поворота на осях смонтирована рамка, в которой на осях с возможностью поворота установлена плита, на плите с возможностью осевого перемещения смонтирована пластина, подпружиненная относительно нее и несущая подпружиненную относительно нее рамку, предназначенную для установки датчика, при этом на поверхности рамки, обращенной к изделию, установлены опоры, предназначенные для контакта с контролируемым изделием. Техническим результатом является расширение функциональных возможностей устройства за счет обеспечения качественного ультразвукового контроля продольных и поперечных сварных и паяных швов. 3 ил.

Использование: для контроля качества сварки металлических деталей. Сущность изобретения заключается в том, что выполняют ультразвуковое зондирование деталей в окрестности сварки, прием и оценку отраженных ультразвуковых сигналов, при этом дополнительно оценивают отраженные ультразвуковые сигналы от структурных неоднородностей металла деталей в зоне термического влияния и настраивают чувствительность ультразвукового дефектоскопа относительно уровня этих сигналов. Технический результат: повышение чувствительности при ультразвуковом контроле качества сварки металлических деталей. 2 ил.

Использование: для определения толщины стенки трубопровода. Сущность изобретения заключается в том, что измеряют толщину стенки трубопровода как функцию от положения с использованием распространения ультразвука. Используют серию прогнозных моделей, которые задают прогнозы ультразвуковых сигналов отклика как функцию от различных наборов параметров, которые являются определяющими для ультразвуковой скорости, зависящей от положения, при различных частотах звука и различном пространственном разрешении. Выполняют последовательные итерационные процессы подгонки, каждый из которых подгоняет комбинацию значений последовательного набора параметров к обнаруженным ультразвуковым сигналам отклика в соответствии с соответствующей моделью, используя подогнанные значения из предыдущего процесса подгонки для инициализации следующего набора параметров для итерационной подгонки. По меньшей мере первая модель задает прогнозы значений волновых векторов как функцию от периферического положения в последовательных кольцах вокруг указанной трубы в качестве сумм значений волновых векторов для периферических положений в предыдущем кольце, умноженных на коэффициенты распространения, используя коэффициенты распространения, зависящие от первого набора параметров. Технический результат: повышение достоверности определения толщины стенки трубопровода. 3 н. и 12 з.п. ф-лы, 6 ил.
Использование: для определения состояния подземной части железобетонных опор контактной сети. Сущность заключается в том, что возбуждают собственные колебания опоры, воздействуя на опору ударным импульсом в зоне раздела подземной и надземной частей, а о состоянии подземной части опоры судят по зависимости частот и энергий колебаний от времени из получаемой спектрограммы, сравнивая спектрограмму с эталонными спектрограммами для остродефектной, дефектной и нормальной опор данного типа. Технический результат: повышение надежности и достоверности контроля состояния подземной части опор.

Использование: для дефектоскопии изделий из титановых сплавов непосредственно после отливки с применением ультразвуковых волн для обнаружения внутренних дефектов. Сущность изобретения заключается в том, что обнаружение внутренних дефектов, содержащих изменение зернистости в затвердевшей структуре слитка, осуществляется с помощью ультразвука при добавлении элементов бора в различные титановые сплавы. Технический результат: обеспечение возможности минимизации помех ультразвуковых волн и, как следствие, обеспечение возможности обнаружения внутренних дефектов с высокой степенью достоверности. 2 н. и 17 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к области ракетной и измерительной техники и может быть использовано при выходном контроле на предприятии-изготовителе корпуса ракетного двигателя и входном контроле на предприятии-изготовителе твердотопливного заряда. Сущность: осуществляют зондирование контролируемой зоны сигналами ультразвуковых колебаний, регистрацию прошедших через указанную зону ультразвуковых колебаний, по параметрам которых судят о качестве адгезионного соединения в контролируемой зоне. При этом предварительно последовательно в каждую из зон манжетного раскрепления, смещенных относительно друг друга на 45-60°, вводят силовой элемент, посредством которого осуществляют перемещение каждой зоны раскрепляющей манжеты, примыкающей к вершине замка манжетного раскрепления, путем приложения нагрузки, обеспечивающей моделирование силового воздействия заряда на контролируемую зону. Технический результат: обеспечение достоверного определения состояния контролируемой зоны. 5 ил.

Изобретение относится к области определения одной из основных характеристик шумоизолирующих материалов - коэффициента их звукопоглощения. Способ оценки звукопоглощения волокнисто-пористых материалов заключается в измерении удельного сопротивления протеканию потоком воздуха RS и определении коэффициента звукопоглощения α на заданной частоте по регрессионным уравнениям, связывающим RS и α. Изобретение может быть использовано для оценки коэффициента звукопоглощения волокнисто-пористых материалов, а также пористых материалов с открытой системой пор. 23 ил., 3 табл.

Использование: для неразрушающего контроля качества сварных швов с использованием метода акустической эмиссии. Сущность изобретения заключается в том, что акустическое устройство обнаружения и определения местоположения дефектов в сварных швах содержит измерительный канал, включающий установленный на безопасном расстоянии от сварного шва преобразователь акустических сигналов, первый предварительный усилитель, полосовой фильтр, а также первый аналого-цифровой преобразователь, блок оперативного запоминания акустических сигналов и компьютер с монитором отображения выходных данных, при этом оно снабжено коммутатором, включенным между выходом преобразователя акустических сигналов и входом первого предварительного усилителя, первым амплитудным дискриминатором, соединенным с выходом первого аналого-цифрового преобразователя, вход которого подключен к выходу полосового фильтра, вход которого подключен к выходу первого предварительного усилителя, вторым амплитудным дискриминатором, причем выходы первого амплитудного дискриминатора соединены с соответствующими входами блока оперативного запоминания акустических сигналов и второго амплитудного дискриминатора, блоком записи эталонных сигналов, вход которого соединен с выходом второго амплитудного дискриминатора, блоком вычисления нормированных взаимно корреляционных функций и их максимальных значений. Технический результат: повышение помехозащищенности устройства и обеспечение возможности одностороннего доступа при использовании единственного преобразователя акустико-эмиссионных сигналов на стадии сбора данных и двух преобразователей на стадии определения местоположения дефектов. 2 ил.

Использование: для оперативной оценки результатов ультразвуковой (УЗ) дефектоскопии. Сущность изобретения заключается в том, что устройство отображения рельсового дефектоскопа содержит подсистему измерения, содержащую несколько акустических блоков, каждый из которых содержит несколько электроакустических преобразователей, соединенных с многоканальным ультразвуковым дефектоскопом, устройство отображения результатов ультразвуковых зондирований на дисплее в виде мнемонического изображения рельса с акустическими блоками, напротив каждого из которых расположены метки электроакустических преобразователей, содержащихся в соответствующем акустическом блоке, устройство автоматического обнаружения дефектов по результатам ультразвукового зондирования, обеспечивающего выделение на дисплее меток акустических блоков и электроакустических преобразователей, обнаруживших дефект, а также отображение сигналов от дефектов и местоположение дефектов на мнемоническом изображении рельса. Технический результат: обеспечение возможности отображения наглядным образом дефектов в контролируемом изделии. 2 ил.
Наверх