Способ измерения распределения потенциалов и интенсивности протекающих процессов по длине исследуемого электрода и устройство для его реализации


 


Владельцы патента RU 2569161:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Ижевская государственная сельскохозяйственная академия" (ФГБОУ ВО Ижевская ГСХА) (RU)

Изобретение направлено на расширение функциональных возможностей способа измерения для определения состава исследуемых растворов.

Технический результат заключается в измерении параметров процессов, протекающих на протяженном участке поверхности при его биполярной поляризации, позволяющий получить истинные распределения различных процессов по длине проводника. Способ измерения распределения потенциалов и интенсивности протекающих процессов состоит в измерении тока в дополнительной ячейке 1, протекающего между рабочим электродом 10 и вспомогательным электродом 11 при поддержании потенциала рабочего электрода 10 равным потенциалу в фиксированной точке исследуемого электрода 7. Исследуемый электрод 7 поляризуют биполярно, а распределение потенциала по его длине измеряют с использованием стандартного электрода 9, равномерно перемещаемого вдоль оси исследуемого электрода 7. Устройство для измерения распределения потенциалов и интенсивности протекающих процессов. 2 н. и 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к электрохимическим измерениям и может быть использовано для изучения процессов, протекающих в водных растворах органических и неорганических соединений.

Известны способ и устройство для полярографических и амперометрических измерений [Е.Н. Виноградова и др. Методы полярографического и амперометрического анализа, изд-во Московский Университет, 1963 г., стр. 13], где описаны способ и устройство измерения концентрации растворов и изучение природы процессов. При помощи внешнего источника тока подается напряжение на потенциометрическую проволоку, с которой при помощи подвижного контакта, как с потенциометра, снимают нужное напряжение и подают на электролизную ячейку в виде монотонно возрастающего пика. Сила тока в цепи контролируется гальванометром. Сформированный таким образом ток пропускается через электрохимическую ячейку, включающую раствор исследуемого вещества и пару электродов, одним из которых является слой ртути на дне сосуда, а вторым - растущая капля ртути, вытекающая из стеклянного капилляра. Для реализации этого способа используют прибор - полярограф, состоящий из капельного ртутного электрода и устройства регистрации потенциала и силы тока через электрохимическую ячейку, который позволяет регистрировать полярограммы как катодных, так и анодных процессов и обладает высокой чувствительностью.

Недостатком известного способа является ограниченная область использования, так как процесс измерения сосредоточен на ограниченной поверхности падающей ртутной капли.

Недостатком устройства-полярографа является использование специальной ячейки с ртутным капающим электродом, что не позволяет измерить распределение процессов по длине протяженного электрода.

Известен также способ измерения скорости коррозии основы в порах катодного гальванического покрытия по авторскому свидетельству №1356726. Способ заключается в том, что измеряют ток в электрохимической ячейке, содержащей электрод основа - катодное гальваническое покрытие, вспомогательный электрод и электрод из материала покрытия, по величине тока судят о скорости коррозии, при этом ток измеряют между электродом из материала покрытия и вспомогательным электродом, при поддержании потенциала электрода из материала покрытия равным потенциалу электрода основа - покрытие.

Недостатком известного способа является ограниченные возможности измерения, так как результат измерения характеризует единицу изучаемой поверхности.

Задачей изобретения является расширение функциональных возможностей способа измерения для определения состава исследуемых растворов.

Технический результат заключается в измерении параметров процессов, протекающих на протяженном участке поверхности при его биполярной поляризации, позволяющий получить истинные распределения различных процессов по длине проводника.

Поставленная задача достигается тем, что способ измерения распределения потенциалов и интенсивности протекающих процессов включает измерение тока в дополнительной электрохимической ячейке между рабочим электродом и вспомогательным электродом при поддержании потенциала рабочего электрода равным потенциалу в фиксированной точке исследуемого электрода. Исследуемый электрод поляризуют биполярно, а распределение потенциала по его длине измеряют с использованием стандартного электрода, равномерно перемещаемого вдоль оси исследуемого электрода. В качестве стандартного электрода использован хлорсеребряный электрод (хсэ), повсеместно используемый в настоящее время в практике электрохимических измерений.

Поставленная задача достигается также тем, что устройство для измерения распределения потенциалов и интенсивности протекающих процессов состоит из электрохимической ячейки, содержащей исследуемый электрод, и дополнительной ячейки, включающей рабочий и вспомогательный электроды. В электрохимической ячейке дополнительно введены стандартный электрод и устройство для его равномерного перемещения вдоль поверхности исследуемого электрода. Исследуемый электрод выполнен протяженным.

Схема устройства показана на чертеже.

Устройство включает следующие конструктивные элементы: дополнительную ячейку и электрохимическую ячейку 1 и 2, потенциостат 3, вольтметр 4 и самописцы 5, 6. В электрохимической ячейке 2 с исследуемым раствором натянута горизонтально платиновая проволока 7 на некоторой глубине от поверхности раствора. У концов проволоки в раствор погружены два дополнительных электрода 8 из инертного материала, присоединенные к регулируемому источнику постоянного электрического тока. Стандартный электрод 9 смонтирован с возможностью свободно перемещаться вдоль натянутой проволоки со строго заданной постоянной скоростью. В ячейке 1 находится такой же раствор электролита, как и в ячейке 2. Температура раствора в обеих ячейках поддерживается одинаковой с помощью термостата. В раствор в ячейке 1 погружен платиновый электрод 10 со строго заданной площадью полной поверхности, равной 1 см2. В ячейку 1 введен также вспомогательный платиновый электрод 11 и электрод сравнения 12. Растворы в ячейках 1 и 2 электрически соединены с помощью электролитического ключа 13. Электроды 9, 10 и 11 присоединены к потенциостату 3 следующим образом: электрод 10 к клемме на колодке потенциостата «рабочий электрод»; 11 - «вспомогательный электрод»; 9 - «электрод сравнения». Электроды 10 и 12 соединены также с катодным вольтметром 4. К потенциостату 3 подключен самопишущий потенциометр 5 для регистрации силы тока, протекающего между электродами 10 и 11. К выходу катодного вольтметра 4 подключен самопишущий потенциометр 6 для регистрации величины потенциала, отвечающего точке на проволочном электроде 7, которой касается в данный момент стандартный электрод 9.

Устройство работает следующим образом.

В ячейки 1 и 2 заливают исследуемый раствор и доводят температуру раствора в обеих ячейках до заданной величины. В ячейку 1 погружают платиновый электрод 10, имеющий полную площадь поверхности, равной одному сантиметру квадратному, и подключают его к клемме на входе потенциостата 3 «рабочий электрод» и его же подключают к входу вольтметра 4. Сюда же вводят электрод сравнения 12 и соединяют его с входом вольтметра 4 и платиновый электрод 11, соединенный с клеммой на потенциостате «вспомогательный электрод». Растворы в ячейках 1 и 2 соединяют электрически солевым мостиком 13 (электролитический ключ).

В ячейке 2 устанавливают горизонтально проволочный электрод 7, вдоль которого перемещается стандартный электрод 9 и два дополнительных электрода 8, соединенных с источником постоянного тока (не показан). Включают ток заданной величины, протекающий через рабочий электролит между электродами 8. Под действием электрического поля постоянного тока проволочный электрод 7 поляризуется по биполярной схеме таким образом, что на конце его, находящегося около анода, наводится отрицательный потенциал, на противоположном его конце наводится положительный потенциал. Сила тока, обеспечивающего образование электродного потенциала в данной точке, обусловливается протеканием электродного процесса на поверхности проволочного электрода 7 в тот момент, когда стандартный потенциал этого процесса совпадает со значением потенциала в данной точке проволочного электрода 7, полная совокупность таких точек по длине проволочного электрода 7 представляет собой кривую распределения тока по его длине. Диаграмма, регистрируемая самописцем 6, показывает распределение потенциала по длине электрода 7. Совокупность этих диаграмм дает представление о распределении по длине проволочного электрода 7 всех возможных в данном растворе электрохимических процессов и относительном распределении интенсивности каждого из них по длине проводника.

Очевидно, что картина распределения процессов по длине проволочного электрода 7 и соотношение интенсивности процессов будут изменяться при изменении силы тока, протекающего между дополнительными электродами 8. Эти сведения дают возможность выбора режимов поляризации проволочного электрода 7, которые обеспечивают протекание заданного набора процессов.

Проведено моделирование условий работы протяженного электрода в кровеносном сосуде. Измеряли распределение электродного потенциала по длине платинового проволочного электрода, размещенного на дне горизонтального канала из оргстекла сечением 4×4 мм и длиной 150 мм, заполненного физиологическим раствором. Проволочный электрод поляризовался по биполярной схеме с помощью двух дополнительных электродов, погруженных в раствор вблизи концов проволочного электрода. Измеряли распределение потенциала по длине проводника. На кривой зависимости потенциал - длина электрода отмечены две ступени: одна при потенциале минус 450 мВ по водородной шкале, и вторая при потенциале плюс 1300 мВ. Первой из них соответствует начало выделения водорода в нейтральной среде, а второй - начало выделения хлора.

Дополнительно проводили измерения в стационарной трехэлектродной ячейке в том же растворе и при той же температуре. Поочередно поляризовали рабочий электрод ячейки площадью 1 см2 при потенциалах +1300 мВ и -450 мВ. Сила тока поляризации, протекающего при этом в цепи потенциостата между рабочим и вспомогательным электродами, составляла: 130 мкА/см2 и 140 мкА/см2.

Эти данные свидетельствуют о том, что на участках проволочного электрода, соответствующих процессам окисления хлора (+1300 мВ) и восстановления водорода (-450 мВ), интенсивность процессов составляет 130 мкА/см2 и 140 мкА/см2, соответственно.

1. Способ измерения распределения потенциалов и интенсивности протекающих процессов, включающий измерение тока в дополнительной ячейке между рабочим электродом и вспомогательным электродом при поддержании потенциала рабочего электрода равным потенциалу в фиксированной точке исследуемого электрода, отличающийся тем, что исследуемый электрод поляризуют биполярно, а распределение потенциала по его длине измеряют с использованием стандартного электрода, равномерно перемещаемого вдоль оси исследуемого электрода, и измеряют ток поляризации рабочего электрода.

2. Устройство для измерения распределения потенциалов и интенсивности протекающих процессов, состоящее из электрохимической ячейки, содержащей исследуемый электрод, и дополнительной ячейки, включающей рабочий и вспомогательный электроды, отличающееся тем, что в электрохимическую ячейку введен стандартный электрод и устройство для его равномерного перемещения вдоль поверхности исследуемого электрода, подключенный к клемме «электрод сравнения» на входе потенциостата, в дополнительную ячейку введен электрод сравнения, подключенный к вольтметру, электрохимическая ячейка и дополнительная ячейка соединены солевым мостиком, а к выходу потенциостата и вольтметра подключены средства регистрации потенциала рабочего электрода и силы тока его поляризации.

3. Устройство для измерения по п.2, отличающееся тем, что исследуемый электрод выполнен протяженным.



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения адгезионных свойств различных типов покрытий стальных объектов и сооружений методом катодной поляризации.

Изобретение относится к фармацевтической промышленности, в частности к способу определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном фталоцианином кобальта Co(II) платиновом электроде.

Использование: для обнаружения анализируемых веществ в физиологических жидкостях. Сущность изобретения заключается в том, что электрохимическая система содержит: электрохимический датчик; испытательный измерительный прибор, выполненный с возможностью приема электрохимического датчика; и схему внутри испытательного измерительного прибора, причем схема выполнена с возможностью формирования электрического соединения с электрохимическим датчиком, когда этот датчик расположен в испытательном измерительном приборе, и дополнительно выполнена с возможностью обнаружения первого напряжения, указывающего, что никакой электрохимический датчик не расположен в испытательном измерительном приборе, второго напряжения, отличающегося от первого напряжения и указывающего, что в испытательном измерительном приборе находится электрохимический датчик без пробы физиологической жидкости, и третьего напряжения, отличающегося от первого и второго напряжений и указывающего, что электрохимический датчик расположен в испытательном измерительном приборе, а проба физиологической жидкости нанесена на электрохимический датчик.

Изобретение относится к медицине, а именно к оториноларингологии, и может быть использовано при выборе тактики лечения гипертрофии глоточной миндалины и хронического аденоидита.

Изобретение относится к медицине и описывает способы для определения концентрации аналита в пробе, приборы и системы, используемые в связи с ними. В одном из вариантов осуществления изобретения способ включает обнаружение содержащей аналит пробы, введенной в электрохимический сенсор, содержащий два электрода в разнесенной конфигурации; реагирование аналита с вызыванием физического превращения аналита между двумя электродами; измерение выходов тока на дискретных интервалах для выведения времени заполнения сенсора пробой и емкости сенсора с пробой; определение первого значения концентрации аналита по выходам тока; расчет второго значения концентрации аналита по выходам тока и первому значению концентрации аналита; корректировку второго значения концентрации аналита на влияния температуры для обеспечения третьего значения концентрации аналита; корректировку третьего значения концентрации аналита как функции времени заполнения сенсора для обеспечения четвертого значения концентрации аналита; и корректировку четвертого значения концентрации аналита как функции емкости для обеспечения конечного значения концентрации аналита.

Изобретение относится к области аналитической химии, в частности к анализу минеральных вод на предмет определения гидрокарбонат-ионов объекта исследования. Способ включает титрование пробы минеральной воды кислотным титрантом и измерение сопротивления в растворе кондуктометрической ячейки при добавлении каждой порции титранта, всего до 20 замеров, отличается тем, что в качестве титранта при определении гидрокарбонат-ионов в минеральной воде используют раствор хлористоводородной кислоты (HCl), для этого 10 мл минеральной воды вносят в электрохимическую ячейку с двумя платиновыми электродами со строго зафиксированным между ними расстоянием, затем в электрохимическую ячейку добавляют одну каплю 0,1% индикатора метилового оранжевого, бюретку для титрования заполняют раствором хлористоводородной кислоты (HCl), в электрохимическую ячейку опускают магнитик и включают магнитную мешалку для перемешивания раствора в ячейке, электроды с помощью электрических проводов крокодилами подключают к настольному портативному цифровому LCR-метр ELC-131D прибору и включают его, при титровании получают экспериментальные данные одновременно двумя методами - методом кислотно-основного титрования, основанным на нейтрализации гидрокарбонат-ионов соляной кислотой в присутствии индикатора метилового оранжевого, и кондуктометрическим титрованием, после прибавления каждой порции титранта фиксируют по прибору значение сопротивления (R) анализируемого раствора, что соответствует кондуктометрическому титрованию, а после изменения цвета раствора в присутствии индикатора, а именно перехода розового цвета раствора в желтый, измеряют общий объем титранта (VТЭ) по бюретке (метод кислотно-основного титрования), далее аналогично описанному выше подвергают анализу еще 3 пробы воды каждая объемом 10 мл, причем при определении содержания гидрокарбонат-ионов в питьевых минеральных водах предварительно устанавливают точную концентрацию титранта HCl по буре (натрий тетраборнокислый - Na2B4O7·10Н2О).

Изобретение относится к исследованию и анализу материалов и может быть использовано для определения структурного состояния талой воды в разное время после таяния.

Изобретение относится к аналитической химии азота, в частности к определению общего азота в сельскохозяйственном сырье и продуктах его переработки. Способ характеризуется тем, что предусматривает термическое кислотное разложение пробы растительного образца, кратное разбавление пробы до содержания аммонийного азота не более 1000 мг/дм3 и выполнение анализа методом капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм с получением электрофореграммы, причем общий азот определяют по содержанию аммонийного азота и остаточному содержанию нитрат- и нитрит- ионов, причем для определения аммонийного азота используют водный раствор ведущего электролита, содержащий бензимидазол, 18-краун-эфир-6, сульфат натрия при положительном напряжении на капилляре 12 кВ и длине волны детектирования - 254 нм, а для определения методом капиллярного электрофореза остаточного содержания нитрат- и нитрит-ионов применяют водный раствор ведущего электролита, содержащего хромат калия, уротропин и Трилон Б при отрицательном напряжении на капилляре 14 кВ и длине волны детектирования -254 нм.

Группа изобретений относится к медицине, косметологии, производству продуктов питания, витаминов, БАДов, лекарственных средств и описывает варианты устройства для реализации неинвазивного потенциометрического определения оксидантной/антиоксидантной активности биологических тканей, включающего прибор для измерения потенциалов и двухсторонний электрод, выполненный в виде пластины с одинаковыми рабочими поверхностями, покрытыми электропроводящим гелем, содержащим медиаторную систему.

Использование: для исследования процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных капиллярно-пористых материалов в строительной, химической и других отраслях промышленности.

Изобретение относится к биологическим сенсорам и может быть использовано для анализа биологических проб, содержащих глюкозу или лактат. Способ изготовления микробиосенсора на основе гексацианоферрата железа заключается в том, что на рабочий электрод, коаксиально расположенный с электродом сравнения, наносят гексацианоферрат железа, а поверх него наносят фермент-оксидазу, иммобилизованный в матрицу на основе перфторсульфонированного полимера или гамма-аминопропилсилоксана. Достигается надежность и воспроизводимость закрепления фермента на поверхности электрокатализатора при сохранении большей части его активности; а также сопряжение электродной и ферментативной реакций. 2 з.п. ф-лы, 6 ил., 2 табл., 2 пр.

Изобретение относится к аналитической химии, а именно к способу определения микропримесей мышьяка и сурьмы в лекарственном растительном сырье. Способ заключается в переводе соединений мышьяка и сурьмы в соответствующие гидриды путем восстановления смесью, содержащей 40%-ный раствор иодида калия, 10%-ный раствор аскорбиновой кислоты, 4 M раствор соляной кислоты и цинк металлический. Анализируемую пробу, содержащую мышьяк и сурьму, предварительно переводят в жидкую форму, а для перевода в гидриды из нее берут две части, при этом одну часть, для удаления мышьяка, обрабатывают концентрированной соляной кислотой, выпаривают и сухой остаток растворяют в 4 M растворе соляной кислоты, затем ячейку, содержащую поглотительный раствор, включающий 0,5 M раствор иодида калия, ацетатный буферный раствора с рН 5,6 и смесь сенсибилизаторов аурамина: флуоресцеина: эозината натрия в молярном соотношении 1:1:1 продувают воздухом в течение 1-2 минут и облучают светодиодной лампой до образования фотогенерированного йода. Отгон гидридов из обеих частей анализируемой пробы через фотогенерированный иод осуществляют до прекращения изменения количества иода в ячейке, фиксируемого амперометрически по изменению силы тока в цепи. После отгона гидридов раствор в поглотительной ячейке вновь продувают кислородом воздуха и облучают до установления в ней первоначального количества йода и по изменению силы тока и времени генерации иода в ячейке судят о количестве мышьяка и сурьмы. Способ, описанный выше, позволяет повысить точность и предел обнаружения мышьяка и сурьмы в лекарственном растительном сырье. 5 табл., 2 пр.
Наверх