Способ магнитно-абразивного полирования метчика

Изобретение относится к машиностроению и может быть использовано при магнитно-абразивной обработке сложнопрофильных инструментов, в частности метчиков. Осуществляют магнитно-абразивное полирование метчика, включающее обработку заборной, калибрующей и ведущей рабочих частей метчика при его прямом и обратном вращении в магнитно-абразивной массе. Используют установленные перпендикулярно оси метчика круговые насадки с форсунками, через которые в зону обработки каждой рабочей части метчика направляют под регулируемым давлением воздушные потоки в противоположных друг другу направлениях для удержания магнитно-абразивной массы в границах обрабатываемой части метчика. 2 ил.

 

Изобретение относится к магнитно-абразивной обработке сложнопрофильных инструментов.

Известен способ для магнитно-абразивной обработки резьбовых поверхностей, реализуемый устройством (Авторское свидетельство СССР №537796, опубл. 05.12.76 г.), в котором осуществляется регулировка давления порошка на обрабатываемую заготовку за счет поочередного воздействия на порошок электромагнитов С-образной формы. Регулировка давления порошка зависит от направления вращения детали (заготовки) и нарезки резьбы (левая или правая).

Недостаток данного способа, реализуемого устройством (Авторское свидетельство СССР №537796, опубл. 05.12.76 г.), заключается в том, что резьбовые поверхности обрабатываются целиком, и соответственно обработка резьбовых поверхностей по частям не предоставляется возможным.

Известен способ магнитно-абразивной обработки резьбонарезного инструмента (Барон Ю.М. «Магнитно-абразивная и магнитная обработка изделий и режущих инструментов». - Л.: Машиностроение 1986 г., стр. 161-163), который осуществляется при прямом и обратном вращении заготовки, благодаря чему у метчиков повышается износостойкость поверхностей зубьев. Данный способ также позволяет скруглять (до необходимых размеров) режущие кромки и осуществлять одновременно с полированием обратное затылование зубьев ведущей части метчика.

Недостаток данного способа заключается в сплошном нанесении магнитно-абразивной массы на резьбовую поверхность и также данный способ не предусматривает нанесения определенной технологии на каждую из рабочих частей метчика.

Известен способ магнитно-абразивной обработки (Патент US №5775976 A, опубл. 07.07.1998 г.), с целью увеличения интенсивности съема металла предлагается использовать специальные сопла для подачи магнитно-абразивного порошка, которые направлены противоположно движению заготовки.

Недостаток данного способа заключается в том, что сопла выполняют функцию не регулирования порошка в определенной области полирования, а функцию увеличения интенсивности снятия материала, что не позволяет держать в границах определенной области обработки порошок, тем самым нарушая технологию нанесения магнитно-абразивного полирования.

Известен способ для магнитно-абразивной обработки частей метчика, реализуемый устройством (Авторское свидетельство СССР №1815185, опубл. 15.05.1993 г.), в котором заборная и калибрующая части сложнопрофильного инструмента обрабатываются поочередно благодаря магнитной системе с двумя парами плоских полюсных наконечников, установленных с возможностью независимой регулировки межполюсного пространства.

Недостаток этого способа, реализуемого данным устройством, является неэффективное использование магнитно-абразивной массы в процессе полирования, что приводит к дополнительному воздействию на уже обработанные рабочие части сложнопрофильного инструмента.

Известен способ обработки рабочих частей метчика магнитно-абразивным полированием (Барон Ю.М., Максаров В.В., Васильев В.Г., Скрипченко В.И. «Совершенствование технологии нарезания резьбы в изделиях энергомашиностроения» // Энергомашиностроение, 1987 г., №1, стр. 24-27), принятый за прототип, при котором обрабатывают заборную, калибрующую и ведущую части резьбонарезного инструмента в обоих направления вращения.

Недостаток данного способа заключается в том, что при обработке рабочих частей метчика магнитно-абразивная масса накладывается на уже обработанную поверхность, что ведет к искажению геометрических параметров той рабочей части, на которую дополнительно было произведено воздействие технологии магнитно-абразивного полирования, предназначенной для другого рабочего участка. Таким образом, данный способ не предусматривает контролирования магнитно-абразивной массы в границах области обработки каждого рабочего участка метчика.

Техническим результатом является повышение качества нарезаемой резьбы в ответственных конструкциях машиностроения.

Технический результат достигается тем, что используют установленные перпендикулярно оси метчика круговые насадки с форсунками, через которые в зону обработки каждой рабочей части метчика направляют под регулируемым давлением воздушные потоки в противоположных друг другу направлениях для удержания магнитно-абразивной массы в границах обрабатываемой части метчика.

Способ поясняется следующими чертежами:

фиг. 1 - схема магнитно-абразивной обработки для реализации предлагаемого способа;

фиг. 2 - схема нижней круговой насадки с форсунками для воздушного потока.

Обрабатываемый сложнопрофильный инструмент - метчик (1), имеющий заборную (l1), калибрующую (l2) и ведущую (l3) рабочие участки, размещен между полюсными наконечниками с установленным рабочим зазором (δ), создаваемым магнитной системой с электромагнитными катушками (5). Рабочее пространство (lpn) заполнено магнитно-абразивным порошком (8). В процессе обработки заготовки регулирование магнитно-абразивной массы осуществляют при помощи круговых насадок (2 и 6) с форсунками (3 и 7) диаметром d, установленных на расстоянии радиусом R для воздушного потока (9) регулируемого дросселем 4. Воздушные потоки (9) направлены в противоположных направлениях друг к другу, а круговые насадки (2 и 6) установлены перпендикулярно оси обрабатываемого инструмента.

Способ осуществляется в 3 этапа, на первом обрабатывается заборная часть (l1), на втором калибрующая часть (l2) и на 3 этапе обрабатывается ведущая часть метчика (l3). Каждый рабочий участок обрабатывается при прямом и обратном вращениях. Пример обработки калибрующей части метчика: перед началом обработки производится настройка необходимых параметров, заранее оптимально подобранных, таких как рабочий зазор (δ), высота (Н) круговых насадок (2 и 6), диаметр форсунок d (3 и 7) и их расположение на расстоянии радиусом R, магнитная индукция (В) и давление воздушного потока (9). Далее включаются электромагнитные катушки, и подается определенное количество магнитно-абразивного порошка (8), необходимого для полирования калибрующей части. Благодаря магнитному полю порошок образует своеобразный эластичный инструмент, который копирует форму обрабатываемой поверхности (1). Под определенным давлением из круговых насадок (2 и 6) с форсунками (3 и 7) для направления воздуха поступает воздушный поток (9), который контролирует магнитно-абразивную массу в границах калибрующей части (12) метчика. Затем метчику сообщается вращательное движение вокруг своей оси, а полюсным наконечникам возвратно-поступательное перемещение вдоль магнитной системы. Тем самым производится обработка калибрующей части метчика с соблюдением ее границ.

Способ магнитно-абразивного полирования метчика, включающий размещение метчика с зазором между полюсными наконечниками магнитной системы, который заполняют магнитно-абразивной массой, и обработку заборной, калибрующей и ведущей рабочих частей метчика при его прямом и обратном вращении в магнитно-абразивной массе, отличающийся тем, что используют установленные перпендикулярно оси метчика круговые насадки с форсунками, через которые в зону обработки каждой рабочей части метчика направляют под регулируемым давлением воздушные потоки в противоположных друг другу направлениях для удержания магнитно-абразивной массы в границах обрабатываемой части метчика.



 

Похожие патенты:

Изобретение относится к различным областям промышленности, преимущественно ракетно-космической и авиационной, и может быть использовано при магнитно-абразивной обработке металлических волноводов сложной формы и любой длины.

Изобретение относится к области машиностроения и может быть использовано при очистке и/или отделочной обработке сложных поверхностей изделий. .

Изобретение относится к области машиностроения и может быть использовано для магнитно-абразивной обработки деталей, имеющих цилиндрические, плоские, сферические и др.

Изобретение относится к области машиностроения и может быть использовано для формообразования пространственно-сложных поверхностей деталей, в частности рабочей части лопатки газовой, паровой или гидротурбины.

Изобретение относится к металлообработке и может быть использовано для полирования поверхностей штампов, инструментов, оптических стекол и других фасонных поверхностей с прямолинейной или криволинейной образующей.

Изобретение относится к области машиностроения и может быть использовано для создания станков для снятия припуска, шлифования и полирования прутков из твердых сплавов, не поддающихся обработке резанием.

Изобретение относится к машиностроению, в частности к металлообработке, и может быть использовано для магнитно-абразивной обработки деталей, имеющих цилиндрические, плоские и другие поверхности.

Изобретение относится к приборостроению и может быть использовано при производстве оптических компонентов для обработки и заострения краев, кромок, граней, фасок, а также для изготовления элементов точной механики, метрологических поверочных пластин, щупов и калибров. Магнитореологическое полирование включает позиционирование оптического элемента с образованием рабочего зазора между его торцовой поверхностью и движущейся несущей поверхностью, предварительное формование магнитореологической жидкости (МРЖ) с использованием формующего элемента, подвод ее к движущейся несущей поверхности, формирование рабочей зоны путем приложения магнитного поля в зоне рабочего зазора и съем части материала с обрабатываемой торцовой поверхности оптического элемента. Формующий элемент подводят к движущейся несущей поверхности с образованием между ними щелевого зазора. Предварительное формование МРЖ осуществляют путем ее пропускания через щелевой зазор после подвода МРЖ к движущейся несущей поверхности и до ее подачи в рабочий зазор между торцовой поверхностью оптического элемента и движущейся несущей поверхностью. В результате уменьшается нежелательное воздействие МРЖ на необрабатываемые поверхности детали. 1 ил.

Изобретение относится к машиностроению и может быть использовано для магнитно-абразивной обработки. Устройство содержит магнитные системы с индукторами, расположенные друг против друга с возможностью перемещения вдоль трех взаимно перпендикулярных осей координат и поворота на угол 360° вокруг каждой из этих осей, собранные из чередующихся постоянных магнитов и магнитопроводов и закрепленные на валах электродвигателей. Каждая из магнитных систем снабжена внешней и внутренней ограничительными чашками, выполненными с возможностью свободного вращения относительно оси вала электродвигателя и выступания их боковых сторон над рабочей поверхностью индуктора на величину, равную рабочему зазору между рабочей поверхностью индуктора и поверхностью обрабатываемой детали. В результате повышается качество обработки поверхности детали. 7 ил.

Изобретение относится к машиностроению и может быть использовано при магнитно-абразивном полировании рабочих участков метчика. Осуществляют поэтапную обработку заборного, калибрующего и ведущего рабочих участков метчика при его прямом и обратном вращениях в магнитно-абразивной массе. На первом этапе выполняют обработку всех рабочих участков метчика в течение времени, необходимого для формирования наименьших значений микрогеометрических параметров на одном из трех рабочих участков. На втором этапе выполняют доводку одного из двух оставшихся рабочих участков до формирования требуемых значений или пределов микрогеометрических параметров участка. Причем время обработки устанавливают исходя из наименьших значений микрогеометрических параметров одного из двух рабочих участков метчика. На третьем этапе выполняют доводку оставшегося рабочего участка до требуемых значений или пределов микрогеометрических параметров в течение времени, необходимого для окончательного формирования микрогеометрии данного участка. В результате исключаются резкие перепады значений микрогеометрических параметров в переходных зонах, повышается стойкость метчиков и улучшается качество и точность нарезаемой резьбы. 6 ил., 1 пр.

Изобретение относится к области абразивной обработки и может быть использовано при чистовой обработке поверхности изделий сложной формы ферро-абразивным порошком в магнитном поле. Изделие сложной формы помещено в рабочую зону, образованную однополярными наружными полюсами магнитопровода магнитной системы и противоположным по полярности внутренним полюсом. Наружные однополярные полюса соединены между собой полюсным наконечником с цилиндрическим отверстием в центре наконечника с образованием рабочей зоны в виде кольцевого канала. В центре магнитной системы размещена обмотка электромагнита. В результате повышается производительность работы установки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к машиностроению и может быть использовано при магнитно-абразивной обработке деталей. Устройство содержит обойму и установленные равномерно по окружности в кольцевом канале магнитные блоки. Обойма выполнена из магнитно-мягкого материала в виде магнитопровода. Кольцевой канал выполнен в обойме. Каждый магнитный блок состоит из двух постоянных магнитов, полярности полюсов которых направлены противоположно друг другу Один из магнитов блока расположен на одной боковой стенке кольцевого канала, а другой магнит этого блока - на его противоположной боковой стенке с образованием между магнитами блоков рабочего канала для изделия. Магнитные блоки вместе с магнитопроводом образуют цельную магнитную систему преимущественно С-образной формы. В результате повышаются производительность и качество обработки, а также упрощается конструкция устройства. 2 н.п. ф-лы, 2 ил.
Наверх