Высокопрочный сплав на основе титана и изделие, выполненное из высокопрочного сплава на основе титана



Высокопрочный сплав на основе титана и изделие, выполненное из высокопрочного сплава на основе титана

 


Владельцы патента RU 2569285:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") (RU)

Изобретение относится к области металлургии, а именно к высокопрочным титановым сплавам, используемым для изготовления деформированных полуфабрикатов. Сплав на основе титана содержит, мас. %: алюминий 1,5-3,5; молибден 1,0-3,0; ванадий 8,0-12,0; хром 2,5-5,0; железо 0,3-1,8; цирконий 0,4-2,0; олово 0,4-2,0; иттрий и/или гадолиний 0,01-0,16; титан и примеси остальное. Сплав характеризуется высокими прочностными характеристиками при сохранении высокой пластичности сплава в термически упрочненном состоянии, а также повышенной технологичностью в закаленном состоянии. 2 н. и 2 з.п. ф-лы, 1 табл., 5 пр.

 

Изобретение относится к области цветной металлургии, а именно к созданию универсальных конструкционных высокопрочных высокотехнологичных титановых сплавов, используемых для изготовления широкой номенклатуры деформированных полуфабрикатов (в том числе тонколистовых), которые могут быть использованы в силовых конструкциях авиационной и космической техники, энергетических установок, ракет, длительно работающих при температурах до 350°C.

Известен сплав на основе титана, имеющий следующий химический состав, масс. % (см. патент РФ №2086694, опубл. 10.08.1997 г.):

алюминий 0,4-6,0
марганец 0,5-2,0
железо 0,03-0,3
цирконий 0,03-0,3
медь 0,03-0,3
никель 0,03-0,3
кремний 0,03-0,3
кислород 0,03-0,3
углерод 0,02-0,2
азот 0,004-0,04
водород 0,002-0,008
титан остальное

Из известного сплава изготавливают детали и узлы авиакосмической техники, в частности сварные и сложнопрофильные листовые конструкции. Данный сплав обладает высоким уровнем технологической пластичности, позволяющей изготавливать из него листовые полуфабрикаты путем холодной прокатки, а также проводить холодную или теплую штамповку деталей из них.

Недостатками известного сплава являются: неспособность к эффективному упрочнению путем термической обработки, низкий уровень прочностных свойств и высокая склонность к испарению марганца при выплавке слитков.

Известен сплав на основе титана, имеющий следующий химический состав, масс. % (см. патент РФ №2269584, опубл. 10.02.2006 г.):

алюминий 3,5-4,4
ванадий 2,0-4,0
молибден 0,1-0,8
железо макс. 0,4
кислород макс. 0,25
титан остальное

Из известного сплава изготавливают крупногабаритные поковки и штамповки, тонколистовой прокат и фольгу.

Недостатком сплава является низкий уровень прочностных свойств и неспособность к самозакаливанию.

Наиболее близким аналогом, взятым за прототип, является сплав на основе титана, имеющий следующий химический состав, масс. % (см. патент РФ №2418087, опубл. 10.05.2011 г.):

алюминий 2,0-5,0
молибден и/или ванадий 4,0-10,0
хром 5,5-11,0
железо 2,0-4,0
цирконий 1,0-4,0
титан остальное

Сплав предпочтительно относится к высоколегированным (α+β) и псевдо-β титановым сплавам с комплексным легированием изоморфными и эвтектоидными β-стабилизаторами. Из него изготавливают прутки, профили для различных применений, в частности для крепежа, пружин и других изделий, имеющих низкий модуль упругости и высокую прочность.

Недостатком сплава является склонность к ликвации из-за высокого содержания железа и хрома, что может привести к снижению уровня механических свойств материала; высокий уровень прочности в состоянии после закалки/отжига, приводящий к более интенсивному износу штампового инструмента и технологической оснастки при изготовлении деформированных полуфабрикатов.

Технической задачей предлагаемого изобретения является создание универсального высокопрочного титанового сплава, легированного редкоземельными металлами (РЗМ), обладающего повышенными механическими и технологическими характеристиками и предназначенного для изготовления полуфабрикатов широкого сортамента (листы, плиты, прутки, поковки, штамповки) и сложнопрофильных конструкций, в частности, из листовых полуфабрикатов путем штамповки вхолодную.

Технический результат: повышение прочностных характеристик при сохранении на высоком уровне технологической пластичности сплава в термически упрочненном состоянии, повышение технологичности в закаленном состоянии.

Поставленный технический результат достигается с помощью сплава на основе титана, содержащего алюминий, молибден, ванадий, хром, железо, цирконий, отличающегося тем, что дополнительно содержит олово, иттрий и/или гадолиний, при следующем соотношении компонентов, масс. %:

алюминий 1,5-3,5
молибден 1,0-3,0
ванадий 8,0-12,0
хром 2,5-5,0
железо 0,3-1,8
цирконий 0,4-2,0
олово 0,4-2,0
иттрий и/или гадолиний 0,01-0,16
титан и примеси остальное

Предпочтительно, суммарное содержание молибдена и ванадия составляет 9-15 масс. %.

Предпочтительно, суммарное содержание хрома и железа составляет 2,8-6,8 масс. %.

Авторами было установлено, что для реализации высокой прочности конечных изделий и высокой технологической пластичности полуфабрикатов на стадии их изготовления необходимо одновременное соблюдение ряда условий по легированию сплава.

Известно, что снижение общей степени легирования псевдо-β титановых сплавов сопровождается снижением эффекта самозакаливания, приводит к снижению технологичности сплава (из-за образования α-фазы при проведении межоперационных отжигов в промышленных вакуумных печах большого объема) и, как следствие, усложнению технологии и повышению стоимости изготовления листовых полуфабрикатов. Чрезмерное легирование сплава β-стабилизаторами (в частности, Mo, V, Cr, Fe) приводит к повышению его плотности, повышению стабильности β-твердого раствора и, как результат, снижению эффективности и увеличению времени проведения упрочняющей термической обработки, снижению модуля упругости и ряду других эффектов. На основании этих данных суммарное содержание β-стабилизирующих элементов, выраженное молибденовым эквивалентом Моэкв (Молибденовый эквивалент рассчитан по следующей формуле: [Mo]eq=%Мо+%Nb/3,3+%Та/4+%W/2+%V/1,4+%Cr/0,6+%Mn/0,6+%Fe/0,5+%Co/0,9+%Ni/0,8), определено авторами в интервале от 15,5 до 20 единиц.

Исследования авторов и анализ научно-технических источников показали, что содержание алюминия в титановых сплавах четко коррелирует с прочностными и пластическими свойствами. Анализ выявленных корреляций позволил ограничить минимальное содержание алюминия с целью подавления образования крайне нежелательной атермической ω-фазы, резко снижающей пластичность сплава. Максимальное его содержание обусловлено необходимостью сохранения высокой технологичности полуфабрикатов и высокой прочности конечных изделий.

Введение нейтральных упрочнителей (олова и циркония) в указанном количестве применено в качестве дополнительной меры, предотвращающей образование охрупчивающей атермической ω-фазы, и позволяет повысить прочностные характеристики при сохранении на высоком уровне технологической пластичности сплава. Комплексное легирование данными элементами эффективно упрочняет α-фазу и позволяет добиться большего эффекта от проведения упрочняющей термической обработки и, следовательно, повысить уровень прочностных свойств конечного изделия.

Установленное авторами содержание и соотношение молибдена и ванадия способствует получению высокой технологичности сплава, и при этом реализуется возможность получения умеренно высоких прочностных свойств после упрочняющей термической обработки.

Уменьшенное по сравнению с прототипом содержание хрома и железа обусловлено рядом факторов. Несмотря на то что эти элементы хорошо упрочняют сплавы и являются сильными β-стабилизаторами, в сплавах с их высоким содержанием существует реальная возможность образования охрупчивающих сплав интерметаллидов в результате эвтектоидного превращения, происходящего при длительных изотермических выдержках при повышенных температурах в процессе эксплуатации, а при выплавке слитков велика вероятность образования химических неоднородностей.

Авторами установлено, что введение редкоземельных металлов (РЗМ) (иттрия и гадолиния) в указанном количестве позволяет реализовать эффект модифицирования и рафинирования микрообъемов сплава, что повышает прочностные характеристики при сохранении на высоком уровне технологической пластичности сплава и снижает модуль упругости в закаленном состоянии, а это благоприятно сказывается на технологичности изготовления и конечной стоимости сложнопрофильных изделий, изготовленных из него. За счет более равномерного и дисперсного распада β-фазы при старении, обусловленного специфическим воздействием вышеуказанных элементов и снижением критического размера зародыша частиц α-фазы, достигается высокий уровень прочностных свойств в состоянии после упрочняющей термической обработки.

Примеры осуществления

Пример 1. Предлагаемый сплав (в соответствии с таблицей №1) в виде слитков выплавляли методом тройного вакуумно-дугового переплава. Затем слитки подвергали деформационной обработке путем всесторонней ковки в обычных или квази-изотермических условиях на сутунки (40-45)×180-220×L мм. Полученные сутунки были подготовлены под прокатку путем строгания по всем поверхностям «как чисто». Прокатка полученных сутунок проводилась в 4 этапа: горячая прокатка на лист толщиной 7 мм, теплая прокатка на 4 мм, холодная прокатка в 2 этапа до толщины готового листа 2 мм. Промежуточные листовые полуфабрикаты между операциями прокатки подвергались закалке на β-фазу, пескоструйной обработке и травлению. Готовые листы подвергались термической обработке по целевым режимам: закалке на β-фазу или упрочняющей термической обработке. Прочностные свойства определялись путем проведения испытаний на растяжение при комнатной температуре, технологические - путем определения минимального радиуса гибки листовых полуфабрикатов при комнатной температуре и технологической осадке цилиндрических образцов при температурах горячей деформации.

Примеры 2-5 аналогичны примеру 1.

В таблице 1 приведено содержание легирующих элементов выплавленных слитков, механические и технологические свойства предлагаемого сплава и сплава-прототипа.

Технический результат - в предлагаемом сплаве предел прочности в закаленном состоянии понизился на 11-20%, предел прочности в состоянии после упрочняющей термической обработки повысился на 7-11,5% при сохранении хорошего уровня пластичности, технологическая пластичность сплава соответствует технологической пластичности листовых малолегированных высокотехнологичных титановых сплавов группы ОТ4.

Использование предлагаемого сплава на основе титана позволит изготавливать различные конструктивные элементы, в частности высокопрочные сложнопрофильные листовые, что позволить снизить их вес за счет более высокого уровня удельной прочности и повысить надежность по сравнению с традиционно применяемыми листовыми титановыми сплавами.

1. Сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо и цирконий, отличающийся тем, что он дополнительно содержит олово, иттрий и/или гадолиний, при следующем соотношении компонентов, мас. %:

алюминий 1,5-3,5
молибден 1,0-3,0
ванадий 8,0-12,0
хром 2,5-5,0
железо 0,3-1,8
цирконий 0,4-2,0
олово 0,4-2,0
иттрий и/или гадолиний 0,01-0,16
титан и примеси остальное

2. Сплав на основе титана по п. 1, отличающийся тем, что суммарное содержание молибдена и ванадия составляет 9-15 мас. %.

3. Сплав на основе титана по п. 1, отличающийся тем, что суммарное содержание хрома и железа составляет 2,8-6,8 мас. %.

4. Изделие, выполненное из сплава на основе титана, отличающееся тем, что оно выполнено из сплава по п. 1.



 

Похожие патенты:

Группа изобретений относится к получению сплава на основе титана из водной суспензии частиц руд, содержащих соединения титана. Способ включает генерацию магнитных полей, накладываемых на порции перерабатываемой сырьевой массы, восстановление металлов из руд при непрерывном перемешивании сырьевой массы с последующим накоплением и формированием продукта в виде кольцевого столбчатого монокристалла, состоящего из интерметаллида, выбранного из ТiАl3, TiFeAl2, TiAl2Fe, TiFe3, и его выгрузку.

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники с рабочими температурами в интервале от -196 до 450°C.

Изобретение относится к способу получения титановых сплавов. Способ термомеханической обработки титанового сплава включает обработку титанового сплава давлением, включающую пластическое деформирование при температуре в области альфа-бета фаз до эквивалентной пластической деформации с по меньшей мере 25%-ным уменьшением площади поперечного сечения, после чего температура титанового сплава не достигает и не превышает температуры бета-перехода титанового сплава.
Изобретение относится к порошковой металлургии, в частности к интерметаллидному сплаву на основе системы алюминий-титан , который может быть использован при производстве изделий и покрытий, в частности в производстве лопаток газотурбинных двигателей, клапанов моторов, вентиляторов для горячих газов.

Настоящее изобретение относится к областям металлургии, а именно к способам термической обработки высоколегированных псевдо-β титановых сплавов. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего, мас.%: 4,0…6,3 алюминия, 4,5…5,9 ванадия, 4,5…5,9 молибдена, 2,0…3,6 хрома, 0…5 циркония, 0…6 олова, 0…0,5 кремния, титан и неизбежные примеси - остальное, включает охлаждение со скоростью V1<3°С/мин из однофазной β-области до температуры T1<370°С и последующее старение при температуре Т2=370…600°С в течение 1…12 часов.
Изобретение относится к области металлургии, в частности к сплавам для обратимого поглощения водорода, и может быть использовано в транспортных и энергетических устройствах.
Изобретение относится к области металлургии, в частности к сплавам на основе титана, используемым для абсорбции и десорбции водорода, и может быть использовано в транспортных и энергетических устройствах.

Изобретение относится к области металлургии цветных металлов, в частности к производству слитков жаропрочных сплавов на основе титана. Лигатура содержит, мас.%: вольфрам 28-32, алюминий 28-32, титан остальное.

Изобретение относится к области металлургии, в частности к титановому сплаву с высокой коррозионной стойкостью. Титановый сплав содержит, в мас.%: металл платиновой группы 0,01-0,15, редкоземельный металл 0,001-0,10 и Ti и примеси - остальное.

Изобретение относится к области порошковой металлургии. Готовят смесь, содержащую не более 65 мас.% порошка, полученного методом плазменного распыления титанового сплава ВТ-22, не менее 30 мас.% смеси технических порошков титана ПТМ и никеля ПНК, взятых в соотношении 1:1, и 3-5 мас.% полученного электролизом порошка меди ПМС-1 фракции менее 50 мкм.

Группа изобретений относится к порошковой металлургии. Порошковая смесь для получения титанового сплава включает порошок титанового сплава, содержащий алюминий и ванадий или содержащий в дополнение к алюминию и ванадию по меньшей мере один из циркония, олова, молибдена, железа и хрома, и по меньшей мере один металлический порошок, выбранный из порошка меди, порошка хрома и порошка железа, смешанного с порошком титанового сплава. Причем порошок титанового сплава получен гидрированием сырья из титанового сплава и дегидрированием полученного гидрированного порошка титанового сплава. Количество металлического порошка составляет от 1 до 10 мас. % при добавлении одного вида металлического порошка, а при добавлении двух или более видов металлических порошков количество добавленного металлического порошка составляет от 1 до 20 мас. %. Предложены также способ получения упомянутой порошковой смеси, титановый сплав и способ его получения из упомянутой порошковой смеси. Обеспечивается повышение качества порошковой смеси, которая может быть уплотнена до плотности не менее 99 % от теоретической. 4 н. и 2 з.п. ф-лы, 4 ил., 3 табл., 20 пр.

Изобретение относится к области металлургии, а именно к изготовлению мелкозернистых листовых титановых сплавов, которые являются подходящими для использования при сверхпластическом формовании. Способ изготовления листов с мелкозернистой структурой из α/β-титанового сплава включает ковку сляба титанового сплава для получения листовой заготовки, которую нагревают до температуры, превышающей температуру превращения в бета-фазу на величину от приблизительно 100°F (37,8°C) до приблизительно 250°F (121°C), с последующим охлаждением. Далее нагревают листовую заготовку до температуры от приблизительно 1400°F (760°C) до приблизительно 1550°F (843°C) с последующей горячей прокаткой для получения листовой заготовки промежуточной толщины. Снова нагревают до температуры в диапазоне от приблизительно 1400°F (760°C) до приблизительно 1550°F (843°C) с последующей горячей прокаткой для получения листовой заготовки конечной толщины. Проводят отжиг, шлифование и травление. Получают заготовки с мелкозернистой структурой, пригодные для использования при низкотемпературной формовке. 2 н. и 19 з.п. ф-лы, 26 ил., 8 табл., 5 пр.

Изобретение относится к цветной металлургии, в частности к получению сплавов. Способ получения сплава, содержащего титан, медь и кремний, из водной суспензии частиц руд, содержащих соединения титана, меди и кремния, включает генерацию магнитных полей, накладываемых на порции перерабатываемой сырьевой массы. При этом восстановление металлов ведут при непрерывном перемешивании сырьевой массы, с последующим накоплением и формированием продукта в виде кольцевого столбчатого структурного образования, состоящего из сплава, содержащего титан, медь и кремний. Затем осуществляют его выгрузку. Предложено устройство для осуществления указанного способа. Техническим результатом является возможность получения указанного сплава непосредственного из рудного сырья. 2 н.п. ф-лы, 5 ил., 3 пр.

Группа изобретений относится к способу и устройству получения содержащего алюминий и титан сплава - интерметаллида. Способ включает получение сплава из водной суспензии частиц руд, содержащих соединения алюминия и титана. Для этого генерируются физические магнитные поля, которые накладываются на зоны с рудной массой. С их помощью производится восстановление металлов в целостную монолитную структуру - сплав. Техническим результатом является возможность получения указанного сплава непосредственно из рудного сырья. 2 н.п. ф-лы, 6 ил., 3 пр.

Изобретение относится к области металлургии, а именно к способам выплавки титановых сплавов и может быть использовано при производстве полуфабрикатов, предназначенных для изготовления деталей газотурбинных двигателей, силовых установок, агрегатов авиационного, топливно-энергетического и морского назначения. Способ получения интерметаллидных сплавов на основе алюминида титана с повышенным содержанием ниобия и содержанием кислорода не более 0,08 мас.% включает подготовку шихты, содержащей в качестве исходных материалов титановую губку с легирующими компонентами и лигатуру, изготовление расходуемого электрода, его переплав с получением слитка интерметаллидного сплава. В качестве лигатуры используют стружку сплава, содержащего, мас.%: Nb 45-55, Ti 45-55, О2+N2 - не более 0,05, причем массовое количество лигатуры составляет 70 или 75 или 85% от общей массы шихты. Повышается химическая однородность слитков сплавов на основе алюминида титана с высоким содержанием ниобия и содержанием кислорода до 0,08 мас.% для обеспечения высоких механических и технологических свойств получаемых из него изделий. 6 табл., 4 пр.

Изобретение относится к области металлургии, а именно к способу термомеханической обработки титана или титанового сплава. Способ включает многоосную ковку с высокой скоростью деформации и регулированием температуры. Температура ковки заготовки находится в диапазоне от температуры на 100°F (55,6°C) ниже температуры бета-перехода материала заготовки до температуры на 700°F (388,9°C) ниже температуры бета-перехода материала заготовки, а скорость деформации, используемая в процессе ковки на прессе, находится в диапазоне от 0,2 с-1 до 0,8 с-1. Повышаются механические свойства за счет измельчения микроструктуры сплава. 2 н. и 42 з.п. ф-лы, 20 ил., 11 пр.

Изобретение относится к области металлургии, в частности к крепежным изделиям, выполненным из альфа/бета титанового сплава. Крепежное изделие, выполненное из альфа/бета титанового сплава, подвергнутого горячей прокатке, обработке на твердый раствор и старению, содержащего, мас. %: алюминий от 3,9 до 4,5, ванадий от 2,2 до 3,0, железо от 1,2 до 1,8, кислород от 0,24 до 0,3, углерод до 0,08, азот до 0,05, другие элементы не более чем 0,3 в сумме, титан и случайные примеси - остальное. Способ производства крепежного изделия включает обеспечение сплава, горячую прокатку; отжиг полученной заготовки при температуре от 1200°F (648,9°C) до 1400°F (760°C) в течение времени от 1 часа до 2 часов, охлаждение на воздухе, механическую обработку до заранее определенного размера изделия, обработку на твердый раствор при температуре от 1500°F (815,6°C) до 1700°F (926,7°C) в течение времени от 0,5 часа до 2 часов, охлаждение со скоростью, по меньшей мере, эквивалентной охлаждению на воздухе, старение при температуре от 800°F (426,7°C) до 1000°F (537,8°C) в течение времени от 4 часов до 16 часов и охлаждение на воздухе. Крепежные изделия имеют малый вес при повышенной прочности. 2 н. и 12 з.п. ф-лы, 5 ил., 4 табл., 8 пр.

Изобретение относится к области металлургии, в частности к титановым сплавам, и может быть использовано для изготовления конструкций, работающих в агрессивных средах, такой как морская вода, при повышенных температурах. Сплав на основе титана содержит, мас. %: алюминий 3,0-4,2, цирконий 2,0-3,0, кремний 0,02-0,12, железо 0,05-0,25, кислород 0,03-0,14, азот 0,01-0,04, углерод 0,05-0,10, водород 0,001-0,006, рутений 0,05-0,15, ниобий 0,7-1,5, ванадий 0,7-1,5, титан - остальное. Сплав характеризуется высокими характеристиками прочности, стойкости против щелевой, питтинговой и горячей солевой коррозии в агрессивных солесодержащих средах с pH>2 и температурой до 250°C. 2 табл.

Изобретение относится к области металлургии, а именно к сплавам на основе титана. Высокотемпературный сплав на основе титана содержит, мас.%: алюминий от 4,5 до 7,5; олово от 2,0 до 8,0; ниобий от 1,5 до 6,5; молибден от 0,1 до 2,5; кремний от 0,1 до 0,6; титан - остальное. Сплав характеризуется высокими показателями коррозийной стойкости, механической прочности при повышенных температурах до 750°С, свариваемостью, а также высокими характеристиками способности к деформации в горячем/холодном состоянии и к сверхпластичному формированию. 4 н. и 17 з.п. ф-лы, 8 ил., 12 табл.

Изобретение относится к области цветной металлургии, а именно к титановым сплавам, полученным из вторичного сырья и обладающим заданными характеристиками прочности и пластичности. Сплав содержит Al 0,1-3,0, Fe 0,3-3,0, Cr 0,1-1,0, Ni 0,05-1,0, Si 0,02-0,3, N 0,02-0,2, O 0,05-0,5, C 0,02-0,1, Ti - остальное. Величины прочностных молибденового [ M o ] э к в п р и алюминиевого [ A l ] э к в п р эквивалентов и приведенной суммы эквивалентов определены по выражениям: =Al + 20·O +33·N + 12·C + 3,3·Si, мас.%, = Cr/0,8 + Fe/0,7 + Ni, мас.%, Σ э к в п р = 1,11· + 0,92·, причем величина приведенной суммы Σ э к в п р эквивалентов составляет 5-22. Величина приведенной суммы Σ э к в п р эквивалентов составляет от 5 до 10 для сварных конструкций, от 10 до 18 - для плоского проката, от 18 до 22 - для конструкционного назначения. Сплав характеризуется высокими значениями прочности и пластичности. 3 з.п. ф-лы, 11 табл., 3 пр.
Наверх