Способ торкретирования наружных поверхностей радиационно-защитной блок-упаковки



Способ торкретирования наружных поверхностей радиационно-защитной блок-упаковки
Способ торкретирования наружных поверхностей радиационно-защитной блок-упаковки

 


Владельцы патента RU 2569315:

Акционерное общество "Центр технологии судостроения и судоремонта" (АО "ЦТСС") (RU)

Изобретение относится к атомной технологии, в частности к комплексной утилизации, консервации, временному и длительному хранению радиационно-опасных крупногабаритных объектов. На наружной поверхности блок-упаковки закрепляют арматурную сетку и наносят под давлением сжатого воздуха слой торкрет-бетона, покрывающий сетку и включающий портландцемент, заполнители, химические и минеральные добавки, а также воду. При этом используют сетку со стороной ячейки не менее 110×110 мм, изготовленную из наномодифицированной базальтопластиковой арматуры с песчаным наружным покрытием, сетку устанавливают с зазором не более 8 мм от торкретируемой поверхности, а торкрет-бетон наносят в определенном соотношении компонентов. В частном случае заявленного способа торкретирования наружных поверхностей блок-упаковки в целях уменьшения ее массы и габаритов максимальный слой торкрет-бетона наносят толщиной не более 25 мм. Технический результат - увеличение (на порядок) срока длительного хранения блок-упаковки. 2 ил.

 

Изобретение относится к атомной технике и технологии, в частности к комплексной утилизации, консервации, временному и длительному хранению радиационно опасных реакторных отсеков (РО), крупногабаритных плавучих и других объектов, например крупнотоннажных надводных кораблей (НК), грузовых транспортных судов, ледоколов и плавучих электростанций с ядерными энергетическими установками (ЯЭУ).

Известен способ установки на длительное хранение радиационно опасных крупногабаритных объектов по патенту РФ №2390063.

По этому способу установки на длительное хранение и хранение радиационно опасных крупногабаритных объектов, установленных рядами на площадку длительного хранения, объект предварительно формируют в блок-упаковку, на которой выполняют опорные поверхности, и транспортируют к месту хранения на пункт длительного хранения (ПДХ). После установки блок-упаковки на место технологического обслуживания на ее поверхность наносят наружное защитное покрытие.

Известен также способ по патенту РФ №2293386 «Способ формирования радиационно-защитной блок-упаковки для установки на береговое хранение».

Этот способ включает проведение комплексного инженерного обследования РО, выемку отработавших тепловыделяющих сборок, демонтаж оборудования из РО, формирование блок-упаковки РО и перегрузку ее на берег, нанесение на наружную поверхность блок-упаковки радиационно-защитного слоя торкрет-бетона толщиной до 30 мм и установку сформированной радиационно-защитной блок-упаковки на береговое хранение.

Однако при длительном хранении блок-упаковок по указанным выше аналогам коррозирует и разрушается внешний иммобилизационный барьер, препятствующий высвобождению радиоактивности и радионуклидов в окружающую природную среду, поэтому периодически приходится осуществлять восстановление наружного защитного покрытия блок-упаковок.

Известен способ торкретирования для антикоррозийной защиты стальных конструкций, изложенный в документе ОАО «ЦНИИ Промзданий» «Руководство по применению торкрет-бетона при возведении, ремонте и восстановлении строительных конструкций, зданий и сооружений» шифр М 10. 1/06 и технических условиях ТУ 5745-001-16216892 «Торкрет-бетон». Этот способ наиболее близок по технической сущности к заявляемому и принят за прототип.

Способ распространяется на использование торкрет-бетона, наносимого на наружную поверхность объекта, на которой предварительно закрепляют известным способом металлическую арматуру диаметром 3÷6 мм в виде сетки со стороной квадрата от 25 мм до 100 мм и затем наносят под давлением сжатого воздуха слой торкрет-бетона, включающий вяжущее - портландцемент, заполнители, химические и минеральные добавки, а в качестве затвердителя - воду.

Монолит такого торкрет-бетона обладает удовлетворительной прочностью, пожаробезопасностью, хорошей морозостойкостью, имеет марку по водонепроницаемости не более W12. При укладке бетонного раствора по этому способу отскок раствора от наружной поверхности доходит до 20%.

Однако по данным ФГУП «ЦНИИ КМ «Прометей» скорость коррозии наружных поверхностей блок-упаковок при хранении в атмосферных условиях на ПДХ Крайнего Севера и Дальнего Востока составляет 0,1 мм в год, что приводит к ограниченному сроку службы монолита торкрет-бетона. Ограниченный срок службы железобетонных конструкций связан, прежде всего, с коррозией стальной арматуры. Воздействие на металлическую арматуру влажного воздуха и воды с агрессивными химическими соединениями, которые проникают через гелиевые поры бетона, вызывают коррозию металла. Результатом такого процесса становится появление продуктов коррозии, объем которых до 2,5 раз превышают объем прокоррозировавшего металла. Такое значительное увеличение внутреннего объема способствует появлению напряжений в железобетонных конструкциях и, как следствие, трещин в бетоне, которые приводят к постоянному его разрушению. Поэтому расчетный срок службы наружной поверхности блок-упаковки, изготовленной таким способом, в условиях хранения на ПДХ составит не более 25 лет, что приведет к большим эксплуатационным затратам хранения блок-упаковок и является недостатком и этого способа.

Задачей предлагаемого изобретения является разработка надежной и недорогой технологии формирования наружной поверхности радиационно-защитной блок-упаковки для установки на длительное хранение на фундаментных опорах ПДХ без каких-либо перемещений.

Основным техническим результатом, благодаря которому обеспечивается выполнение поставленной задачи, является значительное увеличение (на порядок) срока длительного хранения блок-упаковки, за счет построения защитного барьера при формировании наружной защитной поверхности блок-упаковки с использованием современных материалов для арматурной сетки и состава торкрет-бетона.

Получение указанного технического результата обеспечивается за счет того, что согласно предлагаемому способу на наружной поверхности блок-упаковки закрепляют арматурную сетку и наносят под давлением сжатого воздуха слой торкрет-бетона, покрывающий сетку и включающий портландцемент, заполнители, химические и минеральные добавки, а также воду. При этом используют сетку со стороной ячейки не менее 110×110 мм, изготовленную из наномодифицированной базальтопластиковой арматуры с песчаным наружным покрытием, сетку устанавливают с зазором не более 8 мм от торкретируемой поверхности, а торкрет-бетон наносят при следующем соотношении компонентов, мас.%:

Портландцемент марки 500 37,0÷39,2
Плотный песок (модуль плотности не менее 2) 29,8÷32,7
Микрокремнезем 5,8÷6,0
Добавка «Реламикс СП-2» по
ТУ-5870-002-14153664-04 1,1÷1,5
Зола 4,5÷5,2
Вода 17,7÷18,8

В частном случае заявленного способа торкретирования наружных поверхностей блок-упаковки в целях уменьшения ее массы и габаритов максимальный слой торкрет-бетона наносят толщиной не более 25 мм.

Сочетание арматурной сетки, изготовленной из базальтопластиковых стержней с наружным песчаным покрытием и модифицированных наноглиной, с торкрет-бетоном позволяет создать монолитное наружное покрытие, обладающее следующими свойствами по сравнению с монолитом торкрет-бетона с металлической арматурной сеткой:

- абсолютная коррозионная стойкость;

- абсолютная пожаробезопасность;

- повышенные прочностные характеристики;

- повышенная стойкость к агрессивным средам;

- обеспечение повышенной экологической и радиационной безопасности.

От эмпирически найденных при испытаниях оптимальных размеров ячейки сетки и расстояния сетки от наружной поверхности зависят минимизация отскока торкрет-бетона, а также снижение себестоимости сетки.

Наружное монолитное покрытие блок-упаковки с такими свойствами обеспечит ее безопасное хранение на фундаментных опорах ПДХ на несколько сот лет.

Производство базальтопластиковой арматуры (БПА) в виде стержней, модифицированных наноглиной, началось в России в 2007 г. БПА - это арматура АНК-Б-6 (обозначение производителя арматуры при заказе), производимая ООО «Гален» (г. Чебоксары, РФ), проходила различные испытания не только в России (ОАО «ЦТСС», ООО «Гален»), но и в Великобритании. Испытания БПА на долговечность проходили на факультете конструкционного проектирования университета Шеффилда (The University of Sheffield, UK). Исследования заключались в выдержке образцов в щелочной среде ph 9 и определении прочности на растяжение, изгиб и сжатие, с последующей экстраполяцией полученных результатов по показателю долговечности. По результатам исследований сохранение прочности от воздействия окружающей среды за период 100 лет в среде влажного бетона при температуре 20°C составляет 94%.

По результатам исследований, проведенных в России (ОАО «ЦТСС», ООО «Гален»), получены следующие результаты:

- монолитное бетонное наружное покрытие, армированное сеткой из базальтопластиковых стержней, модифицированных наноглиной, обладает повышенными прочностными характеристиками (больше на 17% по сравнению с армированной металлической сеткой);

- монолитное бетонное наружное покрытие армированное сеткой из базальтопластиковых стержней, модифицированных наноглиной является абсолютно коррозионностойким и негорючим материалом;

- предел прочности сцепления бетона с БПА диаметром 5÷6 мм с нанесенным на поверхность стержней песчаным покрытием в 2,7 раза больше по сравнению с арматурной сеткой из металлической проволоки ⌀ 5÷6 мм при глубине заделки 30 мм;

- наименьшая величина отскока бетонной смеси от наружной торкретируемой поверхности не более 5% от массы сухой смеси (до 20% торкрет-бетон с металлической сеткой) была определена при нанесении на наружную поверхность, с закрепленной арматурной сеткой, с величиной ячейки 110×110 мм, изготовленной из базальтопластиковых стержней, модифицированных наноглиной, диаметром 5÷6 мм с песчаным наружным покрытием, при этом арматурная сетка была установлена на расстоянии 8 мм от наружной поверхности;

- соотношение компонентов бетонной смеси с использованием добавки «Реламикс СП-2» по ТУ-5870-002-14153664-04 позволяет повысить проектную марку бетона на 15÷25%, получить подвижность бетонной смеси до П5, с одновременным увеличением прочности бетона в первые двое суток нормального твердения на 15÷20%. Добавка «Реламикс СП-2» уплотняет структуру бетона, обеспечивает повышение его морозостойкости до F>500 и водонепроницаемости W>16, обладает ингибирующими свойствами по отношению к арматуре.

Стержни, изготовленные из базальтопластиковых материалов, модифицированных наноглиной, позволяют изготовить арматурную сетку с абсолютной коррозионной стойкостью и пожаробезопасностью, повышенными прочностными характеристиками и стойкостью к агрессивным средам. Наноглина основана на смектитовых глинах, таких как монтмориллонит - гидратированный гидроксид силиката натрия, кальция, алюминия, магния (Na, Са) (Al Mg)6(Si4 O10)3(ОН)6nH2O. Монтмориллонит встречается в пластах смектитовых глин в естественном геологическом состоянии.

Выбранные материалы и порядок построения монолитного бетонного наружного покрытия блок-упаковки позволяют:

- создать надежную и долговременную биологическую защиту окружающей природе и обслуживающему персоналу ПДХ;

- значительно снизить эксплуатационные расходы по обслуживанию блок-упаковок на ПДХ за счет увеличения на порядок времени длительного хранения блок-упаковки на фундаментных опорах ПДХ без каких-либо перемещений;

- значительно сократить отскок бетонной смеси от наружной торкретируемой поверхности;

- снизить трудоемкость технологического процесса торкретирования наружной поверхности по сравнению с торкретированием при использовании металлической арматурной сетки и, соответственно, снизить дозовые нагрузки на персонал.

Сущность изобретения поясняется следующими графическими чертежами:

Фиг. 1. Схема расположения технологического оборудования и блок-упаковки для выполнения торкретных работ.

Фиг. 2. Сечение А-А. Разрез монолитного бетонного наружного покрытия блок-упаковки.

Предлагаемый способ осуществляется следующим образом.

Наружная поверхность блок-упаковки 1 должна быть отпескоструена, т.е. подготовлена для укладки торкрет-бетона 2.

На наружные поверхности блок-упаковки 1, стоящей на опорных фундаментах 3 ПДХ, навешивается арматурная сетка 4, изготовленная из базальтопластиковых стержней ⌀ 5÷6 мм с песчаным наружным покрытием 5 и с использованием наномодификатора - наноглины.

Арматурная сетка 4 имеет величину ячейки 110×110 мм и закрепляется на расстоянии 8 мм от наружной поверхности блок-упаковки 1 любым известным способом. В рабочей зоне торкретирования располагают и соединяют в технологической последовательности (Фиг. 1) следующее оборудование для выполнения торкретных работ:

- компрессор 6;

- цемент-пушка 7;

- сопло 8;

- водяной бак 9;

- воздухораспределитель 10.

В цемент-пушку 7 загружают сухую смесь при следующем соотношении компонентов, масс.%:

Портландцемент марки 500 37,0÷39,2
Плотный песок (модуль плотности не менее 2) 29,8÷32,7
Микрокремнезем 5,8÷6,0
Добавка «Ремикс СП-2» 1,1÷1,5
Зола 4,5÷5,2

Данную сухую смесь в указанных масс.% приготавливают в стандартном смесителе (на фиг. 1 смеситель не показан). Воду в количестве, соответствующем 17,7÷18,8 масс.%, заливают в водяной бак 9.

После включения компрессора 6 сжатый воздух через воздухораспределитель 10 поступает в водяной бак 9 и цемент-пушку 7. Из цемент-пушки 7 сухая смесь и из водяного бака 9 вода поступают под давлением сжатого воздуха в сопло 8, где и происходит смешивание воды с сухой смесью в соотношении масс %: сухая смесь 82,3÷83,4, вода 17,7÷18,8.

Из сопла 8 выбрасывается на наружную поверхность блок-упаковки 1 раствор торкрет-бетона 2 под давлением сжатого воздуха, при этом сопло 8 должно находиться от наружной поверхности блок-упаковки 1 на расстоянии 500÷1000 мм. Это расстояние регулируется вручную торкрет-бетонщиком. Далее процесс торкретирования продолжается до образования торкретного слоя на наружной поверхности блок-упаковки 1 толщиной не более 25 мм по типовой технологии торкретирования.

Нанесенный предлагаемым способом и с применением указанных материалов торкрет-бетон на всю наружную поверхность блок-упаковки позволяет создать прочный наружный защитный иммобилизационный барьер, обеспечивающий радиационную и экологическую защиту окружающей среды и персонала в соответствии с требованиями МАГАТЭ и на порядок лет увеличить срок хранения блок-упаковок без каких-либо перемещений с фундаментных опор ПДХ.

Способ торкретирования наружных поверхностей радиационно-защитной блок-упаковки, по которому на поверхность блок-упаковки закрепляют арматурную сетку и наносят под давлением сжатого воздуха слой торкрет-бетона, покрывающий сетку и включающий портландцемент, заполнители, химические и минеральные добавки, а также воду, отличающийся тем, что
используют сетку со стороной ячейки не меньше 110×110 мм, изготовленную из базальтопластиковой арматуры с песчаным наружным покрытием, стержни которой модифицируют наноглиной, в основе которой монтмориллонит - гидратированный гидроксид силиката натрия, кальция, алюминия, магния (Na, Са) (Al Mg)6(Si4O10)3(OH)6nH2O, сетку устанавливают с зазором не более 8 мм от торкретируемой поверхности, а торкрет-бетон наносят при следующем соотношении компонентов, мас.%:

Портландцемент марки 500 37,0-39,2
Плотный песок (модуль плотности не менее 2) 29,8-32,7
Микрокремнезем 5,8÷6,0
Добавка «Реламикс СП-2» 1,1÷1,5
Зола 4,5÷5,2
Вода 17,7-18,8



 

Похожие патенты:

Изобретение относится к хранению и/или утилизации опасных отходов, в том числе ядерных, таких как кальцинированный материал. В отдельных вариантах осуществления устройство включает в себя контейнер, имеющий корпус контейнера, наполнительный канал, выполненный так, чтобы соединяться с наполнительным патрубком и пробкой наполнительного канала, и выпускной канал, имеющий фильтр.

Изобретение относится к атомной энергетике, в частности к обращению с отработавшим ядерным топливом, а более конкретно к ампуле, в которой размещаются пучки твэлов отработавшей тепловыделяющей сборки реактора РБМК-1000, для последующего размещения и транспортировки в транспортном упаковочном комплекте в сухое хранилище.

Изобретение относится к атомной энергетике, в частности к ампуле, в которой размещается пучок тепловыделяющих элементов (твэлов) отработавшей тепловыделяющей сборки реактора РБМК - 1000.
Изобретение относится к способу длительного хранения отработавшего ядерного топлива ядерного реактора. В заявленном способе предварительно перед размещением отработавшей тепловыделяющей сборки ядерного реактора в стальном пенале и герметизацией пенала крышкой, в стальной пенал помещают свинец, химически инертный по отношению к материалу оболочки ТВЭЛов отработавших тепловыделяющих сборок, материалу корпуса пенала, воздуху и воде.

Изобретение относится к способам защиты радиоактивных (особо опасных) массивных грузов от интенсивных механических воздействий, а именно к проектированию контейнеров для радиоактивных материалов, эксплуатация которых предполагает возможность перевозок авиационным транспортом, при аварии которого на контейнер с особо опасным грузом могут действовать интенсивные механические нагрузки, приводящие к разрушению груза и последующему масштабному радиоактивному заражению местности.

Изобретение относится к области атомной техники, а именно к способам обращения с отработавшим ядерным топливом (ОЯТ). Выявляют ячейку с попавшей в процессе хранения водой.

Изобретение относится к области транспортных упаковочных устройств, используемых для временного хранения и транспортирования, например, «свежих» тепловыделяющих сборок (ТВС) от предприятия-изготовителя к потребителю на атомные станции, в частности для перевозки двух ТВС-КВАДРАТ для реактора PWR.

Изобретение относится к области транспортных упаковочных устройств, используемых в атомной энергетике для временного хранения и транспортирования «свежих» тепловыделяющих сборок (ТВС) от предприятия-изготовителя к потребителю на атомные станции.

Изобретение относится к атомной энергетике, в частности к обращению с отработавшим ядерным топливом, а более конкретно к ампуле, в которой размещаются пучки твэлов отработавшей тепловыделяющей сборки реактора РБМК-1000, для последующего размещения и транспортировки в транспортном упаковочном комплекте в сухое хранилище.

Изобретение относится к ядерной технике, а именно к дистанционирующим устройствам, в которых размещаются изделия с установленными в них разделанными на пучки отработавшими топливными элементами (ПТ) реактора РБМК-1000 во время их транспортирования и хранения в контейнерах.

Изобретение относится к автоматизированным средствам идентификации узлов или элементов, преимущественно используемых для хранения и транспортировки отработанных тепловыделяющих сборок, в частности ампулы, в которую осуществляется загрузка пучка тепловыделяющих элементов (твэлов) отработавшей тепловыделяющей сборки (ОТВС) реактора РБМК-1000. Технический результат заключается в повышении надежности автоматического распознавания идентификационной маркировки ампул с ОЯТ, выполненной в виде n-разрядного двоичного кода, символами которого служат сквозные отверстия в боковой поверхности крышки ампулы. Результат достигается за счет того, что изображение внутренней части крышки ампулы передают на матричный регистратор, производят автоматический поиск изображений отверстий, выполняют математическую обработку данных о найденных изображениях отверстий, в процессе которой определяют положение стартовой метки и восстанавливают положение знаков «1», в остальных позициях кодовой последовательности будут находиться знаки «0» и тем самым выполняют распознавание маркировки. 8 з.п. ф-лы, 9 ил.

Изобретение относится к средствам хранения, транспортирования радиационно-, пожаро-, взрывоопасных грузов. Защитный контейнер состоит из основания с установленным на нем корпусом с крышкой, внутри которых установлены пулезащитный, энергопоглощающий экраны, теплозащитный материал. Между корпусом и крышкой герметично установлена система равномерно расположенных предохранительных клапанов. Груз закреплен во внутренней полости контейнера, ограниченной герметичной оболочкой, в которой установлен, по крайней мере, один предохранительный клапан. Перед клапаном установлен фильтрующий блок, состоящий из фильтра тонкой очистки, изготовленного из термостойкого газопроницаемого наноструктурированного углеродного материала, и фильтра грубой очистки, изготовленного из нескольких слоев сетчатого термостойкого материала. Выход фильтрующего блока и вход предохранительного клапана ограничены герметичной полостью. Технический результат - исключение выхода из гермообъема контейнера мелкодисперсных продуктов окисления радиоактивных веществ 3 з.п. ф-лы, 3 ил.

Изобретения относится к ядерной технике, в частности к перегрузке ампул с пучками тепловыделяющих элементов реактора РБМК-1000 из транспортного чехла в пеналы сухого хранилища. Крышка для перегрузки решетки пенала содержит диск с центральным грибком и дублирующим захватным буртом, выполнена с возможностью ее установки на вертикальные стойки решетки. В грибке выполнено цилиндрическое отверстие, соосно с которым к нижней части крышки присоединен полый корпус. В корпусе установлены на осях поворотные рычаги, снабженные радиусными лапками и верхними и нижними кулачками, и подвижный стержень, фиксируемый в крайних положениях установленными на стержне выше и ниже грибка головкой и буртом. Решетка содержит присоединенные к основанию вертикальные стойки и три соосных яруса ячеек, состоящих из трубчатых гильз, соединенных с вертикальными стойками и между собой пластинами с образованием круглых и треугольных ячеек. В основании выполнены отверстия, соосные с осями симметрии ячеек. Технический результат - автоматическое сцепление и расцепление крышки с решеткой при установке крышки на решетку и ее снятии с решетки, зацепление решетки крышкой за центральную ячейку после извлечения из нее ампулы. 2 н. и 4 з.п. ф-лы, 5 ил.

Использование: изобретение относится к передвижным защитным контейнерам типа «С», предназначенным для хранения и транспортирования отработавших тепловыделяющих сборок атомных электростанций всеми видами транспорта, включая воздушный. Транспортно-упаковочный комплект для транспортирования и хранения отработавшего ядерного топлива включает контейнер, на торцах которого установлены съемные противоударные демпферы, каждый выполнен в виде набора. Набор состоит по меньшей мере из двух колец, установленных перед торцом контейнера и соединенных между собой концентричными цилиндрами. Контейнер представляет собой двухкорпусную конструкцию, в которой каждый из корпусов выполнен в виде стакана с герметично установленной крышкой. Крышка внутреннего корпуса обращена к днищу внешнего корпуса, имеющего торцовые кольца, на которых установлен боковой демпфер, представляющий собой цилиндр с продольными ребрами, на торцах которых симметрично закреплены цилиндрические обечайки, выходящие за их пределы, частично охватывающие боковую поверхность торцевых съемных противоударных демпферов. Технический результат - снижение динамических ударных нагрузок на контейнер независимо от направления воздействия при аварийных ситуациях, возможных в процессе транспортировки, особенно воздушным транспортом, а также возможность транспортирования большей массы перевозимого груза. 4 з.п. ф-лы, 3 ил.

Изобретение относится к ядерной энергетике. Способ изготовления контейнера для транспортировки и хранения отработавшего ядерного топлива включает изготовление корпуса контейнера. Заполняют образовавшиеся полости нейтронно-защитным материалом. В литейную форму внутренней части корпуса контейнера устанавливают цилиндр. Наружная часть корпуса крепится к его внутренней биметаллической части за счет усадки. Усадка происходит в процессе кристаллизации жидкого металла (расплава чугуна), при этом теплоотводящие элементы оказываются зажатыми (влитыми) между наружной поверхностью внутренней части корпуса и внутренней поверхностью наружной части корпуса. Изобретение позволяет повысить технологичность изготовления контейнера, снизить трудовые и финансовые затраты на его изготовление. 4 ил.

Группа изобретений относится к контейнерам для длительного хранения и транспортировки отработавшего ядерного топлива. Способ защиты контейнера для транспортировки и/или хранения отработавшего ядерного топлива включает нанесение антикоррозионного покрытия на внутреннюю поверхность стакана. Антикоррозионное покрытие наносят методом лазерной наплавки, а в качестве покрытия используют коррозионно-стойкую композицию, включающую никель. Кроме этого, имеются способы, в которых покрытие наносят методом высокоскоростного газопламенного напыления, методом электродуговой металлизации и с помощью плазменной струи. Группа изобретений позволяет повысить эксплуатационные характеристики контейнера за счет нанесения защитной коррозионно-стойкой композиции. 4 н. и 9 з.п. ф-лы, 1 табл.
Изобретение относится к способам защиты внутренней поверхности контейнеров для длительного хранения и транспортировки отработавшего ядерного топлива. Предложены три варианта обработки поверхности контейнера. Наносят антикоррозийное покрытие на основе никеля, производят механическую обработку поверхности контейнера и затем химическую обработку поверхности контейнера последовательно слабым раствором азотной или серной кислоты и концентрированными щелочами. Или покрытие наносят из псевдосплава металлов, имеющих разный электродный потенциал, после этого производят механическую обработку поверхности покрытия, затем производят химическую обработку поверхности слабым раствором кислоты, способной взаимодействовать с более активным из металлов пары псевдосплава, после чего поверхность обрабатывают раствором щелочи. Технический результат - повышение эффективности обработки поверхности дезактивирующими растворами, повышение качества газотермического покрытия, уменьшение материальных и временных затрат. 3 н. и 9 з.п. ф-лы.

Изобретение относится к способу газодинамического напыления антикоррозионного покрытия из коррозионно-стойкой композиции на поверхности контейнера для транспортировки и/или хранения отработавшего ядерного топлива, выполненного из высокопрочного чугуна с шаровидным графитом и может быть использовано, например, для покрытия полости контейнера, служащей для приема отработавшего ядерного топлива. Напыление покрытия осуществляют с помощью средства для гиперзвуковой металлизации, содержащего камеру сгорания и распылительное сопло. Упомянутое средство устанавливают в положение для нанесения покрытия, затем распыляют проволочный материал, соответствующий по своему химическому составу химическому составу коррозионно-стойкой стали, для чего подключают к проволочному материалу напряжение постоянного тока и зажигают электрическую дугу в упомянутой камере сгорания, в которую подают бутано-воздушную, или пропано-воздушную, или бутано-пропано-воздушную смесь. Затем распыляемый материал в среде этой смеси подают через упомянутое распылительное сопло в направлении к снабжаемым покрытием поверхностям контейнера, при этом упомянутый контейнер равномерно вращают вокруг оси, геометрически совмещенной с его продольной осью, а средство для гиперзвуковой металлизации одновременно поступательно перемещают вдоль упомянутой продольной оси при напылении покрытия на боковые поверхности упомянутого контейнера или радиально по отношению к этой продольной оси при напылении покрытия на торцевые поверхности упомянутого контейнера, причем скорости вращения последнего и поступательного перемещения средства для гиперзвуковой металлизации взаимосвязаны. Обеспечивается нанесение антикоррозионного покрытия на поверхности элементов контейнера для транспортировки и/или хранения отработавшего ядерного топлива. 7 з.п. ф-лы, 2 ил.
Наверх