Способ плавки гололеда на проводах воздушной линии электропередачи

Использование: в области электроэнергетики. Технический результат - сокращение времени плавки гололеда на проводах воздушной линии электропередачи и снижение расхода электроэнергии. Согласно способу создают искусственное короткое замыкание в конце воздушной линии электропередачи, непосредственно контролируют ток провода и температуру воздуха, а также контролируют температуру провода на участке воздушной линии электропередачи, свободном от гололеда, воздушную линию электропередачи отключают после достижения контролируемой температурой провода максимально допустимого значения. Повторное подключение воздушной линии электропередачи выполняют при снижении в бестоковую паузу непосредственно контролируемой температуры провода в момент времени, когда не мгновенное, а среднее значение температуры провода за токовый интервал и бестоковую паузу станет равным нормированному значению. При этом для определения момента времени повторного подключения воздушной линии электропередачи рассчитывают экстраполяцией установившееся значение температуры провода, а по току провода и напряжению источника питания в начале и конце токового интервала рассчитывают относительную длину гололедной муфты и, если она больше нуля, указанный процесс отключения и подключения воздушной линии электропередачи продолжают до полного удаления гололедной муфты. В качестве участка воздушной линии электропередачи, свободного от гололеда, используют установленный на подстанции в цепи источника питания блок проводов, соответствующих проводам всех воздушных линий электропередачи, проплавляемых от этого источника питания. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к электроэнергетике, в частности к плавке гололеда на проводах воздушных линий электропередачи (ВЛ) в повторно-кратковременном режиме импульсами постоянного тока, а также импульсами переменного тока в тех случаях, когда активное сопротивление провода ВЛ при 0°C составляет не менее 20% от суммарного индуктивного сопротивления цепи тока, т.е. когда проявляется тепловой спад тока.

Для плавки гололеда на ВЛ, когда ток плавки превышает длительно допустимое значение по условию нагрева проводов, на участках ВЛ, свободных от гололеда, используется плавка большими токами в повторно-кратковременном режиме, характеризуемом чередованием интервалов времени протекания тока (токовые интервалы) с бестоковыми паузами.

Проплавляемую ВЛ подключают к источнику питания на время токового интервала, в течение которого происходит плавление гололедной муфты при температуре поверхности провода, близкой к нулю, и увеличение температуры провода на участке, свободном от гололеда. Допустимое значение максимальной температуры провода в конце токового интервала для проводов марки АС принимается равным 130°C. После токового интервала воздушную линию электропередачи отключают и в бестоковую паузу происходит охлаждение провода до минимальной температуры. Допустимое значение средней температуры провода за период повторяемости (токовый интервал и бестоковая пауза) нормировано. Например, для проводов марки АС нормированное значение средней температуры равно 90°C. Если за рассматриваемый период гололедная муфта не проплавляется, указанный процесс повторяют до полного удаления гололедной муфты, после чего проплавляемую ВЛ отключают от источника питания.

Способы плавки гололеда в повторно-кратковременном режиме различаются методом выбора моментов времени в каждом периоде повторяемости: отключения ВЛ от источника питания и повторного подключения, а также окончательного отключения после полного удаления гололедной муфты.

Известен и широко используется способ плавки гололеда в повторно-кратковременном режиме, по которому моменты времени отключения, подключения и окончательного отключения определяют расчетом длительностей токового интервала, бестоковой паузы и полного времени плавки гололеда. Широкое применение на практике нашел расчет длительностей, рекомендованный в [Методических указаниях по плавке гололеда переменным током / Бургсдорф В.В., Никитина Л.Г., Никонец Л.А., Хрущ П.Р. - Союзтехэнерго, 1983. - 114 с., с. 88-105] и выполняемый для усредненных условий плавки, характерных для конкретных ВЛ.

Недостатком данного способа являются большие неточности в расчете, приводящие к увеличению времени нахождения проплавляемой ВЛ под током и расходу электроэнергии.

Известна уточненная методика расчета указанных длительностей, описанная в книге [Рудакова Р.М., Вавилова И.В., Голубков И.Е. Методы борьбы с гололедом в электрических сетях энергосистем. - Уфа, УГАТУ, 2005, - 187 с., с. 68-86].

Недостаток этого способа - приближенный результат из-за необходимости учета большого числе факторов, в том числе изменения тока в течение токового интервала из-за изменения температуры провода на участках без гололеда, а также вследствие использования фиксированного значения минимальной температуры провода без гололеда, которая рекомендована +10°C.

Известен «Способ плавки гололеда на воздушных линиях электропередачи 6(10) кВ» (RU 2478244, опубл. 27.03.2013), взятый за прототип.

В прототипе создают искусственное короткое замыкание в конце воздушной линии электропередачи, непосредственно контролируют ток провода, температуру воздуха, скорость ветра и косвенно по этим данным рассчитывают температуру провода на участке воздушной линии электропередачи, свободном от гололеда, с использованием тепловой модели провода, а также рассчитывают глубину проплавления гололедной муфты с использованием математической модели проплавления гололеда. После достижения косвенно контролируемой температурой провода максимально допустимого значения воздушную линию электропередачи отключают. Повторное подключение воздушной линии электропередачи выполняют при снижении косвенно контролируемой температуры провода до установленного нижнего мгновенного значения. Процесс продолжают до тех пор, пока косвенно контролируемая глубина проплавления гололедной муфты не станет равной заданной пользователем в начале плавки.

Недостатками прототипа являются: низкая точность расчетных методик, особенно глубины проплавления гололедной муфты, которая имеет разный диаметр и плотность на разных участках воздушной линии электропередачи, что требует введения существенных запасов и увеличения длительности плавки; повторное подключение воздушной линии электропередачи по заданному мгновенному значению температуры провода приводит к снижению тока провода по сравнению с максимально допустимым, создающим среднюю температуру провода за период повторяемости повторно-кратковременного режима, близкую к нормированному значению.

Задачей изобретения является повышение надежности и экономичности работы электроэнергетических систем в условиях гололедно-ветровых ситуаций.

Техническим результатом изобретения является сокращение времени плавки гололеда на проводах воздушной линии электропередачи и снижение расхода электроэнергии.

Задача решается за счет того, что создают искусственное короткое замыкание в конце воздушной линии электропередачи, непосредственно контролируют ток провода и температуру воздуха, а также контролируют температуру провода на участке воздушной линии электропередачи, свободном от гололеда, воздушную линию электропередачи отключают после достижения контролируемой температурой провода максимально допустимого значения, а затем повторно подключают к источнику питания при снижении в бестоковую паузу непосредственно контролируемой температуры провода в момент времени, когда не мгновенное, а среднее значение температуры провода за токовый интервал и бестоковую паузу станет равным нормированному значению, рассчитывают экстраполяцией установившееся значение температуры провода для определения момента времени повторного подключения воздушной линии электропередачи, контролируют ток провода и напряжение источника питания в начале и конце токового интервала, рассчитывают относительную длину гололедной муфты, и, если относительная длина гололедной муфты больше нуля, указанный процесс отключения и подключения воздушной линии электропередачи продолжают до полного удаления гололедной муфты.

Первое развитие изобретения предусматривает контроль тока провода, напряжения источника питания и температуры провода в начале и конце токового интервала во время пробной плавки при отсутствии гололедообразования.

Второе развитие изобретения предусматривает использование в качестве участка воздушной линии электропередачи, свободного от гололеда, установленного на подстанции в цепи источника питания блока проводов, соответствующих проводам всех воздушных линий электропередачи, проплавляемых от этого источника питания.

На фиг. 1 представлены диаграммы тока провода и температуры провода на участке без гололеда.

На фиг. 2 представлен вариант функциональной схемы плавки гололеда переменным током, реализующей предложенный способ. При плавке гололеда постоянным током от управляемого выпрямителя видоизменяется схема коммутации и измерений, но способ остается тем же, что и при плавке гололеда переменным током в повторно-кратковременном режиме.

На фиг. 2 показаны: источник питания схемы плавки гололеда 1, датчики тока 2 в фазах источника питания 1 и одновременно в проводах одной из подключенных к источнику питания проплавляемых ВЛ 3. Подключение ВЛ осуществляется при включенных закорачивающем разъединителе 4, создающем искусственное короткое замыкание в конце воздушной линии электропередачи, и линейном разъединителе 5 трехфазным выключателем 6. В состав коммутируемого блока проводов 1, включенного в цепь источника питания Г входят датчики температуры провода 8 и однополюсные разъединители 9. Для фиксации и обработки информации о параметрах режима плавки гололеда используются: трансформатор напряжения 10, блок напряжения 11, блок тока 12, блок температуры проводов и воздуха 13 (температура воздуха фиксируется как температура отключенного провода блока 7). Блоки 11, 12, 13 подключены к блоку вычислений 14, подающему команды «включить-отключить» на блок управления 15 трехфазным выключателем 6.

Рассмотрим реализацию способа. В конце воздушной линии электропередачи 3 создают искусственное короткое замыкание закорачивающим разъединителем 4, включают линейный разъединитель 5 и подключают воздушную линию электропередачи 3 трехфазным выключателем 6 к источнику питания 1 в момент времени tвкл1, в источнике питания 1 контролируют напряжение с помощью трансформатора напряжения 10 и блока напряжения 11, ток провода Iпр с помощью датчиков тока 2 и блока тока 12, а на участке, свободном от гололеда, - температуру провода ϑпр и температуру воздуха ϑв с помощью датчиков температуры провода 8 и блока температуры проводов и воздуха 13. После достижения контролируемой температурой провода максимально допустимого значения ϑм.д блок вычислений 14 подает команду «отключить» на блок управления 15 и воздушную линию электропередачи 3 отключают от источника питания 1 трехфазным выключателем 6 в момент времени tоткл1. Рассчитывают экстраполяцией установившееся значение температуры провода ϑy1 в блоке вычислений 14. При снижении контролируемой температуры провода в бестоковую паузу до ϑmin блок вычислений 14 подает команду «включить» на блок управления 15 и трехфазным выключателем 6 воздушную линию электропередачи 3 повторно подключают к источнику питания 1 в момент времени tвкл2, определяющий окончание первой бестоковой паузы. Температуру ϑmin рассчитывают в реальном времени в блоке вычислений 14 так, чтобы средняя температура провода ϑсрд за токовый интервал и последующую бестоковую паузу была равна нормированному значению ϑнорм. Это является существенным признаком изобретения. Если подключить воздушную линию электропередачи 3 раньше - при ϑ min > ϑ min , то средняя температура провода превысит ϑнорм, что опасно для провода, если позже - при ϑ min < ϑ min , то бестоковая пауза увеличится, и время плавки возрастет.

Для использования в способе определяется в качестве первого приближения ϑmin из выражения

ϑ min ( 1 ) = 2 ϑ н о р м ϑ м . д ,

с последующим уточнением по формуле (1):

(см. формулу (14) в статье Засыпкин А.С, Засыпкин А.С. Нагрев проводов ВЛ электрическим током при плавке гололеда в повторно-кратковременном режиме / Изв. вузов. Электромеханика. 2014. №4).

Например: для провода АС заданы ϑм.д=130°C; ϑнорм=90°C; измерены ϑв=-5°C и значения ϑпр в течение токового интервала, по которым рассчитана экстраполяцией установившаяся температура ϑy=220°C. В первом приближении ϑ min ( 1 ) = 2 90 190 = 50 C , по формуле (1): ϑmin=53°C.

При втором импульсе тока от tвкл2 до tоткл2 температура провода увеличивается от ϑmin до ϑм.д, рассчитывают экстраполяцией в блоке вычислений 14 установившееся значение температуры ϑy2 и новое уточнение ϑmin.

По зафиксированным в начале и конце каждого токового интервала значениям напряжения источника питания 1, тока провода и температуры провода на участке без гололеда рассчитывают изменение активного сопротивления воздушной линии электропередачи 3 в результате нагрева всех участков воздушной линии электропередачи 3 без гололеда, а по нему - относительную длину гололедной муфты. Чем меньше относительная длина гололедной муфты, тем больше снижение тока в известном диапазоне изменения температуры провода из-за нагрева участков без гололеда - теплового спада тока.

Поясним этот существенный признак.

Активное сопротивление участков воздушной линии электропередачи 3 без гололеда при 0°C равно

RВЛ.0(1-lг.м∗), где lг.м∗ - относительная длина гололедной муфты. Вследствие нагрева этих участков током провода за время токового интервала активное сопротивление увеличивается на ΔRВЛ:

где α - температурный коэффициент сопротивления проводов ВЛ.

Фактическая величина ΔRВЛ рассчитывается по зафиксированным в начале и конце каждого токового интервала значениям напряжения источника питания и тока провода (при плавке переменным током учитывается сдвиг фаз между ними). Поэтому из (2):

В первом токовом интервале на фиг. 1 ϑminв. В последующих токовых интервалах при уменьшении длины гололедной муфты значение lг.м∗ уменьшается, и при lг.м∗=0 плавка прекращается.

Первое развитие изобретения заключается в экспериментальном уточнении для каждой воздушной линии электропередачи 3 значения активного сопротивления RВЛ.0 в формуле (3) при отсутствии гололедообразования (lг.м∗=0), например, при проведении «пробной» плавки, которая предусмотрена в Требованиях к организации и осуществлению плавки гололеда на проводах и грозозащитных тросах ЛЭП, ОАО «Системный оператор единой энергетической системы», 2011.

По (3) при lг.м∗=0:

,

где индекс (пп) означает пробную плавку.

Второе развитие изобретения заключается в использовании в качестве участка воздушной линии электропередачи 3, свободного от гололеда, установленного на подстанции в цепи источника питания коммутируемого блока проводов 7, соответствующих проводам всех воздушных линий электропередачи, проплавляемых от одного источника питания. В состав коммутируемого блока проводов 7, включенного в цепь источника питания 1, входят датчики температуры провода 8 и однополюсные разъединители 9. Освобождение от гололеда коммутируемого блока проводов на территории подстанции осуществляют известными методами (механическими, искусственным подогревом в отключенном состоянии или другими). Создание условий наихудшего охлаждения проводов, возможного на проплавляемых воздушных линиях электропередачи 3, обеспечивается ограждением блока проводов.

Заявленный технический результат изобретения реализуется при плавке гололеда на проводах ВЛ в повторно-кратковременно режиме импульсами постоянного тока, а также импульсами переменного тока в тех случаях, когда активное сопротивление провода ВЛ при 0°C составляет не менее 20% от суммарного индуктивного сопротивления цепи тока, т.е. когда проявляется тепловой спад тока (Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования / Под ред. Б.Н. Неклепаева. - М.: Изд-во НЦ ЭНАС, 2002. - 152 с., с. 68).

1. Способ плавки гололеда на проводах воздушной линии электропередачи, заключающийся в том, что создают искусственное короткое замыкание в конце воздушной линии электропередачи, непосредственно контролируют ток провода и температуру воздуха, а также контролируют температуру провода на участке воздушной линии электропередачи, свободном от гололеда, воздушную линию электропередачи отключают после достижения контролируемой температурой провода максимально допустимого значения, а затем повторно подключают к источнику питания, отличающийся тем, что повторное подключение воздушной линии электропередачи выполняют при снижении в бестоковую паузу непосредственно контролируемой температуры провода в момент времени, когда не мгновенное, а среднее значение температуры провода за токовый интервал и бестоковую паузу станет равным нормированному значению, рассчитывают экстраполяцией установившееся значение температуры провода для определения момента времени повторного подключения воздушной линии электропередачи, контролируют ток провода и напряжение источника питания в начале и конце токового интервала, рассчитывают относительную длину гололедной муфты и, если относительная длина гололедной муфты больше нуля, указанный процесс отключения и подключения воздушной линии электропередачи продолжают до полного удаления гололедной муфты.

2. Способ по п. 1, в котором непосредственно контролируют ток провода, напряжение источника питания и температуру провода в начале и конце токового интервала во время пробной плавки при отсутствии гололедообразования.

3. Способ по п. 1, в котором в качестве участка воздушной линии электропередачи, свободном от гололеда, используют установленный на подстанции в цепи источника питания блок проводов, соответствующих проводам всех воздушных линий электропередачи, проплавляемых от этого источника питания.



 

Похожие патенты:

Использование: в области электротехники. Технический результат - повышение качества и производительности.

Использование: в области электроэнергетики. Технический результат - повышение точности и надежности обнаружения гололедных, изморозевых и сложных отложений на проводе.

Изобретение относится к электроэнергетике и может быть использовано для непрерывного контроля температуры проводов линий электропередачи. В способе контроля температуры проводов линий электропередачи с использованием температурного коэффициента α активного сопротивления проводов, согласно изобретению измеряют напряжение и ток в первом местоположении на линии электропередачи, измеряют напряжение и ток во втором местоположении на линии электропередачи, при этом измеренные напряжения и токи в первом и втором местоположениях синхронизированы по времени с возможностью совместной обработки указанных измерений напряжений и токов, по измеренным напряжениям и токам в первом и втором местоположениях определяют полное сопротивление линии электропередачи между первым и вторым местоположениями, из определенного полного сопротивления линии при температуре To проводов линии электропередачи определяют активное сопротивление Ro линии электропередачи между первым и вторым местоположениями, определяют текущее активное сопротивление R линии электропередачи между первым и вторым местоположениями и по известному температурному коэффициенту α активного сопротивления проводов линии определяют текущую температуру T проводов линии электропередачи по формуле T=To+(R-Ro)/(α·Ro).

Использование: в области электротехники. Технический результат заключается в обеспечении универсальности, т.е.

Изобретение относится к способу плавки гололеда на проводах воздушных высоковольтных линий электропередачи без отключения потребителей. К воздушной линии 6(10) кВ, на которой необходимо провести плавку гололеда, подключается источник реактивной мощности (ИРМ) таким образом, что поток реактивной мощности, генерируемый ее, был направлен встречно потоку активной мощности по ВЛ.

Использование: в области электроэнергетики для обнаружения гололеда на проводах линии электропередачи. Технический результат - расширение функциональных возможностей.

Изобретение относится к электротехнике и может быть использовано для удаления гололеда с проводов воздушных линий электропередач. Устройство содержит корпус, который выполнен с возможностью установки его на провод.

Изобретение относится к электротехнике и может быть использовано для удаления гололеда с проводов воздушных линий электропередач. Устройство содержит корпус, который выполнен с возможностью установки его на провод.

Изобретение относится к электротехнике и может быть использовано для удаления гололеда с проводов воздушных линий электропередач. Устройство содержит корпус, который выполнен с возможностью установки его на провод.

Изобретение относится к электротехнике и может быть использовано для удаления гололеда с проводов воздушных линий электропередач. Устройство для удаления гололеда с провода линии электропередач содержит корпус, который выполнен с возможностью установки его на провод.

Использование: в области электроэнергетики. Технический результат - повышение надежности. Устройство для удаления льда и снега с линии электропередачи содержит опорный элемент, установленный на линии электропередачи, и вибратор для опорного элемента, выполненный с возможностью приложения вибраций к линии электропередачи для удаления льда и снега, налипшего на линию электропередачи. Причем опорный элемент содержит первый опорный элемент, закрывающий одну сторону линии электропередачи, и второй опорный элемент, обращенный к первому опорному элементу и закрывающий другую сторону линии электропередачи. Вибратор содержит приводное устройство, расположенное на нижней части второго опорного элемента, установочное средство для установки приводного устройства на втором опорном элементе, и эксцентрик, присоединенный к валу приводного устройства с возможностью эксцентричного вращения для создания вибраций. 8 з.п. ф-лы, 6 ил.

Использование: в области электроэнергетики. Технический результат - увеличение длины проводов или тросов, на которых можно осуществить плавку гололеда. Устройство для плавки гололеда содержит идентичные пары соединенных последовательно тиристорных выпрямителей, установленных на подстанциях, между которыми проходит ВЛ, подлежащая плавке, последовательно по постоянному току. На выходе постоянного тока каждого из выпрямителей параллельно включается по диодному вентилю. 1 ил.

Использование: в области электроэнергетики. Технический результат - повышение эффективности удаления гололеда с проводов воздушных линий электропередач. Установка мобильная для удаления гололеда с провода линии электропередач включает: гусеничное транспортное средство для обслуживания линии электропередач с закрытым кузовом, на котором шарнирно закреплена штанга с возможностью поворота относительно шарнира в вертикальной плоскости, а к другому концу штанги прикреплен гибкий трос, перекинутый через блок, также закрепленный на закрытом кузове, на конце которого размещен груз, приспособление для удаления гололеда с провода линии электропередач, содержащее планку с закрепленными на ней с одной стороны - пальцем, перпендикулярно приваренным к середине планки, а с другой стороны - двумя роликами с ребордами и насечками на наружной поверхности ролика в виде зубьев с возможностью вращения и изменения расстояния между ними, симметрично расположенными от оси пальца, при этом на загнутом конце штанги закреплены две параллельные между собой пластины с отверстием под диэлектрическую втулку, а на штанге установлен гидроцилиндр двустороннего действия, шток которого через диэлектрическую втулку шарнирно соединен с планкой. 4 ил.

Использование: в области электроэнергетики. Технический результат - повышение эффективности удаления гололеда с проводов воздушных линий электропередач. Установка мобильная для удаления гололеда с провода линии электропередач включает: гусеничное транспортное средство для обслуживания линии электропередач с закрытым кузовом, на котором шарнирно закреплена штанга с возможностью поворота относительно шарнира в вертикальной плоскости, а к другому концу штанги через пружину растяжения прикреплен гибкий трос, перекинутый через блок, также закрепленный на закрытом кузове, конец которого через рычаг соединен с гидроцилиндром, приспособление для удаления гололеда с провода линии электропередач, содержащее планку с закрепленными на ней: с одной стороны - пальцем, перпендикулярно приваренным к середине планки, а с другой стороны - двумя роликами с ребордами с возможностью вращения и изменения расстояния между ними, симметрично расположенными от оси пальца, на загнутом конце штанги закреплены две параллельные между собой пластины с отверстием под диэлектрическую втулку, а на штанге установлен гидроцилиндр двустороннего действия, шток которого через диэлектрическую втулку шарнирно соединен с планкой, при этом на конце штанги, в зоне расположения провода с гололедом, закреплен шланг с наконечником и пьезоэлементом для зажигания горючего газа. 4 ил.

Использование: в области электроэнергетики для удаления гололеда с проводов воздушных линий электропередач. Технический результат - повышение эффективности удаления гололеда с проводов воздушных линий электропередач. Установка мобильная для удаления гололеда с провода линии электропередач включает гусеничное транспортное средство для обслуживания линии электропередач с закрытым кузовом, на котором шарнирно закреплена штанга с возможностью поворота относительно шарнира в вертикальной плоскости, к другому концу которой через пружину растяжения подсоединен трос лебедки, установленной на задней части крыши закрытого кузова, приспособление для удаления гололеда с провода линии электропередач, содержащее планку с закрепленными на ней: с одной стороны - пальцем, перпендикулярно приваренным к середине планки, а с другой стороны - двумя роликами с возможностью вращения и изменения расстояния между ними, симметрично расположенными от оси пальца и имеющими на наружной поверхности кольцевые углубления, выполненные в радиальном сечении по параболе y2=2px, где: p - расстояние от фокуса F до директрисы, называемое параметром параболы, на загнутом вверх конце штанги закреплены две параллельные между собой пластины с отверстием под диэлектрическую втулку, а на пластине с отверстием установлен гидроцилиндр двустороннего действия, шток которого через диэлектрическую втулку шарнирно соединен с планкой приспособления, при этом на конце штанги, в зоне нахождения провода с гололедом, закреплен шланг с наконечником и пьезоэлементом для зажигания горючего газа. 7 ил.
Использование: в области электроэнергетики. Технический результат – повышение эффективности и расширение области применения противогололедной защиты. Согласно способу покрытие на неизолированном проводе формируют из двух слоев, при этом на провод наносят ферромагнитный слой толщиной 2-4 мм, а затем на указанный ферромагнитный слой наносят теплопроводящий гидрофобный слой покрытия толщиной 0,1-0,2 мм. Ферромагнитный и гидрофобный слои наносят безвакуумным плазменным напылением с введением микро- или нанопорошков в сверхзвуковую струю газа. 1 з.п.ф-лы.

Использование: в области электроэнергетики. Технический результат - повышение точности и надежности определения наличия и измерения толщины ледяных отложений на проводах ЛЭП. Устройство определения толщины ледяных отложений на проводе содержит датчик, источник электрического питания, накопительный конденсатор и коммутатор, причем датчик представляет собой конденсатор, выполненный с возможностью размещения на проводе таким образом, что провод и/или отложения на проводе располагались между обкладками, причем коммутатор соединен с источником электрического питания, датчиком и накопительным конденсатором и выполнен с возможностью попеременного соединения датчика с источником электрического питания и накопительным конденсатором. 2 н. и 9 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть применено на электрических подстанциях высокого и сверхвысокого напряжения, на которых для регулирования напряжения подводимых воздушных линий электропередачи (ВЛ) требуется компенсация реактивной мощности и стоит задача плавки гололеда на проводах и тросах ВЛ в сезон гололедообразования. Технический результат изобретения - сокращение оборудования и соответствующее снижение капитальных затрат. Устройство содержит электромагнитную, вентильную и коммутаторную части. Электромагнитная часть выполнена в виде трехфазного шунтирующего реактора-трансформатора (1) с вторичной (управляющей) обмоткой, расщепленной на трехфазные секции (2) и (3). Вентильная часть выполнена в виде трехфазных тиристорных выпрямительных мостов (4) и (5), подключенных к выходам секций (2) и (3) соответственно. Коммутаторная часть устройства включает два однополюсных разъединителя (6) и (7) и два двухполюсных разъединителя (8) и (9). Разъединители (6) и (7) предназначены для закорачивания выходов выпрямительных мостов (4) и (5) соответственно, а разъединители (8) и (9) - для подключения выпрямительных мостов (4) и (5) к проплавляемым проводам и/или тросам ВЛ1 и ВЛ2 соответственно. 1 з.п. ф-лы, 1 ил.

Изобретение относится к противообледенительным покрытиям линий электропередач. Способы и системы для формирования пьезоэлектрических покрытий на кабелях линии электропередачи, использующие золь-гель материалы. Кабель может быть подан через емкость с золь-гель материалом, содержащим пьезоэлектрический материал, с получением неотвержденного слоя на поверхности кабеля. Слой затем отверждают, используя, например, инфракрасное, ультрафиолетовое и/или другие типы излучения. Кабель может быть подвешен в системе нанесения покрытия таким образом, что неотвержденный слой не касается каких-либо компонентов системы, пока слой соответственно не отвержден. Пьезоэлектрические характеристики отвержденного слоя могут быть тестированы в системе, чтобы обеспечить регулирование с обратной связью. Отвержденный слой, который может упоминаться как пьезоэлектрическое покрытие, вызывает резистивное нагревание на наружной поверхности кабеля во время вибрации кабеля из-за передачи переменных токов и из-за факторов окружающей среды. Изобретение позволяет упростить удаление льда на линиях. 19 з.п. ф-лы, 4 ил.

Использование: в области электроэнергетики. Технический результат - расширение технологических возможностей локационной диагностики состояния линий электропередачи путем определения участков проводов линий электропередачи с наличием гололедных отложений и выявлением участков с наибольшими отложениями, которые могут привести к обрыву проводов линии. Согласно способу обнаружения и определения места появления гололедных отложений на проводах линии электропередачи, включающему ее импульсное локационное зондирование, линию разделяют имеющимися на ней естественными локационными неоднородностями на отдельные маркированные участки. Фиксируют в виде электронных образов линии массив эталонных рефлектограмм с сочетаниями запаздывания отраженных от неоднородностей импульсов при возможном нахождении гололедных отложений на маркированных участках линии. Для нахождения участков с гололедными отложениями сравнивают текущие рефлектограммы с гололедными отложениями с эталонными рефлектограммами, по их совпадению выделяют участки линии с наличием гололедных отложений. Определяют сравнением среди них участок с наибольшими гололедными отложениями по измерениям наибольшего времени погонного запаздывания отраженных импульсов. 3 ил.
Наверх