Система управления камерой сгорания изменяемой геометрии газотурбинного двигателя летательного аппарата

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы камеры сгорания изменяемой геометрии, т.е. изменяемого объема и изменяемого проходного сечения отверстий жаровой трубы. Техническим результатом изобретения является повышение эффективности управления рабочим процессом камеры сгорания за счет корректировки заданного значения коэффициента избытка воздуха в первичной зоне горения, в зависимости от значения коэффициента полноты сгорания топлива. Дополнительно введены последовательно соединенные вычислитель коэффициента полноты сгорания топлива и схема сравнения, выход которой соединен с входом программного блока, а также датчик индексов эмиссии монооксидов углерода (CO) и углеводородов (HC), установленный на выходе основной камеры сгорания, выход которого соединен с входом вычислителя коэффициента полноты сгорания топлива, при этом на второй вход схемы сравнения подается заданное значение коэффициента полноты сгорания топлива. 1 ил.

 

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы камеры сгорания изменяемой геометрии, т.е. изменяемого объема и изменяемого проходного сечения отверстий жаровой трубы.

Наиболее близким по технической сущности заявляемому изобретению является система управления камерой сгорания изменяемой геометрии газотурбинного двигателя, которая содержит подвижные элементы камеры сгорания, первый сумматор и поляризованный переключатель, второе устройство сравнения, датчик положения подвижных элементов, датчик положения рычага управления двигателем, датчик температуры и датчик полного давления заторможенного потока на входе в основную камеру сгорания (ОКС), датчик статического давления потока, привод подвижных элементов, первое устройство сравнения с подключенным к его первому и второму входам измерителем, программный блок. Недостатком системы является низкая эффективность управления рабочим процессом камеры сгорания, обусловленная тем, что обеспечение оптимальных характеристик камеры сгорания осуществляется путем изменения коэффициента избытка воздуха в первичной зоне горения αПЗГ в пределах от 0,5 до 1,5.

Согласно [Лефевр А. Процессы в камерах сгорания ГТД: Пер. с англ. М.: Мир, 1986, с. 86], его значение близко 1, в своей работе [Мингазов Б.Г. «Камеры сгорания газотурбинных двигателей. Конструкция, моделирование процессов и расчет» Казань: Изд-во Казан. гос. техн. ун-та, 2006, с. 211] рекомендует оптимальное значение 1,2, а [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник для студентов вузов / В.В. Кулагин. - М.: Машиностроение, 2003, с. 161] считает, что оптимальное значение должно быть 1,3, т.е. при этих значениях коэффициента избытка воздуха в первичной зоне горения будет достигнуто максимальное значение коэффициента полноты сгорания топлива.

Техническим результатом изобретения является повышение эффективности управления рабочим процессом камеры сгорания за счет корректировки заданного значения коэффициента избытка воздуха в первичной зоне горения, в зависимости от значения коэффициента полноты сгорания топлива.

Указанный технический результат достигается тем, что в известной системе управления камерой сгорания изменяемой геометрии газотурбинного двигателя летательного аппарата, имеющей подвижные элементы, содержащей первое устройство сравнения с подключенными к его первому и второму входам измерителем и программным блоком, привод подвижных элементов камеры сгорания, последовательно соединенные датчик положения подвижных элементов камеры сгорания, второе устройство сравнения, первый сумматор и поляризованный переключатель, датчик положения рычага управления двигателем, а также датчик температуры и датчик полного давления заторможенного потока на входе в камеру сгорания, датчик статического давления на высоте полета, подключенные к измерителю, выход датчика положения подвижных элементов камеры сгорания подключен к первому входу измерителя, второй вход которого подключен к выходу датчика положения рычага управления двигателем и ко второму входу второго устройства сравнения, выход первого устройства сравнения подключен ко второму входу первого сумматора, а поляризованный переключатель связан с приводом подвижных элементов камеры сгорания, дополнительно введены последовательно соединенные вычислитель коэффициента полноты сгорания топлива и схема сравнения, выход которой соединен с входом программного блока, а также датчик 17 индексов эмиссии монооксидов углерода (CO) и углеводородов (HC), установленный на выходе основной камеры сгорания, выход которого соединен с входом вычислителя коэффициента полноты сгорания топлива, при этом на второй вход схемы сравнения подается заданное значение коэффициента полноты сгорания топлива.

Сущность изобретения заключается в следующем. Известно [Лефевр А. Процессы в камерах сгорания ГТД: Пер. с англ. М.: Мир, 1986, с. 190], что эффективность рабочего процесса основной камеры сгорания определяется коэффициентом полноты сгорания топлива, который зависит от уровня содержания индексов эмиссии монооксидов углерода (CO) и углеводородов (HC). Эта зависимость приведена в книге Григорьев А.В., Митрофанов В.А., Рудаков О.А., Саливон Н.Д. Теория камеры сгорания / под ред. О.А. Рудакова - СПб.: Наука, 2010, с. 135:

где ηГ - коэффициент полноты сгорания топлива, EIHC, EICO - индексы эмиссии (HC) и (CO), определяемые датчиками.

Поэтому согласно изобретению на выходе камеры сгорания определяют индексы эмиссии монооксидов углерода (CO) и углеводородов (HC) и вычисляют текущее значение коэффициента полноты сгорания топлива, которое сравнивают с заданным, соответствующим высокой эффективности рабочего процесса ОКС. Заданное значение коэффициента полноты сгорания топлива находится в пределах от 0,98 до 0,995 см, например [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник для студентов вузов / В.В. Кулагин. - М.: Машиностроение, 2003, с. 161].

Если текущее значение коэффициента полноты сгорания топлива не соответствует заданному, то в программном блоке осуществляется корректировка заданного значения коэффициента избытка воздуха в первичной зоне горения.

Этим достигается указанный в изобретении технический результат.

Система управления камерой сгорания изменяемой геометрии газотурбинного двигателя летательного аппарата приведена на чертеже, где обозначено: камера сгорания изменяемой геометрии 1, подвижные элементы 2, первое устройство сравнения 3 с подключенными к его первому и второму входам измерителя текущего значения коэффициента избытка воздуха в камере сгорания 4 и программным блоком 5, на вход которого поступает сигнал от схемы сравнения 15, при этом на второй вход схемы сравнения подается заданное значение коэффициента полноты сгорания топлива, первый вход которой соединен с выходом последовательно соединенного вычислителя коэффициента полноты сгорания топлива 16 и датчик 17 индексов эмиссии монооксидов углерода (CO) и углеводородов (HC), привод 6 подвижных элементов 2 камеры сгорания 1, последовательно соединенные датчик 7 положения подвижных элементов 2 камеры сгорания 1, второе устройство сравнения 8, первый сумматор 9 и поляризованный переключатель 10, датчик положения рычага управления двигателем 11, а также датчики 12 и 13 температуры и полного давления заторможенного потока на входе в камеру сгорания 1 и датчик 14 статического давления на высоте полета, подключенные к измерителю 4, выход датчика 7 положения подвижных элементов 2 камеры сгорания 1 подключен к первому входу измерителя 4, второй вход которого подключен к выходу датчика 11 положения рычага управления двигателем и ко второму входу второго устройства сравнения 8, выход первого устройства сравнения 3 подключен ко второму входу первого сумматора 9, а поляризованный переключатель 10 связан с приводом 6 подвижных элементов 2 камеры сгорания 1.

Назначение схемы сравнения 15 и датчика 17 индексов эмиссии монооксидов углерода (CO) и углеводородов ( HC) ясны из их названия.

Схема сравнения может быть выполнена, например, в виде компаратора, см., например [Антипенский Р.В., Змий Б.В., Клочков Г.Л. Электроника и схемотехника. Воронеж: ВАИУ, 2009, с. 289].

В качестве датчика индексов эмиссии монооксидов углерода (CO) и углеводородов (HC) может быть использован, например, газовый хроматограф, см. [http://www.chromatec.ru, дата обращения 16.07.2014 г.], который измеряет их массовую концентрацию и по массовому расходу топлива выдает сигнал значения индексов эмиссии монооксидов углерода (CO) и углеводородов (HC).

Вычислитель коэффициента полноты сгорания топлива предназначен для определения коэффициента полноты сгорания по формуле 1 и может быть реализован, например, в виде вычислителя на базе микроконтроллера, см. [Бродин В.Б., Калинин А.В. Системы на микроконтроллерах и БИС программируемой логики. М.: ЭКОМ, 2002, с. 135].

Программный блок 5 в отличие от известного дополнительно обеспечивает формирование скорректированного сигнала заданного значение коэффициента избытка воздуха в первичной зоне горения на величину +Δα на участке режимов работы двигателя от запуска до «Малого газа» и на величину -Δα на участке от «Малого газа» до «Максимала».

Система функционирует аналогично прототипу. В отличие от прототипа датчик 17 индексов эмиссии монооксидов углерода (CO) и углеводородов (HC) выдает сигнал значения индексов эмиссии EIHC и EICO на вход вычислителя коэффициента полноты сгорания топлива 16 соответственно, где осуществляется его расчет по формуле 1.

Если расчетное значение коэффициента полноты сгорания топлива не соответствует заданному, то схема сравнения 15 выдает сигнал в программный блок 5, который на основании этого сигнала корректирует заданное значение коэффициента избытка воздуха в первичной зоне горения на фиксированную величину Δα.

Этим достигается указанный технический результат.

Система управления камерой сгорания изменяемой геометрии газотурбинного двигателя летательного аппарата, имеющей подвижные элементы, содержащая первое устройство сравнения с подключенными к его первому и второму входам измерителем и программным блоком, привод подвижных элементов камеры сгорания, последовательно соединенные датчик положения подвижных элементов камеры сгорания, второе устройство сравнения, первый сумматор и поляризованный переключатель, датчик положения рычага управления двигателем, а также датчик температуры и датчик полного давления заторможенного потока на входе в камеру сгорания, датчик статического давления на высоте полета, подключенные к измерителю, выход датчика положения подвижных элементов камеры сгорания подключен к первому входу измерителя, второй вход которого подключен к выходу датчика положения рычага управления двигателем и к второму входу второго устройства сравнения, выход первого устройства сравнения подключен к второму входу первого сумматора, а поляризованный переключатель связан с приводом подвижных элементов камеры сгорания, отличающаяся тем, что дополнительно введены последовательно соединенные вычислитель коэффициента полноты сгорания топлива и схема сравнения, выход которой соединен с входом программного блока, а также датчик индексов эмиссии монооксидов углерода (CO) и углеводородов (HC), установленный на выходе основной камеры сгорания, выход которого соединен с входом вычислителя коэффициента полноты сгорания топлива, при этом на второй вход схемы сравнения подается заданное значение коэффициента полноты сгорания топлива.



 

Похожие патенты:

Изобретение относится к энергетике. Способ заполнения топливных коллекторов камер сгорания газотурбинного двигателя, включающий заполнение дозированным топливом как минимум одного топливного коллектора камеры сгорания и подачу через его форсунки топлива в камеру сгорания двигателя.

Изобретение относится к энергетике. Способ работы газотурбинной установки, содержащей компрессор, турбину и камеру сгорания с группой пусковых горелок, группой горелок с предварительным смешением, работающих на обогащенной топливовоздушной смеси, и группой горелок с предварительным смешением, работающих на обедненной топливовоздушной смеси, в условиях изменения состава поступающего газового топлива, при этом указанный способ включает стадии: непрерывного измерения в реальном времени состава газового топлива, регулирования работы указанного газотурбинного двигателя и сжигание топлива в указанных горелках с использованием указанных измерений состава газового топлива в реальном времени.

Изобретение относится к энергетике. Способ формирования сигнала установочной точки подачи топлива, подаваемого клапаном золотникового типа измерительного устройства в систему впрыска топлива для впрыска топлива в камеру сгорания турбодвигателя, причем положение золотникового клапана зависит от сигнала установочной точки.

Изобретение относится к области эксплуатации авиационных газотурбинных двигателей (ГТД) и может быть использовано для управления подачей топлива в коллекторы основной и/или форсажной камер сгорания ГТД.

Двухканальная система предназначена для автоматического управления ГТД на всех режимах работы двигателя. Система имеет основной и резервный каналы управления.

Изобретение относится к энергетике. Парогазовая установка с пароприводным дозатором-компрессором газового топлива содержит газотурбинный двигатель с камерой сгорания и регулирующим клапаном по топливу, турбогенератор, энергетическую паровую турбину, установленную на валу турбогенератора, котел-утилизатор с паровыми контурами одного или более давлений, систему трубопроводов газа, пара и воды с регулирующей и запорной арматурой, причём установка также содержит компенсационную турбину, установленную на одном валу с приводной паровой турбиной и дозатором-компрессором в общем герметичном корпусе со стороны дозатора-компрессора.

Изобретение относится к области управления работой газотурбинных авиационных двигателей. Согласно способу измеряют температуру воздуха на входе в двигатель, по значению сигнала температуры воздуха на входе в двигатель и первому заданному программному значению регулируемого параметра вырабатывают первый программный управляющий сигнал, который сравнивают с фактическим значением сигнала регулируемого параметра и по сигналу разности их значений осуществляют регулирование подачи топлива в двигатель.

Электроприводной насос для газотурбинного двигателя (ГТД) содержит насос подачи рабочей среды и электропривод, включающий в себя электродвигатель и блок управления частотой его вращения, связанный с электродвигателем, датчиками и системой управления высшего уровня.

Изобретение используется в системах автоматического регулирования дозирования топлива в камеру сгорания газотурбинного двигателя. Технический результат: экономия топлива за счет повышения стабильности статических и динамических характеристик устройства дозирования топлива, повышения точности дозирования топлива в газотурбинный двигатель с одновременным повышением точности всей системы управления газотурбинным двигателем.

Устройство для предварительного смешивания топлива и воздуха, предназначенное для использования перед впускным отверстием основного канала потока текучей среды системы выделения/преобразования энергии и отделенное от зоны тепловыделения в системе выделения/преобразования энергии, содержит множество концентрических, копланарных, некруглых, кольцевых элементов с аэродинамической формой, множество расположенных в радиальном направлении спицеобразных элементов.

Камера сгорания предназначена для использования в способе поэтапного изменения подачи топлива, при котором части топлива, подаваемые во множестве мест ввода топлива в камеру сгорания, варьируются в соответствии с требуемой мощностью. Камера сгорания содержит множество полостей сжигания в захваченном вихре, устройство предварительного смешивания в комбинации с множеством полостей сжигания в захваченном вихре. Устройство предварительного смешивания содержит входное устройство предварительного смешивания и множество вихревых устройств предварительного смешивания. Входное устройство предварительного смешивания имеет основное впускное отверстие, в котором начинается основной поток, проходящий через камеру сгорания, и множество концентричных, имеющих аэродинамическую форму колец, расположенных перед указанным множеством полостей сжигания в захваченном вихре. Каждое из колец имеет внутренний канал и дополнительно содержит множество отверстий для впрыска топлива, так что топливо протекает из внутреннего канала во входной поток текучей среды вблизи указанного кольца. Каждая пара колец образует между собой кольцевой канал. Вихревое устройство предварительного смешивания соединено с полостью сжигания в захваченном вихре и содержит впускное отверстие для топлива, впускное отверстие для воздуха, камеру, в которой смешиваются топливо и воздух, и выпускное отверстие для воздушно-топливной смеси. Впускное отверстие для топлива включает в себя топливный коллектор с диффузионной пластиной, расположенной в нем. Воздушно-топливная смесь вводится непосредственно в полость сжигания в захваченном вихре в направлении, тангенциальном относительно рециркулирующего потока внутри полости сжигания в захваченном вихре. Поток топлива, проходящий через каждое из множества вихревых устройств предварительного смешивания, является независимо изменяемым. Непосредственно за входным устройством предварительного смешивания и перед указанным множеством полостей сжигания в захваченном вихре расположен конический обтекатель, выполненный с возможностью образования сопла и ускорения предварительно смешанной смеси, выходящей из входного устройства предварительного смешивания. Изобретение направлено на улучшение эксплуатационных характеристик. 6 н. и 13 з.п. ф-лы, 15 ил.

Изобретение может быть использовано в системах управления топливоподачей в форсажную камеру сгорания турбореактивным двухконтурным двигателем с форсажной камерой (ТРДДФ) на форсированных режимах. Способ управления ТРДДФ заключается в том, что измеряют давление за компрессором ( p к * ) и давление за турбиной ( p т * ) , вычисляют перепад давления на турбине ( π T ∑ * = p к * / р т * ) . Далее определяют скорость изменения указанного перепада ( δ π T ∑ * ) и определяют скорость изменения расхода топлива (δGТФ), подаваемого в форсажную камеру сгорания. На максимальных форсированных режимах регулируют подачу топлива в форсажную камеру сгорания в зависимости от величины отношения скорости изменения перепада давления на турбине к скорости изменения расхода топлива ( δ π T ∑ * / δ G T Ф ) , обеспечивая его значение близким к нулю. Технический результат - повышение точности регулирования расхода топлива. 1 з.п. ф-лы, 4 ил..

Изобретение относится к способам регулирования авиационных турбореактивных двигателей (ТРД) с изменяемой геометрией выходного устройства. Способ регулирования авиационного ТРД с изменяемой геометрией выходного устройства включает поддержание заданного перепада давления на турбинах в зависимости от температуры воздуха на входе в двигатель и от режима работы двигателя. При осуществлении способа предварительно для данного типа двигателя дополнительно формируют по меньшей мере две программы регулирования перепада давлений на турбинах, при каждой программе регулирования создают на входе в двигатель и на выходе из двигателя условия, соответствующие различным условиям полета по высоте и скорости, измеряют значения тяги и расхода топлива, затем строят зависимости расхода топлива от тяги, по ним определяют программу регулирования, обеспечивающую минимальный расход топлива в заданном диапазоне тяги и вводят ее дополнительно в регулятор двигателя, а по сигналу с борта самолета при полете на максимальную продолжительность и дальность полета в регуляторе двигателя производят переключение программы управления перепада давления на турбинах на программу, обеспечивающую минимальный расход топлива. Осуществление способа позволяет существенно увеличить дальность и продолжительность полета самолета. 2 ил., 1 табл.

Изобретение относится к энергетике. Способ управления положением золотника топливодозирующего устройства для турбинного двигателя как функция заданного значения весового расхода содержит ответ на критерий действительности для выбора весового расхода. Также представлены носитель информации, содержащий исполняемые компьютером инструкции, которые при выполнении предписывают компьютеру осуществлять способ согласно настоящему изобретению, электронный блок и авиадвигатель. Изобретение позволяет улучшить точность управления расходом топлива турбинного двигателя. 4 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. Передатчик хода включает канал для обеспечения прохода текучей среды, исполнительный модуль для увеличения давления в гидравлической жидкости, клапанный модуль, функционирующий в зависимости от давления гидравлической жидкости, при этом клапанный модуль расположен внутри канала для регулирования потока текучей среды, и трубку, соединяющую исполнительный модуль и клапанный модуль для передачи давления гидравлической жидкости между исполнительным модулем и клапанным модулем, при этом исполнительный модуль расположен снаружи канала, а клапанный модуль расположен внутри канала. Также представлена газовая турбина, содержащая передатчик хода. Изобретение позволяет предотвратить повреждение исполнительного модуля, а также позволяет повысить гибкость конструкции исполнительного модуля. 2 н. и 12 з.п. ф-лы, 3 ил.
Наверх