Способ получения массивов углеродных нанотрубок с управляемой поверхностной плотностью

Изобретение может быть использовано при изготовлении сорбентов и армирующих добавок. Сначала подготавливают ростовую подложку путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука. Во время конденсации дополнительно воздействуют ультразвуком на ростовую подложку при мощности ультразвукового генератора 25-40 Вт. Подготовленную подложку помещают в ростовую печь, подают в реакционную зону ацетилен и выращивают на подложке массивы углеродных нанотрубок, поверхностная плотность которых растёт с увеличением мощности ультразвукового генератора, воздействующего на подложку. 3 пр.

 

Изобретение относится к каталитическому способу производства углеродных нанотрубок из углеводородов, предназначено для выращивания массивов углеродных нанотрубок. Оно может быть использовано в производстве сорбентов, армирующих добавок и др.

Известен способ получения углеродных нанотрубок термокаталитическим разложением ацетилена с участием нанодисперсных частиц железа и никеля, размещенных на поверхности подложек монокристаллического кремния [1]. Недостатком данного способа является невозможность получения углеродных нанотрубок, а также большой разброс их по диаметрам и неравномерность распределения по площади подложки.

Известен способ получения углеродных нанотрубок каталитическим разложением ацетилена с осаждением углерода на заполненные кобальтом мезопористые подложки из анодированного оксида алюминия [2]. Недостатками способа являются достаточно большой разброс получаемых нанотрубок по диаметрам, относительно низкая равномерность распределения трубок по площади подложки, недостаточная воспроизводимость процесса на отдельных участках подложки.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ нанесения антикоррозионных покрытий на защищаемые поверхности металлов путем плазменного напыления, вакуумного испарения или осаждения из газовой фазы с одновременным ультразвуковым воздействием на металл [3]. Недостатком данного способа является то, что ультразвуковое воздействие на металл при нанесении антикоррозионных покрытий на защищаемую поверхность приводит к неконтролируемому заполнению неровностей поверхности, пор, трещин, что обуславливает неравномерное распределение наносимого материала по поверхности. Неравномерность нанесения защитного покрытия определяется использованием ультразвукового воздействия в интервале частот, соответствующих частотам собственных колебаний метала и приводящих к возникновению резонанса. Данный способ не позволяет управляемо наносить наночастицы металлов на поверхность ростовой подложки без заполнения трещин, неровностей, не сплошным слоем. Использование данного способа для получения массивов углеродных нанотрубок невозможно.

Изобретение направлено на получение на поверхности ростовой подложки массивов углеродных нанотрубок.

Это достигается тем, что перед помещением ростовой подложки в печь и выращиванием массивов углеродных нанотрубок на подложку наносят катализатор путем конденсации микрокапель коллоидного раствора при воздействии на него ультразвука, при этом ультразвуком дополнительно воздействуют на ростовую подложку во время проведения процесса конденсации, причем мощность ультразвукового генератора задается в пределах от 25 до 40 Вт.

Способ получения массивов углеродных нанотрубок осуществляется следующим способом. Ростовая подложка с предварительно очищенной подготовленной поверхностью закрепляется над свободной поверхностью коллоидного раствора, состоящего из наночастиц катализатора и жидкого растворителя, причем тип растворителя и катализатора, а также их количественное соотношение в растворе устанавливается заранее, с учетом поставленной задачи. Под воздействием УЗ над поверхностью коллоидного раствора образуется пар, в микрокаплях которого содержатся наночастицы катализатора. Попадая в более холодную зону над подложкой, пар конденсируется на поверхности ростовой подложки в виде микрокапель. Во время проведения процесса конденсации ростовая подложка дополнительно подвергается воздействию УЗ с мощностью ультразвукового генератора в заданных пределах. Затем ростовая подложка помещается в печь, нагревается до температуры выращивания углеродных нанотрубок и производится выращивание углеродных нанотрубок.

Применение ультразвукового воздействия на ростовую подложку во время проведения процесса конденсации определяется тем, что в конденсирующихся на поверхности ростовой подложки микрокаплях коллоидного раствора, происходят непрерывные процессы коагуляции и седиментации каталитических наночастиц, а воздействие УЗ на ростовую подложку минимизирует негативные последствия, связанные с протеканием данных процессов. Т.е. воздействие УЗ на ростовую подложку позволяет размещать на ее поверхности каталитические наночастицы с максимальной равномерностью за счет поддержания равномерного распределения наночастиц в объеме осажденных микрокапель на всем протяжении процесса, вплоть до полного испарения растворителя.

Мощность У3-генератора, задаваемая в пределах от 25 до 40 Вт, определяется тем, что в данном интервале, варьируя конкретную величину мощности ультразвукового генератора, можно управлять процессом нанесения каталитических наночастиц. При более низких чем 25 Вт значениях мощности на поверхности ростовой подложки образуются скопления каталитических наночастиц в виде комков и участки с различной плотностью расположения наночастиц, т.е. однородность в распределении каталитических наночастиц на поверхности ростовой подложки нарушается, и получить необходимую поверхностную плотность расположения частиц на подложке не удается. При большем чем 40 Вт значении мощности происходит отрыв значительной части каталитических наночастиц от поверхности ростовой подложки и, как следствие, процесс управляемого нанесения наночастиц становится невозможным.

Использование предлагаемого способа позволяет получать массивы углеродных нанотрубок с управляемой поверхностной плотностью.

Примеры осуществления способа

Пример 1

В качестве ростовой подложки применялись пластины монокристаллического кремния ориентации {111} типа ЭКБД. В качестве источника наночастиц металла-катализатора использовался нанопорошок никеля чистотой 99,99% со средними диаметрами отдельных частиц от 20 до 80 нм.

Для обработки коллоидного раствора ультразвуком использовалась ультразвуковая ванна типа «ULTRASONIC CLEANER CT-400D». В качестве растворителя применялась дистиллированная вода.

Нанесение нанодисперсных частиц металла-катализатора на ростовую подложку осуществлялось следующим образом. Ростовую подложку с отмытой и обезжиренной поверхностью закрепляли над ванной с коллоидным раствором необходимой концентрации. Затем коллоидный раствор подвергали воздействию УЗ в течение 60 с при мощности генератора в 30 Вт. Мощность УЗ генератора, оказывающего воздействие на ростовую подложку во время проведения процесса конденсации, устанавливали на уровне 25 Вт. Затем подложки помещались в сушильный шкаф до полного удаления жидкости. Далее подготовленные подложки помещались в ростовую печь, в реакционную зону подавали газообразный ацетилен С2Н2 и выращивали УНТ. Время выращивания составляло от 10 до 15 минут, в зависимости от необходимой длины углеродных нанотрубок. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 1,21×10 мм-2. Полученные нанотрубки имели диаметр 80±1 нм и длину от ~800 нм до~3 мкм.

Пример 2

Выполнение изобретения осуществляли аналогично примеру 1, но мощность УЗ генератора, оказывающего воздействие на ростовую подложку, устанавливали на уровне 30 Вт. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 4,41×106 мм-2. Полученные нанотрубки имели диаметр 60±1 нм и длину от ~500 нм до ~3 мкм.

Пример 3

Выполнение изобретения осуществляли аналогично примеру 1, но мощность УЗ генератора, оказывающего воздействие на ростовую подложку, устанавливали на уровне 40 Вт. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 2,21×107 мм-2. Полученные нанотрубки имели диаметр 30±1 нм и длину от ~250 нм до ~1 мкм.

Источники информации

1. Патент РФ №2301821 «Способ получения углеродных нановолокон», МПК6 С09С 1/44, В82В 3/00, С01В 31/00 / Пешнев Б.В., Николаев А.И.

2. Suh J. S., Lee J. S. Highly ordered two-dimensional carbon nanotube arrays // Appl. Phys. Lett. 1999. V.75. P. 2047.

3. Патент РФ N 2026887 «Способ нанесения антикоррозионных покрытий», кл. С23С 4/00, С23С 14/00, С23С 16/00, 1995 / Бакулин В.Н., Бакулин А.В.

Способ получения массивов углеродных нанотрубок, включающий подготовку ростовой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука, и помещение подготовленной подложки в ростовую печь с последующим выращиванием углеродных нанотрубок, отличающийся тем, что производят дополнительное воздействие ультразвуком на ростовую подложку, причем мощность ультразвукового генератора задают в пределах от 25 до 40 Вт.



 

Похожие патенты:

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность.

Изобретение предназначено для использования в химической, химико-металлургической, в авиационной и космической отраслях промышленности. Формируют каркас углерод-углеродного композиционного материала (УУКМ) из низкомодульных углеродных волокон, заполняют его поры дисперсным углеродным наполнителем путем выращивания в них каталитическим методом в газовой фазе наноразмерного углерода в форме частиц, волокон или трубок до его содержания 3,7-10,9% от веса волокнистого каркаса.

Изобретение относится к технологии получения тонких пленок графена, которые могут быть использованы в качестве прозрачного проводящего покрытия. Способ включает гетероэпитаксиальное выращивание тонкой пленки графена на тонкой пленке катализатора, нанесение покрытия на основе полимера на поверхность тонкой пленки графена, которая является противоположной относительно поверхности тонкой пленки катализатора, отверждение покрытия на основе полимера и отслаивание тонкой пленки графена и покрытия на основе полимера от тонкой пленки катализатора, при этом тонкую пленку катализатора располагают на несущей подложке, сформированной со стороны тонкой пленки катализатора, которая является противоположной относительно поверхности тонкой пленки графена, и между несущей подложкой и каталитической тонкой пленкой располагают тонкую пленку разделительного слоя из оксида цинка.

Изобретение относится к технологии осаждения на больших площадях тонких пленок графена, которые могут быть легированы, для использования их в качестве прозрачного проводящего покрытия.

Изобретение относится к нанотехнологии. Углеродное нановолокно с внешним диаметром 50-300 нм содержит внешнюю оболочку из аморфного углерода и сердцевину из более чем 1, но не более чем 20 отдельных одностенных или двустенных углеродных нанотрубок.

Изобретение относится к нанотехнологии и может быть использовано в технике, медицине и энергетике. Устройство для получения углеродных нанотрубок содержит реакционную камеру 12, в которой размещены подложкодержатель 1, нагреватель 2, подложка 3, входное окно 6, держатель 9 мишени 8, патрубок 11 ввода газов системы подачи реакционной газовой смеси и патрубок 10 системы вакуумирования.

Изобретение может быть использовано при изготовлении композиционных материалов, катализаторов, материалов для хранения газов. Катализатор - нанодисперсный порошок никелида алюминия, покрытый каталитически активным металлом из ряда, включающего железо, кобальт, никель, молибден или их смеси, получают путём его пропитки солями указанных каталитически активных металлов, сушки, прокаливания и модифицирования монохроматическим электромагнитным излучением в импульсном режиме с частотой 10-30 Гц при удельной мощности излучения 1,1-1,8 кВт/мм2.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении СВЧ-устройств, имеющих покрытия, позволяющие снизить коэффициент вторичной эмиссии электронов.

Изобретение может быть использовано электронике, энергетике и медицине. Плёнку двумерно упорядоченного линейно-цепочечного углерода получают напылением методом импульсно-плазменного испарения графитового катода.

Изобретение относится к химии и водородной энергетике и может быть использовано в транспортном машиностроении. Водород получают в генераторе 1, направляют в приёмник 2, разделяют на два потока 3 и воздействуют на них импульсным магнитным полем с амплитудой магнитной индукции В более 100 гаусс.

Изобретение может быть использовано в производстве средств санитарной обработки для применения в медицине, ветеринарии, пищевой промышленности и в быту. Фотохимический способ получения стабилизированных наночастиц серебра включает взаимодействие ионов серебра со стабилизирующим агентом в водном растворе при комнатной температуре под действием света видимого диапазона.

Изобретение может быть использовано в производстве водородсодержащих наночастиц. Способ получения наночастиц металлов, насыщенных водородом, включает лазерную абляцию массивной металлической мишени, помещенной в жидкость с протонным типом проводимости.

Изобретение относится к области материаловедения, а именно к определению критической концентрации одной из фаз в многофазной системе. Способ определения концентрационного положения порога перколяции в наногранулированных композитных материалах с системой фаз металл-диэлектрик включает определение концентрации металлической фазы и определение электрического сопротивления композитных материалов до и после термообработки.

Изобретение относится к порошковой металлургии. Способ изготовления наноразмерного твердого сплава включает приготовление смеси из наноразмерных порошков карбида вольфрама и кобальта, прессование ее в стальной пресс-форме и спекание в вакууме.

Изобретение относится к композиционным керамическим материалам конструкционного назначения и способу его получения. Материал может быть использован для изготовления высокопрочных изделий, преимущественно в медицинской области в качестве эндопротезов суставов.

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность.

Изобретение относится к решеткам дипольных нанолазеров. Устройство включает в себя подложку, на которой находится активный слой, прозрачный проводящий слой, прозрачный диэлектрический слой, металлические наночастицы-наноантенны.

Изобретение относится к получению наноструктурированных порошков металлических сплавов. Наноструктурированный порошок твердого раствора кобальт-никель состоит из первичных частиц в виде кобальтоникелевых наноблоков размерами 5-20 нм, агломерированных во вторичные частицы размерами 100-200 нм сферической формы.

Группа изобретений относится к медицине, конкретно к новым нанокристаллам золота и распределению форм нанокристаллов, которые имеют поверхности, которые не содержат органические загрязнения или пленки.

Изобретение предназначено для использования в химической, химико-металлургической, в авиационной и космической отраслях промышленности. Формируют каркас углерод-углеродного композиционного материала (УУКМ) из низкомодульных углеродных волокон, заполняют его поры дисперсным углеродным наполнителем путем выращивания в них каталитическим методом в газовой фазе наноразмерного углерода в форме частиц, волокон или трубок до его содержания 3,7-10,9% от веса волокнистого каркаса.

Изобретение относится к композиция для покрытия металлических изделий в узлах машин. Композиция состоит из следующего соотношения ингредиентов (в % по массе): лак Ф-40 - 96...97; алюминиевый нанопорошок - 1,8...2; медный нанопорошок - 1,5...1,7.

Изобретение может быть использовано при изготовлении сорбентов и армирующих добавок. Сначала подготавливают ростовую подложку путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука. Во время конденсации дополнительно воздействуют ультразвуком на ростовую подложку при мощности ультразвукового генератора 25-40 Вт. Подготовленную подложку помещают в ростовую печь, подают в реакционную зону ацетилен и выращивают на подложке массивы углеродных нанотрубок, поверхностная плотность которых растёт с увеличением мощности ультразвукового генератора, воздействующего на подложку. 3 пр.

Наверх