Способ флотации железосодержащих вольфрамовых минералов из хвостов гравитационного обогащения руд

Изобретение относится к области обогащения полезных ископаемых и может быть использовано в технологии обогащения руд редких металлов. Способ флотации железосодержащих вольфрамовых минералов из хвостов гравитационного обогащения включает обесшламливание исходной пульпы, кондиционирование пульпы с кальцинированной содой и натриевым мылом талового масла при плотности пульпы 30% твердого и флотацию вольфрамовых минералов. Перед подачей натриевого мыла талового масла совместно с кальцинированной содой вводят водный раствор едкого натра при соотношении кальцинированной соды, едкого натра и натриевого мыла талового масла в пределах от 500:150:200 до 500:250:200. Флотацию проводят при температуре воды от 20°C до 8°C. Технический результат - повышение извлечения железосодержащих вольфрамовых минералов из хвостов гравитационного обогащения в процессе флотации в холодной пульпе. 1 табл., 1 пр.

 

Изобретение относится к области обогащения полезных ископаемых и может быть использовано в технологии обогащения руд редких металлов.

Известен способ флотации не сульфидных руд, основанный на применении в качестве собирателя омыленных едким натром жирных кислот (отходов производства себациновой кислоты) (А.А. Абрамов. Флотационные методы обогащения. - М.: Недра, 1984, с. 371).

К недостатку данного способа следует отнести слабую флотационную активность собирателя и, как результат, высокие расходы собирателя при флотации. Едкий натр применяется лишь для омыления жирных кислот, в малом количестве, что не влияет на процесс флотации.

Известен также способ флотации минералов группы вольфрамита (АС СССР №135431, заявка 676614 от 15.08.1960 г, опубликовано 01.01.1961 г.), который заключается в том, что в обрабатываемую пульпу в качестве реагента-собирателя добавляют алкилгидроксамовые кислоты в виде водно-щелочного раствора.

К недостаткам данного способа флотации можно отнести следующее:

1. Реагент достаточно дорог. Производство качественного реагента ИМ-50 прекращено в Российской Федерации. Производимый в КНР аналог обладает низкой эффективностью при флотации вольфрамовых минералов (вольфрамита, ферберита и побнерита).

2. Реагент токсичен и требуется создание хвостохранилища с нефильтрующими дамбой и ложем для исключения попадания жидкой фазы хвостов флотации в окружающую среду.

Известен способ подготовки жирно-кислотного собирателя к флотации несульфидных руд (патент РФ №2234984, заявка 2002111938/03 от 06.05.2002, опубликовано 27.08.2004, авторы Костромина И.В., Добромыслов Ю.П., Хатькова А.Н).

Омыление едкого натра жирными кислотами проводят с предварительной обработкой едкого натра окисью металла, обладающего амфотерными свойствами, до образования соответствующей соли натрия.

Данный способ омыления жирных кислот не обеспечивает полноты извлечения вольфрамовых минералов даже при повышении расхода собирателя до 1000 г/т питания флотации. Дальнейшее повышение расхода собирателя делает невозможным проведение процесса флотации (увеличивается стоимость процесса, повышается концентрация собирателя в оборотной воде, что приводит к потерям вольфрамовых минералов в цикле гравитационного обогащения за счет флотогравитации).

Известен способ флотации апатито-нефелиновой руды жирнокислотным собирателем на оборотной воде в условиях холодной пульпы (В.А. Иванова, Г.В. Митрофанова, Т.Н. Перункова. / Труды 8-го Международного симпозиума «Горное дело в Арктике». СПб.: ОАО «Иван Федоров», с. 294-299, 2005).

В данной статье показана принципиальная возможность селективной флотации апатита в холодной пульпе (8-10°C) при использовании фабричной собирательной смеси, включающей омыленные таловые продукты и алкилбензолсульфокислоту в сочетании с органическим регулятором - неонолом АФ 9-10. Флотоактивность собирателя в холодной воде снижается, требуется увеличение расхода собирателя на ~20%. Сохранение активности собирательной смеси, по мнению авторов, возможно за счет оптимизации ее состава, в частности соотношения жирных и смоляных кислот, с увеличением концентрации последних.

Данный способ при флотации вольфрамовых минералов неприемлем, т.к. при увеличении концентрации смоляных кислот снижается селективность процесса и создаются устойчивые, трудно разрушаемые пены.

Наиболее близким по технической сущности и принятым за прототип является способ флотации вольфрамовых минералов из хвостов гравитации, включающий обесшламливание исходной пульпы, кондиционирование пульпы с кальцинированной содой, ИМ-50 и мылом талового масла при плотности пульпы 30% твердого, флотацию вольфрамовых минералов (Извлечение вольфрамовых минералов из хвостов гравитации/ Цветные металлы, №12, 1980 г., с. 68-70).

Недостатком известного способа является снижение показателей при флотации в холодной воде при температуре 8-10°C.

Задачей предлагаемого изобретения является повышение извлечения железосодержащих вольфрамовых минералов из хвостов гравитационного обогащения за счет стабилизации процесса флотации в холодной пульпе.

Технический результат достигается тем, что в способе флотации железосодержащих вольфрамовых минералов из хвостов гравитационного обогащения, включающем обесшламливание исходной пульпы, кондиционирование с кальцинированной содой и натриевым мылом талового масла при плотности пульпы 30% твердого и флотацию вольфрамовых минералов, перед подачей натриевого мыла талового масла совместно с кальцинированной содой вводят водный раствор едкого натра при соотношении кальцинированной соды, едкого натра и натриевого мыла талового масла в пределах от 500:150:200 до 500:250:200, а флотацию проводят при температуре воды от 20°C до 8°C.

Отличием предлагаемого способа от прототипа является то, что в процесс кондиционирования пульпы вводят едкий натр перед подачей натриевого мыла талового масла.

При флотации вольфрамовых минералов (вольфрамита и гюбнерита), проводимой при разных температурах в зависимости от времени года, расход собирателя, как правило, повышается при снижении температуры пульпы. Этот эффект наблюдается как в случае применения в качестве собирателя жирных кислот, так и в случае применения алкилгидроксамовых кислот. Данное явление происходит, по-видимому, вследствие того что при понижении температуры пульпы часть натриевого мыла талового масла, находящегося в пульпе в диссоциированном состоянии, вновь образует молекулы и, затем, микромицеллы, не вступающие во взаимодействие с флотируемыми минералами. Введение в пульпу щелочи до pH=10-11 сохраняет процесс флотации без увеличения расхода собирателя. Но при увеличении расхода кальцинированной соды наблюдается депрессия как силикатов и алюмосиликатов, так и вольфрамита и гюбнерита, что приводит к потерям металла без повышения качества концентратов. Только применение едкого натра в сочетании с кальцинированной содой обеспечивает полноту извлечения железосодержащих вольфрамовых минералов при использовании оборотной воды в зимнее время года в диапазоне температур от 10 до 8°C без увеличения расхода жирнокислотного собирателя (в летнее время температура воды доходит до 20°C).

Данный эффект достигается за счет повышения растворимости, высокой степени диспергирования и стабилизации водного раствора натриевого мыла талового масла. Помимо этого в присутствии дополнительного щелочного модификатора (едкого натра) молекулы натриевого мыла талового масла диссоциируют практически полностью, образуя на поверхности флотируемых минералов устойчивые гидрофробные соединения железа и марганца. При этом происходит активная десорбция собирателя с поверхности силикатных и алюмосиликатных минералов, что повышает селективность процесса флотации вольфрамовых минералов (вольфрамита, гюбнерита и ферберита).

Таким образом, предлагаемое техническое решение обладает существенными отличиями по сравнению с известными решениями. Сущность предлагаемого способа поясняется следующими примерами.

Пример №1 (По предлагаемому способу).

Хвосты гравитационного обогащения вольфрамитсодержащей руды крупностью минус 0,315+0,01 мм обесшламливали по классу крупности 10 мкм и при массовой доле твердого, равной 30%, кондиционировали последовательно со смесью водных растворов кальцинированной соды и едкого натра и натриевым мылом талового масла при их расходах соответственно, г/т:

Кальцинированная сода - 500,0

Едкий натр - 200,0

Натриевое мыло талового масла - 200,0.

Затем проводили флотацию вольфрамита при температуре пульпы 18°-20°C и 8-10°C. Время флотации составляет 5 минут.

Аналогичные опыты проведены при следующих соотношениях кальцинированной соды, едкого натра и натриевого мыла талового масла (ТМ): 500:100:200; 500:150:200; 500:200:200; 500:250:200; 500:300:200 г/т, и различных значениях температуры пульпы.

Результаты опытов представлены в табл. 1.

Положительный эффект предлагаемого способа по сравнению с прототипом состоит в повышении показателей флотации вольфрамита при нормальной (18-20°C) температуре пульпы и сохранении показателей флотации при понижении температуры пульпы до 8-10°C без увеличения расхода собирателя.

Способ флотации железосодержащих вольфрамовых минералов из хвостов гравитационного обогащения, включающий обесшламливание исходной пульпы, кондиционирование пульпы с кальцинированной содой и натриевым мылом талового масла при плотности пульпы 30% твердого и флотацию вольфрамовых минералов, отличающийся тем, что перед подачей натриевого мыла талового масла совместно с кальцинированной содой вводят водный раствор едкого натра при соотношении кальцинированной соды, едкого натра и натриевого мыла талового масла в пределах от 500:150:200 до 500:250:200, а флотацию проводят при температуре воды от 20°C до 8°C.



 

Похожие патенты:

Изобретение относится к способу извлечения тербия (III) из бедного или техногенного сырья с помощью метода флотоэкстракции. В процессе флотоэкстракции катионов тербия (III) используют в качестве органической фазы изооктиловый спирт, а в качестве собирателя ПАВ анионного типа - додецилсульфат натрия в концентрации, соответствующей стехиометрии реакции: Tb+3+3NaDS=Tb(DS)3+3Na+, где Tb+3 - катион тербия (III), DS- - додецилсульфат-ион.

Изобретение относится к области обогащения полезных ископаемых, в частности к способам автоматического управления процессом флотации, и может быть использовано для оптимизации процессов обогащения руд черных и цветных металлов.
Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотационной переработке кианитовых и сульфидных руд. Способ флотации кианита из руды включает предварительную флотацию сульфидов ксантогенатом и флотацию кианита в кислой среде.

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при флотации руд цветных и драгоценных металлов, фосфатов, коксующихся углей.

Изобретение относится к области обогащения полезных ископаемых и может быть использовано в технологии обогащения руд редких металлов. Способ флотации калийсодержащих слюд из хвостов гравитационного обогащения руд редких металлов включает обесшламливание исходной пульпы, кондиционирование с кальцинированной содой и катионным собирателем и флотацию слюды.

Изобретение относится к области гидрометаллургии цветных металлов. Способ включает стадийное осаждение сульфидов цветных металлов из раствора окисленной пульпы металлическим железом и полисульфидно-тиосульфатным реагентом при температуре ниже точки плавления элементной серы и непрерывном перемешивании с последующим выделением сульфидов и элементной серы флотацией в коллективный серосульфидный концентрат.
Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации углей. Реагент-собиратель для флотации угля представляет собой углеводородную фракцию, выкипающую при атмосферно эквивалентной температуре в пределах 180-400°С и имеющую следующие характеристики: Элементный состав, % мас.: углерод - 81-84, водород - 15-18, сера -<1, азот - <0.5, плотность при 20°C, кг/м3, - 780-860, содержание непредельных углеводородов, % мас., - 90-100.

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации. Способ флотационной переработки текущих и лежалых хвостов обогащения, содержащих минералы меди и молибдена, включает селекцию медь- и молибденсодержащих минералов после окислительно-тепловой обработки пульпы с флотацией молибденита в щелочной среде, создаваемой сернистым натрием.
Изобретение относится к области обогащения полезных ископаемых и может быть использовано при флотации полезных ископаемых. Применение монозамещенных третичных α-ацетиленовых спиртов общей формулы RR′C(OH)C≡CH (R=CH3, R′=СН3, С2Н5, СН2СН(СН3)2, R+R′=(СН2)5) в качестве пенообразователей при флотации полезных ископаемых.
Предложенная группа изобретений относится к технологиям обогащения. Более конкретно, настоящее изобретение относится к композициям для обогащения и к способам их применения.

Изобретение относится к переработке радиоэлектронного лома, в частности электронных плат. Исходное сырье измельчают, обогащают методами электрической и магнитной сепарации, из полученных концентратов извлекают благородные металлы, хвосты обогащения распульповывают в воде при отношении Ж:Т не менее 7 в присутствии лигносульфоната с расходом последнего 1-3 кг/т твердого. Из полученной пульпы извлекают тонкодисперсные частицы благородных металлов флотацией, причем в качестве собирателя используют диалкилдитиофосфат натрия БТФ-1522 с расходом 50-500 г/т, а флотацию проводят в слабокислой среде при рН 3-4. Техническим результатом является повышение извлечения благородных металлов в товарные концентраты на 12-15%. 1 табл., 1 пр.

Изобретение относится к обогащению полезных ископаемых методом флотации и может быть использовано при переработке сульфидных полиметаллических, медно-цинковых и свинцово-цинковых руд. Способ флотации сульфидных минералов цинка включает введение модификаторов, собирателя, вспенивателя и выделение сульфидных минералов цинка в пенный продукт. Дополнительно вводят операцию цинк-пиритной флотации, перед которой проводят операцию оттирки в присутствии активированного угля. В качестве собирателя для сульфидных минералов цинка используют селективный реагент на основе модифицированного дитиокарбоната. Дополнительно перед операцией основной цинковой флотации используют операцию оттирки. Флотацию сульфидных минералов цинка проводят при температуре не менее 30°C. Технический результат - повышение качества цинкового концентрата. 3 з.п. ф-лы, 1 ил., 2 табл., 2 пр.

Изобретение относится к области обогащения полезных ископаемых, в частности к флотационному выделению сульфидных минералов, содержащих благородные металлы, из концентратов, и может быть использовано при флотационном обогащении сульфидных медно-цинковых пиритсодержащих руд, несульфидных железных руд, а также руд редких и благородных металлов, угля и горнохимического сырья. Способ разделения пирита и халькопирита из руд, содержащих благородные металлы, включает кондиционирование измельченной пульпы с сульфгидрильным собирателем, введение модификатора поверхности, вспенивателя и выделение медного концентрата в пенный продукт флотации. В качестве модификатора поверхности используют экстракт стеблей и листьев борщевика, соотношение собирателя и модификатора поверхности которых составляет 1:(0,5-20). Технический результат - повышение эффективности флотации. 1 табл., 17 пр.

Изобретение относится к области полезных ископаемых и может быть использовано для управления технологическим процессом флотации для повышения его эффективности. Способ управления технологическим процессом флотации включает регулирование плотности исходного питания, расхода воздуха в камеры и уровня пульпы во флотационной машине. Дополнительно замеряют расход руды, интенсивность шума и активную мощность двигателя мельницы, расход и плотность пульпы, расход воздуха на аэрацию в флотомашине, расход воды в желоба флотомашины, расход реагентов, уровни промпродукта в камерах флотомашины и технологических зумпфах, степень открытия технологических клапанов, объем промпродуктов перечисток, pH и температуру пульпы. Обрабатывают полученные данные и выявляют степень влияния каждого параметра, таких как расход руды, интенсивность шума и активная мощность двигателя мельницы, расход и плотность пульпы, расход воздуха на аэрацию в флотомашине, расход воды в желоба флотомашины, расход реагентов, уровни промпродукта в камерах флотомашины и технологических зумпфах, степень открытия технологических клапанов, объем промпродуктов перечисток, pH и температура пульпы на технологический процесс во флотационной машине. Затем из всех полученных параметров, влияющих на технологический процесс, отбирают параметры с коэффициентом линейной парной корреляции более 0,18 и определяют методом регрессионного анализа взаимосвязь между влияющими параметрами и технологическим процессом во флотационной машине. Величину содержания полезного компонента в продукте флотации рассчитывают по математической зависимости: Y=A0+А1Х1+А2Х2+ … АnХn, где А0 - свободный член; А1, А2 … Аn - коэффициенты уравнения; Х1, Х2 … Хn - влияющие технологические параметры, анализируют полученную величину и, в случае несоответствия заданным технологическим параметрам, корректируют величину управляющих воздействий на управляющие технологические параметры таким образом, чтобы отклонение между заданной и фактической величиной содержания полезного компонента было не более 0,2% относительных. Технический результат - повышение качества управления процессом обогащения пенной флотации путем учета всех влияющих контролируемых параметров технологического процесса и управление качеством выходного продукта таким образом, чтобы отклонение от заданного значения качества было минимальным. 6 ил., 3 табл.

Изобретение относится к способу извлечения лантана (III) из растворов солей. Способ включает флотоэкстракцию с использованием органической фазы, в качестве которой используют изооктиловый спирт, и собирателя, в качестве которого используют ПАВ анионного типа - додецилсульфат натрия в концентрации, соответствующей стехиометрии: La+3+3NaDS=La(DS)3+3Na+, где La+3 - катион лантана (III), DS- - додецилсульфат-ион. При этом флотоэкстракцию осуществляют при pH=6,8-8,5 и соотношении органической и водной фаз 1/20. Изобретение обеспечивает увеличение степени извлечения лантана (III). 1 ил.

Изобретение может быть использовано в обогащении меди и серебра для переработки сульфидно-окисленных медных руд. Перед подачей на кислотное выщелачивание при перемешивании коллективного концентрата, полученного из сульфидно-окисленной медной руды, осуществляют стадиальную коллективную флотацию с использованием добавки сульфида натрия. Перед первой стадией коллективной флотацией руду измельчают до частиц 140-190 мкм, а хвосты направляют на вторую стадию коллективной флотации. Перед началом второй стадии упомянутые хвосты измельчают до частиц 60-90 мкм. При этом сульфид натрия на стадиях коллективной флотации вводят через заранее определенные промежутки времени. Перед началом извлечения меди и серебра флотацией из кека выщелачивания концентрата кек измельчают до частиц 20-30 мкм. Техническим результатом является высокое извлечение меди и серебра, а также получение медного концентрата высокого качества. 1 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к способу очистки оборотных вод предприятий цветной металлургии. Способ подготовки оборотной воды при флотационном обогащении включает дозировку реагентов для нейтрализации оборотной воды, осаждения тяжелых металлов и сульфгидрильных собирателей по электрохимическим параметрам оборотной воды. В потоке воды или пульпы измеряют разность потенциалов между двумя электродами, один из которых является молибденовым, а другой является или аргентитовым, или кадмиевым, или оловянным, или сурьмяным. По отклонению измеренной разности потенциалов по меньшей мере одной биметаллической пары от заданной оптимальной величины корректируют подачу реагентов. Для нейтрализации оборотной воды используют кислоту, например, серную кислоту, или щелочь, например известковое молоко, корректировку дозы которых осуществляют по разности потенциалов биметаллической пары, включающей кадмиевый и молибденовый электроды, таким образом, что при увеличении разности потенциалов Δ(Cd-Mo) увеличивают дозировку щелочи, а при уменьшении разности потенциалов Δ(Cd-Mo) снижают дозировку щелочи. В качестве реагента для осаждения тяжелых металлов применяют соли сероводородной кислоты и ее производные, например, Na2S, NaHS, корректировку дозы которой осуществляют по разности потенциалов биметаллической пары, включающей аргентитовый и молибденовый электроды, таким образом, что при увеличении разности потенциалов Δ(Ag2S-Mo) увеличивают дозировку реагента, а при уменьшении разности потенциалов Δ(Ag2S-Mo) снижают дозировку. В качестве реагента для осаждения сульфгидрильных собирателей применяют медный купорос, корректировку дозы которого осуществляют по разности потенциалов биметаллической пары, включающей аргентитовый и молибденовый электроды, таким образом, что при увеличении разности потенциалов Δ(Ag2S-Mo) уменьшают дозировку реагента, а при увеличении разности потенциалов Δ(Ag2S-Mo) уменьшают дозировку. При одновременной обработке воды для нейтрализации кислотности с помощью дозировки щелочи и осаждения тяжелых металлов с помощью солей сероводородной кислоты и ее производных используют три металлических электрода: аргентитовый, молибденовый и сурьмяный. Корректировка подачи щелочи осуществляется таким образом, что при увеличении разности потенциалов Δ(Sb-Mo) увеличивают дозировку щелочи, а при уменьшении разности потенциалов Δ(Sb-Mo) снижают дозировку щелочи. Корректировку расхода солей сероводородной кислоты и ее производных осуществляют таким образом, что при увеличении разности потенциалов Δ(Ag2S-Mo) увеличивают дозировку реагента, а при уменьшении разности потенциалов Δ(Ag2S-Mo) снижают дозировку реагента. Технический результат повышение точности и надежность подачи реагентов на оптимальном уровне, расход которых корректируется по измеренному электрохимическому потенциалу оборотной воды. 6 з.п.ф-лы, 12 ил., 8 табл., 3 пр.

Изобретение относится к области обогащения полезных ископаемых, в частности к флотационному выделению золота из окисленного глинистого сырья, и может быть использовано при флотационном обогащении золота из окисленных золотоносных руд коры выветривания и техногенного сырья, содержащих благородный металл в мелких и тонких классах. Способ флотационного обогащения глинистого золотосодержащего сырья включает кондиционирование измельченной пульпы и обработку реагентами - собирателем, вспенивателем. Во флотационную пульпу дополнительно вводят флокулянт анионного состава серии Magnofloc при соотношении собирателя и флокулянта 1:0,017-1:0,03 и времени флотации 7 мин. Технический результат изобретения - повышение извлечения золота из глинистых окисленных золотоносных руд. 1 табл., 9 пр.
Изобретение относится к области металлургии драгоценных и благородных металлов и может быть использовано для переработки лома радиоэлектронных изделий для получения драгоценных металлов высокой чистоты. Исходные платы загружают в типовую молотковую дробилку МД-1 с установленными типовыми ситами. После дробления плат измельченную фракцию загружают во флотационную машину ФЛМ-1. Металлическую фракцию после флотации промывают водой и сушат на воздухе. Далее металлическую фракцию смешивают с тетрафтороброматом калия в массовом соотношении 1:10 и сплавляют в муфельной печи. После остывания полученный плав растворяют в воде. Оставшийся нерастворимый осадок отделяют на бумажном фильтре, сушат на воздухе и отправляют на аффинаж. Техническим результатом является выделение драгоценных металлов повышенной чистоты. 2 пр.

Предложенное изобретение относится к способу флотации минерального сырья при использовании карбоксиметилцеллюлозы. Способ флотации включает первую стадию, включающую использование первой карбоксиметилцеллюлозы (КМЦ) в камере первой флотации, и последующую стадию, включающую использование второй КМЦ в камере последующей флотации, при этом первая и вторая КМЦ демонстрируют различные характеристики. Первая КМЦ характеризуется степенью замещения (СЗ), которая отличается от значения СЗ второй КМЦ, предпочтительно значение СЗ первой КМЦ меньше значения СЗ второй КМЦ. Различие в значениях СЗ составляет по меньшей мере 0,4. Первая КМЦ имеет вязкость, которая отличается от вязкости второй КМЦ. Первая КМЦ имеет молекулярную массу, которая отличается от молекулярной массы второй КМЦ. Технический результат – повышение эффективности флотации. 2 н. и 16 з.п. ф-лы, 5 ил., 3 табл.
Наверх