Углерод-карбидокремниевый композиционный материал и способ изготовления из него герметичных изделий



Углерод-карбидокремниевый композиционный материал и способ изготовления из него герметичных изделий
Углерод-карбидокремниевый композиционный материал и способ изготовления из него герметичных изделий
Углерод-карбидокремниевый композиционный материал и способ изготовления из него герметичных изделий
Углерод-карбидокремниевый композиционный материал и способ изготовления из него герметичных изделий
Углерод-карбидокремниевый композиционный материал и способ изготовления из него герметичных изделий

 


Владельцы патента RU 2570073:

Открытое Акционерное Общество "Уральский научно-исследовательский институт композиционных материалов" (RU)

Изобретение относится к области углерод-каридокремниевых композиционных материалов (УККМ), предназначенных для работы в условиях высокого теплового нагружения и окислительной среды, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности под избыточным давлением. Углерод-карбидокремниевый композиционный материал содержит армирующие углеродные волокна и углерод-карбидокремниевую матрицу, открытые поры которой заполнены свободным кремнием; причем компоненты материала имеют близкие значения КЛТР. В нем свободный кремний распределен по всему объему материала, а размер его отдельных фрагментов вблизи наружной поверхности материала не превышает 30 мкм; при этом свободный кремний содержит в своей структуре растворенные в нем углерод и азот. В порах заготовки на основе углеродной ткани и пироуглерода формируют углерод в виде ультра- и/или нанодисперсных частиц, способных адсорбировать азот и углеродсодержащие газы, и проводят ее силицирование паро-жидкофазным методом. При этом массоперенос кремния в поры материала осуществляют путем капиллярной конденсации его паров на стадии нагрева и/или изотермической выдержки в интервале температур 1300-1500°C. Технический результат - обеспечение возможности использования герметичных изделий из УККМ при температурах выше температуры плавления кремния, в том числе в вакууме. 2 н.п. ф-лы, 1 табл., 2 ил.

 

Изобретение относится к области углерод-каридокремниевых композиционных материалов (УККМ), предназначенных для работы в условиях высокого теплового нагружения и окислительной среды, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности под избыточным давлением.

Известен УККМ, содержащий армирующие углеродные волокна, углеродную матрицу и карбид кремния [пат. РФ №2084425, 1997 г.].

Недостатком материала является невозможность изготовления из него герметичных изделий, что обусловлено наличием у материала открытой пористости.

Наиболее близким к заявляемому по технической сущности и достигаемому эффекту является углерод-карбидокремниевый композиционный материал, содержащий армирующие углеродные волокна и углерод-карбидокремниевую матрицу, открытые поры которой заполнены свободным кремнием; причем компоненты материала имеют близкие значения КЛТР [Известия высших учебных заведений. Серия «Химия и химическая технология», 2012 г., т. 55, вып. 6, с. 64-65].

Благодаря устранению возможности образования в УККМ на стадии его охлаждения (с температуры получения) усадочных трещин, а также благодаря заполнению открытых пор УККМ свободным кремнием появляется возможность изготовления из него герметичных изделий для работы в условиях теплового нагружения и окислительной среды.

Недостатком материала является невозможность его использования при температурах выше температуры плавления кремния, в том числе - в вакууме.

Известен способ изготовления изделий из УККМ, включающий изготовление пористой заготовки из углеродсодержащего материала и ее силицирование парофазным методом [пат. РФ №1834839, 1993 г.].

Способ не обеспечивает возможность изготовления герметичных изделий из УККМ.

Наиболее близким к заявляемому по технической сущности и достигаемому эффекту является способ изготовления изделий из УККМ, включающий изготовление заготовки из пористого углеродсодержащего материала, компоненты которого имеют близкий КЛТР, и ее силицирование [пат. РФ №2480433, 2013 г.]. В соответствии с ним силицированию подвергают заготовку из углеродсодержащего материала с размером пор до 120 мкм; при этом силицирование осуществляют паро-жидкофазным методом при технологических параметрах, позволяющих сперва получить углеродкарбидокремниевый материал, а затем заполнить свободным кремнием его открытые поры, в том числе достаточно крупные.

Способ позволяет изготавливать герметичные изделия из УККМ.

Недостатком способа является то, что изготовленные в соответствии с ним герметичные изделия невозможно использовать при температуре выше температуры плавления кремния, в том числе в вакууме.

Задачей изобретения является обеспечение возможности использования герметичных изделий из УККМ при температурах выше температуры плавления кремния, в том числе в вакууме.

При разработке нового УККМ был изобретен новый способ изготовления изделий из указанного материала.

Применение их позволит решить поставленную задачу с получением требуемого технического результата. Следовательно, заявленные изобретения удовлетворяют требованию единства изобретения.

Поставленная задача решается за счет того, что в углерод-карбидокремниевом композиционном материале, содержащем армирующие углеродные волокна и углерод-карбидокремниевую матрицу, открытые поры которой заполнены свободным кремнием; причем компоненты материала имеют близкие значения КЛТР, в соответствии с заявляемым техническим решением свободный кремний распределен по всему объему материала, а размер его отдельных фрагментов вблизи наружной поверхности материала не превышает 30 мкм; при этом свободный кремний содержит в своей структуре растворенные в нем углерод и азот.

Распределение свободного кремния по всему объему УККМ придает материалу пониженную проницаемость.

Непревышение отдельными фрагментами свободного кремния размера в 30 мкм позволяет исключить образование трещин в УККМ как в процессе получения материала, так и в процессе его эксплуатации. Кроме того, ограничение в размерах отдельных фрагментов свободного кремния в УККМ, а также то, что он содержит в своей структуре растворенные в нем углерод и азот, позволяет в период нагрева УККМ до температур выше температуры плавления кремния, исключить его выпотевание из пор материала, которые до их заполнения свободным кремнием были открытыми. Обусловлено это тем, что он (свободный кремний) удерживается в ультратонких порах капиллярными силами, а также тем, что его свойства претерпели некоторые изменения под влиянием растворенных в нем углерода и азота с образованием соответствующих сплавов.

При превышении отдельными фрагментами свободного кремния размера в 35 мкм возрастает вероятность как возникновения трещинок в УККМ под воздействием расширяющегося при затвердевании кремния, так и его выпотевания при температурах выше температуры плавления кремния.

В новой совокупности существенных признаков у объекта изобретения появляется новое свойство: способность УККМ сохранять низкую проницаемость при нагреве до температур выше температуры плавления кремния.

Благодаря новому свойству решается поставленная задача, а именно: обеспечивается возможность использования герметичных изделий, изготовленных из этого материала, при температурах выше температуры плавления кремния, в том числе в вакууме.

Поставленная задача решается также за счет того, что в способе изготовления герметичных изделий, включающем изготовление заготовки из пористого углеродсодержащего материала, компоненты которого имеют близкий КЛТР, и ее силицирование паро-жидкофазным методом, в соответствии с заявляемым техническим решением, перед силицированием в порах материала заготовки формируют углерод в виде ультра- и/или нанодисперсных частиц, адсорбирующих азот и углеродсодержащие реакторные газы, а массоперенос кремния в поры материала осуществляют путем капиллярной конденсации его паров на стадии нагрева и/или изотермической выдержки в интервале температур 1300-1500°C.

Формирование в порах материала заготовки перед ее силицированием углерода в виде ультра- и/или нанодисперсных частиц позволяет все открытые поры, включая и крупные, перевести в разряд ультратонких, оставив их преимущественно открытыми, а значит, доступными парам кремния. Кроме того, благодаря адсорбции азота и углеродсодержащих реакторных газов ультра- и/или нанодисперсными частицами углерода создаются условия для насыщения карбида кремния и свободного кремния углеродом и азотом.

Осуществление массопереноса кремния в поры материала путем капиллярной конденсации его паров на стадии нагрева и/или изотермической выдержки в интервале температур 1300-1500°C позволяет заполнить кремнием сколь угодно мелкие поры, в том числе и ультратонкие. При этом параллельно с массопереносом кремния в поры углеродсодержащего материала протекает процесс карбидизации кремния и углерода с завершением его на изотермической выдержке при более высокой температуре. Часть же избыточного кремния остается в виде свободного кремния. Процесс карбидизации кремния сопровождается растворением в нем азота и избыточного углерода, которые по завершении указанного процесса диффундируют в свободный кремний и, растворяясь в нем, образуют сплавы кремния с азотом и углеродом.

При температуре ниже 1300°C возникает вероятность конденсации паров кремния преимущественно на поверхности изделия. При температуре выше 1500°C повышается вероятность незаполнения особенно тонких пор из-за высокой скорости конденсации паров кремния.

В новой совокупности существенных признаков у объекта изобретения возникает новое свойство: способность к изготовлению изделий из УККМ со структурой, позволяющей сохранить в них низкую проницаемость при нагреве до температур выше температуры плавления кремния.

Благодаря новому свойству решается поставленная задача, а именно: обеспечивается возможность использования герметичных изделий из УККМ при температурах выше температуры плавления кремния, в том числе в вакууме.

На фиг. 1 приведена микроструктура УККМ. Она свидетельствует о следующем:

1) свободный кремний действительно распределен по всему объему материала;

2) размер отдельных фрагментов свободного кремния в порах материала вблизи его наружной поверхности действительно не превышает 3 мкм.

На фиг. 2 приведена микроструктура УККМ, подвергнутого нагреву в вакууме до температуры 1800°C с выдержкой при ней в течение 3 часов. Она свидетельствует об отсутствии выпотевания свободного кремния из поверхностных пор. В результате испытаний образцов из заявляемого УККМ на газопроницаемость установлено, что после нагрева образцов в вакууме до 1800°C с выдержкой при ней в течение 3 часов коэффициент газопроницаемости материала практически не изменился (смотри таблицу).

Способ изготовления изделий из заявляемого УККМ осуществляют следующим образом. Одним из известных способов изготавливают заготовку из пористого углеродсодержащего материала, компоненты которого имеют близкий КЛТР. Затем в порах материала заготовки формируют углерод в виде ультра- и/или нанодисперсных частиц, адсорбирующих азот и углеродсодержащие реакторные газы. После этого проводят силицирование заготовки паро-жидкофазным методом. При этом массоперенос кремния в поры материала осуществляют путем капиллярной конденсации его паров на стадии нагрева и/или изотермической выдержки в интервале температур 1300-1500°C.

Ниже приведены примеры конкретного выполнения способа.

Во всех примерах изготавливали пластины размером 120×150×6-8 мм.

Пример 1

Каркас на основе углеродной ткани марки Урал-ТМ-4 уплотнили пироуглеродом термоградиентным методом при температуре в зоне пиролиза 980°C со скоростью движения зоны 0,5 мм/час. В результате получили заготовку из УУКМ плотностью 1,41 г/см3 и открытой пористостью 11,8%, в котором компоненты имели близкий КЛТР. Затем в порах материала заготовки сформировали углерод в виде нанодисперсных частиц. Осуществили это путем выращивания в порах материала углеродных нанотрубок из газовой фазы каталитическим методом. Расчетная плотность материала перед силицированием составила 1,52 г/см3. Затем провели силицирование заготовки паро-жидкофазным методом. При этом массоперенос кремния в поры материала осуществили путем капиллярной конденсации его паров на стадии ступенчатого нагрева с 1300 до 1500°C и во время часовой выдержки при 1500°C, для чего тигли с кремнием нагревали до температуры, превышающей температуру силицируемой заготовки. Для завершения карбидизации кремния и углерода заготовку нагрели до 1800°C и выдержали 1 час. В результате получили УККМ с плотностью 1,83 г/см3 и открытой пористостью 0,09%.

Пример 2

Пластину изготавливали аналогично примеру 1 с тем существенным отличием, что заготовку из УУКМ изготовили следующим образом. На основе каркаса из углеродной ткани марки Урал-ТМ-4 и коксообразующего связующего (фенолформальдегидного связующего марки БЖ-3) сформировали углепластиковую заготовку. Заготовку карбонизовали, после чего уплотнили пироуглеродом вакуумным изотермическим методом до плотности 1,20 г/см3 и открытой пористости 14,7%. Компоненты полученного УУКМ имели близкий КЛТР. Расчетная плотность материала после формирования в его порах углерода в форме наночастиц составила 1,39 г/см3. В результате силицирования получен УККМ с плотностью 1,91 г/см3 и открытой пористостью 0,08%.

Остальные примеры конкретного выполнения способа приведены в таблице, где примеры 1-5 соответствуют заявляемым пределам, в которых примеры 4, 5 - с предельными значениями по температуре массопереноса кремния в поры материала, а примеры 6, 7 - с запредельными значениями.

На основании анализа таблицы можно сделать следующие выводы:

1. Изготовление изделий в соответствии с заявляемым способом (примеры 1-5) позволяет получить УККМ с размером отдельных фрагментов свободного кремния вблизи наружной поверхности изделия не более 3 мкм (что соответствует заявляемому материалу). В свою очередь малый размер фрагментов свободного кремния, а также распределение его по всему объему материала, придает ему не только низкую изначальную проницаемость, но и позволяет сохранить низкую проницаемость после трехчасовой выдержки материала в вакууме при 1800°C.

2. Осуществление капиллярной конденсации паров кремния при температурах ниже нижнего и выше верхнего из заявляемых пределов (примеры 6, 7) приводит к существенному увеличению проницаемости УККМ даже в изначальном (до выдержки в вакууме) состоянии.

3. Изготовление изделий в соответствии со способом-прототипом (примеры 8, 9) приводит к получению УККМ, в котором размер отдельных фрагментов свободного кремния находится в пределах сотен микрон. Следствием этого является то, что изначально сравнительно низкая (но более высокая, чем у заявляемого материала) проницаемость УККМ существенно увеличивается после его выдержки в вакууме при 1800°C, что обусловлено выпотеванием свободного кремния из крупных пор.

1. Углерод-карбидокремниевый композиционный материал для герметичных изделий, содержащий армирующие углеродные волокна и углерод-карбидокремниевую матрицу, открытые поры которой заполнены свободным кремнием, причем компоненты материала имеют близкие значения КЛТР, отличающийся тем, что в нем свободный кремний распределен по всему объему материала, а размер отдельных его фрагментов вблизи наружной поверхности материала не превышает 30 мкм; при этом по крайней мере часть свободного кремния содержит в своей структуре растворенные в нем углерод и азот.

2. Способ изготовления герметичных изделий из углерод-карбидокремниевого композиционного материала, включающий изготовление заготовки из пористого углеродсодержащего материала, компоненты которого имеют близкий КЛТР, и ее силицирование паро-жидкофазным методом, отличающийся тем, что перед силицированием в порах материала заготовки формируют углерод в виде ультра- и/или нанодисперсных частиц, адсорбирующих азот и углеродсодержащие газы, а массоперенос кремния в поры материала осуществляют путем капиллярной конденсации его паров на стадии нагрева и/или изотермической выдержки в интервале температур 1300-1500°C.



 

Похожие патенты:

Изобретение относится к углерод-карбидокремниевым композиционным материалам. Технический результат изобретения заключается в повышении эксплуатационных характеристик изделий.

Изобретение относится к области получения конструкционных материалов. Технический результат изобретения заключается в повышении равномерности распределения компонентов матрицы по толщине материала изделия.

Изобретение относится к области получения композиционных материалов на основе углерод-керамической матрицы и изделий из них, теплозащитного, конструкционного назначений, предназначенных для эксплуатации в условиях комплексных статических и динамических нагрузок при температурах до 2000°С в окислительной и абразивосодержащих средах (авиакосмическая техника и металлургия).

Изобретение относится к области углерод-карбидокремниевых композиционных материалов (УККМ), предназначенных для работы в условиях высокого теплового нагружения и окислительной среды, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности под избыточным давлением.

Изобретение относится к области композиционных материалов с углерод-карбидокремниевой матрицей, предназначенных для работы в условиях высокого теплового нагружения и одностороннего воздействия окислительной среды с высоким окислительным потенциалом.

Изобретение может быть использовано при получении конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, для химической, нефтехимической, химико-металлургической промышленности и авиатехники.

Изобретение может быть использовано при получении конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, для химической, нефтехимической, химико-металлургической промышленности и авиатехники.

Группа изобретений относится к области керамических композиционных материалов, армированных дисперсными частицами тугоплавких соединений, а также теплонагруженных изделий из данных материалов, и может быть использована в энергетическом машиностроении и аэрокосмической технике, в частности для деталей горячего тракта газотурбинных двигателей (ГТД).

Изобретение относится к конструкциям, работающим в условиях теплового и механического нагружения в окислительной среде, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности.

Изобретение относится к области получения композиционных материалов на основе углерода и карбида кремния. Технический результат изобретения заключается в повышении надежности работы изделия в условиях высокотемпературного теплового и механического нагружения в окислительной среде.

Изобретение относится к углерод-карбидокремниевым композиционным материалам. Технический результат изобретения заключается в повышении эксплуатационных характеристик изделий.

Изобретение относится к области получения конструкционных материалов. Технический результат изобретения заключается в повышении равномерности распределения компонентов матрицы по толщине материала изделия.

Изобретение относится к области получения композиционных материалов на основе углерод-керамической матрицы и изделий из них, теплозащитного, конструкционного назначений, предназначенных для эксплуатации в условиях комплексных статических и динамических нагрузок при температурах до 2000°С в окислительной и абразивосодержащих средах (авиакосмическая техника и металлургия).

Изобретение относится к области углерод-карбидокремниевых композиционных материалов (УККМ), предназначенных для работы в условиях высокого теплового нагружения и окислительной среды, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности под избыточным давлением.

Изобретение относится к области композиционных материалов с углерод-карбидокремниевой матрицей, предназначенных для работы в условиях высокого теплового нагружения и одностороннего воздействия окислительной среды с высоким окислительным потенциалом.

Изобретение может быть использовано при получении конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, для химической, нефтехимической, химико-металлургической промышленности и авиатехники.

Изобретение может быть использовано при получении конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, для химической, нефтехимической, химико-металлургической промышленности и авиатехники.

Изобретение относится к производству изделий из углеродсодержащих материалов и предназначено для защиты от окисления изделий, работающих к условиях окислительной среды при высоких температурах.
Изобретение относится к области получения тонкостенных трубчатых элементов на основе карбида кремния. Технический результат изобретения заключается в повышении термо-, радиационно- и химической стойкости изделий.

Изобретение относится к области получения композиционных материалов на основе углерода и карбида кремния. Технический результат изобретения заключается в повышении надежности работы изделия в условиях высокотемпературного теплового и механического нагружения в окислительной среде.
Изобретение может быть использовано при изготовлении электронных и оптоэлектронных устройств, а также солнечных батарей. Исходный графит диспергируют иглофрезерованием с получением продукта диспергирования, содержащего графен и графитовые элементы.
Наверх