Способ анализа устройства

Авторы патента:

 


Владельцы патента RU 2570093:

ФЛЕКСЕНЭБЛ ЛИМИТЕД (GB)

Использование: для выяснения причин отказов устройства или для оценки качества процесса производства внутренней части электронного устройства. Сущность изобретения заключается в том, что способ, в котором выполняют анализ образца электронного устройства посредством замера некоторого свойства в нескольких точках указанного образца и подвергают, до выполнения анализа, указанные несколько точек, по меньшей мере, одной обработке, увеличивающей различие указанного свойства, по меньшей мере, в двух элементах образца электронного устройства, представляющих собой, по меньшей мере, два слоя пакета слоев, включенного в электронное устройство, при этом указанная обработка включает резку пакета слоев таким образом, что создается различие морфологии в поверхности среза, по меньшей мере, между двумя из указанных слоев пакета. Технический результат: обеспечение возможности облегчения исследования качества электронного устройства. 3 з.п. ф-лы, 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к способу анализа электронного устройства.

Уровень техники

Для выяснения причин, например, отказов устройства или для оценки качества процесса производства может быть полезно исследовать микроструктуру внутренней части электронного устройства.

Раскрытие изобретения

Задача настоящего изобретения заключается в том, чтобы предложить способ, позволяющий облегчить такое исследование.

Изобретением предлагается способ, в котором выполняют анализ образца электронного устройства посредством замера некоторого свойства в нескольких точках указанного образца, и подвергают, до выполнения анализа, указанные несколько точек, по меньшей мере, одной обработке, увеличивающей различие указанного свойства, по меньшей мере, в двух элементах образца электронного устройства.

В одном из вариантов осуществления изобретения свойство выбирают из группы, включающей механическое свойство, физическое свойство, химическое свойство и электрическое свойство.

В одном из вариантов осуществления анализ выполняют по методике, выбранной из группы, включающей растровую электронную микроскопию, просвечивающую электронную микроскопию и атомно-силовую микроскопию.

В одном из вариантов осуществления, по меньшей мере, два элемента представляют собой, по меньшей мере, два слоя пакета слоев.

В одном из вариантов осуществления электронное устройство включает пакет слоев, а обработка включает резку пакета слоев таким образом, что создается различие морфологии поверхности среза между, по меньшей мере, двумя из слоев пакета.

В одном из вариантов осуществления обработка является химической обработкой.

В одном из вариантов осуществления свойство представляет собой интенсивность рассеяния электронов, а химическая обработка увеличивает различие интенсивности рассеяния электронов, по меньшей мере, в двух элементах.

В одном из вариантов осуществления способ включает подготовку образца электронного устройства посредством вскрытия внутренней части электронного устройства.

В одном из вариантов осуществления электронное устройство включает матрицу тонкопленочных транзисторов.

Краткое описание графических материалов

Варианты осуществления настоящего изобретения описываются ниже исключительно на примерах со ссылкой на Фиг.1, иллюстрирующую способ согласно одному из вариантов осуществления настоящего изобретения.

Осуществление изобретения

Из органического электронного устройства 2, например, дисплея из органических тонкопленочных транзисторов, органического светоизлучающего диода или органической солнечной батареи, включающего матрицу из одного или нескольких полимерных слоев, острым скальпелем, пилой или с помощью просечки вырезают (ШАГ 10) маленький образец 4. Длина и ширина этого образца 4 составляет несколько миллиметров.

Затем этот образец 4 на первой стадии ультрамикротомии погружают (ШАГ 20) в блок 6 полимерной эпоксидной смолы. При использовании методики крио-ультрамикротомии в качестве полимерной смолы, в которую погружают образец 4, может быть применена акриловая смола. Для соответствующих образцов возможна также ультрамикротомия без погружения в смолу.

Далее эпоксидный блок, содержащий погруженный образец 4, подвергают грубой торцовке (ШАГ 30) с использованием торцовочного устройства для обнажения поверхности поперечного сечения образца 4, после чего следует дальнейшая обработка (ШАГ 40) для формирования пирамидальной вершины обнаженной поверхности.

Далее применяют осциллирующий алмазный нож для срезки (ШАГ 50) с пирамидальной вершины тонких слоев (ламелей) 8 поперечного сечения толщиной, например, около 20-150 нм.

Эти сверхтонкие ламели 8 поперечного сечения прозрачны для электронного пучка электронного микроскопа.

Для увеличения контраста различных органических, полимерных и полимерно-композитных слоев органического электронного устройства эти сверхтонкие ламели 8 поперечного сечения потом химически обрабатывают (протравливают - ШАГ 70), добиваясь более контрастного изображения слоев при просвечивающей электронной микроскопии (ТЕМ, transmission electron microscopy - просвечивающая электронная микроскопия). Другими словами, ламели 8 химически обрабатывают, чтобы увеличить различие способности рассеяния электронов различных слоев электронного устройства. Химически обработанные таким образом ламели затем подвергают ТЕМ для получения изображений высокого разрешения, на которых можно ясно различить (ШАГ 80), по меньшей мере, два различных органических слоя органического электронного устройства и границу (границы) раздела между этими органическими слоями.

Интенсивность рассеяния электронов некоторого материала, в общем случае, зависит от количества электронов в атомах, составляющих материал (т.е. от атомного номера атомов материала). Органические материалы, полимеры и полимерные композиты, применяемые в электронных устройствах, состоят, в основном, из элементов углерода С и водорода Н, и интенсивности рассеяния электронов таких материалов, как правило, очень близки. Без определенной обработки, увеличивающей различие интенсивности рассеяния электронов разными слоями, может оказаться затруднительно различить эти слои на электронно-микроскопическом изображении.

Согласно данному варианту осуществления настоящего изобретения ламели 8 химически обрабатывают химическим агентом, избирательно встраивающим атомы с относительно высоким атомным номером в один или несколько слоев (но не во все слои) и в одну или несколько границ (но не во все границы) раздела, составляющих ламели 8. В качестве химических агентов могут быть использованы, например, такие соединения, как хлоросульфоновая кислота, гидразин, фосфорно-вольфрамовая кислота и соединения тяжелых металлов, например, RuO4, RuCl3, NaClO, OsO4, уксуснокислый уранил или йод.

В одной из модификаций вышеописанного варианта осуществления для получения ламелей вместо алмазного ножа используют методику сфокусированного ионного пучка. С помощью сфокусированного ионного пучка сверхтонкие ламели 8 поперечного сечения могут быть получены непосредственно из образца 4 или из органического электронного устройства 2, при этом отпадает необходимость в шагах подготовительной вырезки, погружения и торцевания.

В другой модификации химическая обработка того же типа может быть применена для увеличения контраста различных слоев на растровых электронно-микроскопических снимках (SEM, scanning electron microscope - растровая электронная микроскопия).

Согласно другому варианту осуществления настоящего изобретения предпочтительно использовать различие механических свойств, таких, например, как твердость, жесткость, упругость и т.д., отдельных органических, полимерных и/или полимерно-композитных слоев электронного устройства. Погруженный образец (срез ультрамикротома) разрезают под таким углом и/или с такой скоростью резания, при которых эти различия механических свойств отдельных слоев проявляются в различии морфологии обнажившихся поверхностей разреза этих слоев. Различия морфологии поверхностей хорошо различимы на изображениях SEM или атомно-силовой микроскопии (AFM, Atomic Force Microscopy - атомно-силовая микроскопия) обнажившихся поверхностей, таким образом, данная методика облегчает визуализацию различных слоев, составляющих электронное устройство, и границ раздела между ними.

Вышеописанная методика облегчает визуализацию различных органических слоев в электронном устройстве и границ раздела между ними. Толщины слоев могут быть измерены с высокой степенью точности, и может быть лучше исследовано положение и качество границ раздела.

Вышеописанная методика в особенности подходит для органических и полимерных электронных устройств, содержащих пакеты слоев органических материалов и/или комбинации слоев органических материалов и слоев неорганических материалов.

Специалисту понятно, что, в дополнение к любым явно упомянутым выше модификациям, возможны разнообразные иные модификации описанных вариантов осуществления, не отступающие от объема настоящего изобретения.

1. Способ, в котором выполняют анализ образца электронного устройства посредством замера некоторого свойства в нескольких точках указанного образца и подвергают, до выполнения анализа, указанные несколько точек, по меньшей мере, одной обработке, увеличивающей различие указанного свойства, по меньшей мере, в двух элементах образца электронного устройства, представляющих собой, по меньшей мере, два слоя пакета слоев, включенного в электронное устройство, при этом указанная обработка включает резку пакета слоев таким образом, что создается различие морфологии в поверхности среза, по меньшей мере, между двумя из указанных слоев пакета.

2. Способ по п. 1, отличающийся тем, что анализ выполняют по методике, выбранной из группы, включающей растровую электронную микроскопию, просвечивающую электронную микроскопию и атомно-силовую микроскопию.

3. Способ по п. 1, отличающийся тем, что включает подготовку указанного образца электронного устройства посредством вскрытия внутренней части электронного устройства.

4. Способ по любому из предыдущих пунктов, отличающийся тем, что электронное устройство включает матрицу тонкопленочных транзисторов.



 

Похожие патенты:

Изобретение относится к технике измерения тепловых параметров полупроводниковых приборов и интегральных микросхем и может быть использовано для контроля качества и оценки температурных запасов цифровых интегральных микросхем на выходном и входном контроле.

Использование: для контроля качества цифровых интегральных микросхем КМОП логическими элементами и оценки их температурных запасов. Сущность изобретения заключается в том, что способ включает подачу напряжения на контролируемую микросхему, переключение логического состояния греющего логического элемента последовательностью периодических импульсов, измерение изменения температурочувствительного параметра, определение теплового сопротивления, при этом греющий логический элемент переключается высокочувствительными импульсами, а в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре.

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов.

Изобретение относится к измерительной технике, представляет собой устройство для определения исправности полупроводниковых диодов и может быть использовано для автоматического бесконтактного контроля технического состояния мостовых диодных выпрямителей.

Изобретение относится к области тестирования дискретных объектов большой размерности. Техническим результатом является повышение глубины локализации неисправностей.

Изобретение относится к технике испытаний и может быть использовано при наземной экспериментальной отработке радиоэлектронной аппаратуры космических аппаратов в диапазоне давлений окружающей среды от атмосферного до соответствующего глубокому вакууму.

Изобретение относится к микроэлектронике, а именно к способам испытаний интегральных схем (ИС) на коррозионную стойкость. Сущность: перед испытанием ИС проводят проверку внешнего вида, электрических параметров и проверку герметичности, нагревают до температуры плюс 125°С со скоростью не более 100°С/мин, выдерживают при этой температуре 1 ч, резко охлаждают до минус 55°С со скоростью не более 100°С/мин, выдерживают при данной температуре 0,5 ч, плавно нагревают до плюс 2°С в течение 1 ч.

Изобретение относится к области приборостроения и может быть использовано для измерения температуры активной области светоизлучающих диодов. Заявлен cпособ измерения переходных тепловых характеристик светоизлучающих диодов (СИД), при котором инжекционный ток подают в виде последовательности импульсов нарастающей длительности с периодом между импульсами, достаточными для остывания активной области и не менее времени считывания сигнала с выхода фотоприемной линейки.

Способ предназначен для использования на выходном и входном контроле качества сверхбольших интегральных схем (СБИС) - микропроцессоров и микроконтроллеров - и оценки их температурных запасов.

Изобретение относится к измерительной технике и может применяться для исследования измерительных характеристик и контроля точности работы измерительного устройства многоточечных измерительных систем с входной коммутацией датчиков.

Изобретение относится к встроенному логическому анализатору и, в частности, к программируемому встроенному логическому анализатору для анализа электронной схемы. Устройство для тестирования и отладки электронной схемы, содержащее логический анализатор, имеющий первый вход, принимающий множество сигналов, и выход для обеспечения индикации обнаружения, с помощью логического анализатора, по меньшей мере одного запускающего события; и блок со встроенным самотестированием (BIST), имеющий первый вход для приема одного или более сигналов, появляющихся на первом входе логического анализатора, второй вход, соединенный с выходом логического анализатора для избирательного задействования блока BIST, причем блок BIST генерирует и поддерживает сигнатуру на основании первого и второго его входов. Технический результат заключается в расширении функциональных возможностей. 3 н. и 16 з.п. ф-лы, 17 ил.
Наверх