Способ получения водорастворимых полимерных комплексов радиоизотопов



Способ получения водорастворимых полимерных комплексов радиоизотопов
Способ получения водорастворимых полимерных комплексов радиоизотопов
Способ получения водорастворимых полимерных комплексов радиоизотопов
Способ получения водорастворимых полимерных комплексов радиоизотопов
Способ получения водорастворимых полимерных комплексов радиоизотопов
Способ получения водорастворимых полимерных комплексов радиоизотопов
Способ получения водорастворимых полимерных комплексов радиоизотопов
Способ получения водорастворимых полимерных комплексов радиоизотопов

Владельцы патента RU 2570114:

Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук (RU)

Изобретение относится к способу получения водорастворимых полимерных комплексов радиоизотопов и может быть использовано в области высокомолекулярных соединений и медицине. Способ получения водорастворимых полимерных комплексов радиоизотопов заключается в том, что вначале получают полимер носитель с привитым биологическим вектором и хелатными узлами для связывания радиометалла. Затем проводят процедуру радиомечения. Взаимодействие полимера носителя хелатных узлов с радиоактивным компонентом проводят в спирте, в воде или водно-спиртовом растворе в атмосфере инертного газа при температуре 70°С в течение 20 минут. В качестве полимера носителя используют водорастворимый сополимер N-винилпирролидона с N-аллиламином с молекулярной массой 5000-50000 Да, содержанием хелатных узлов в виде иминодиацетатных фрагментов иминодиуксусной кислоты 1-20 мол.%, содержанием винилпирролидона m=99-80 мол.% и аллиламина n=1-20 мол.%. В качестве радиоактивного компонента используют соединения переходных металлов и лантаноидов в виде следующего ряда [99mTc(СО)3]+, [188Re(CO)3]+, [161Tb(СО)3]+. Изобретение позволяет получить гибридные водорастворимые высокомолекулярные носители радиоизотопов с высоким выходом, не требуя дополнительной очистки конечного продукта. 4 ил., 1 табл., 5 пр.

 

Предложение относится к области химии высокомолекулярных соединений и медицины и касается создания полимерных носителей для радиоизотопов (радиофармпрепаратов (РФП)) для диагностики новообразований организма методами однофотонной эмиссионной томографии (ОФЭКТ), позитронной эмиссионной томографии (ПЭТ) и лечения онкологических заболеваний (бета, гамма-терапия).

В настоящее время известны способы введения радиоизотопов в биоконъюгаты, представляющие собой низкомолекулярные и высокомолекулярные носители радиоизотопов [напр., US 20050169838, 2005; Patent 5102990, 1992]. В качестве носителей для радиоизотопов используются пептиды, стероиды, рецепторные лиганды, жирные кислоты, антитела и др. [например, US 7179444 B2 2009, ЕР 1797904, ЕР 1051980 А2, 1999].

Известны препараты «третьего поколения», а именно, биоконъюгаты, содержащие изотопы 188Re (терапия) и 99mTc (диагностика) [Alberto, et al., ″Journal of the American Chemical Society, vol.120, №31, Aug. 12, 1998, pp.7987-7988; US 20060165594, 2011]. В настоящее время в медицинской практике более 80% исследований, проводимых методом ОФЭКТ, приходится на долю радиоизотопа технеций-99m (99mTc) по причине его доступности (коммерческие генераторы), оптимальным излучательным характеристикам и достаточно большого периода полураспада (T1/2 6 ч, Eγ 142.7 кЭВ)) [М. Welch, M. Redwanly Handbook of Radiopharmaceuticals, 2003].

Известны биоконъюгаты на основе низкомолекулярных пептидов, например, препарат Octreoscan™ (Mallinkrodt) на основе циклического пептида октреотида с введенным изотопом индия-111 [ЕР 1872800, 1996].

Недостатком указанных аналогов является введение металлов в состав малых туморотропных молекул, что приводит к нарушению нативности биомолекулы и, соответственно, чувствительности метода ОФЭКТ и неконтролируемому накоплению радиоактивности в нецелевых органах и тканях организма.

Оправданной альтернативой являются макромолекулы с высокой молекулярной массой (белки, антитела), поскольку введение тяжелого металла не должно существенным образом отражаться на свойствах полученного конъюгата.

При этом известные близкие аналоги предлагаемой заявки представляют собой, в основном, немодифицированные полимерные структуры, такие как циклопептиды [US 7666392, 2010], макроциклические конъюгаты [US 20110293517, 2009], линейные полиэтиленоксиды [US 5583206, 1996], графтированные декстраны [Mol. Pharmaceutics, 2011, 8 (2), pp. 609-620], синтетические биологически активные полимеры [US 6352682, 2002; 20080064841, 2007; US 7951846, 2011].

Недостатками указанных аналогов являются: сложная процедура выделения, очистки и идентификации «холодных» макромолекул; неконтролируемое введение хелатных узлов для связывания радиоизотопов в макромолекулы по причине наличия большого количества свободных активных функциональных амино- и карбоксильных групп; крайне высокая стоимость конечных РФП.

Наиболее близким прототипом по технической сущности и достигаемому результату является конъюгированный сополимер биотина [US 5482698, 1996]. Способ получения сополимера заключается в следующем: а) синтез полимера носителя с привитым биологическим вектором и хелатными узлами для связывания радиометалла; б) процедура радиомечения; в) хроматографическая очистка конечного продукта с получением приемлемой радиохимической чистотой препарата.

Существенным недостатком известного способа является низкий радиохимический выход целевого продукта, очень сложная процедура очистки прекурсора и выделения целевого препарата.

Задачей и положительным результатом заявленного технического решения является разработка способа получения водорастворимых металл-полимерных комплексов радиоизотопов переходных металлов и лантаноидов для лечения и диагностики новообразований организма за счет использования в качестве полимеров-носителей (прекурсоров) синтетических водорастворимых поликатионов - сополимеров N-винилпирролидона (ВП) с с N-аллиламином (АА), содержащих в макромолекуле хелатные узлы в виде иминодиацетатных фрагментов (остатки иминодиуксусной кислоты - ИДУК) и образующих металл-полимерные комплексы.

В результате создаются гибридные водорастворимые системы с полифункциональной биологической активностью для диагностики и терапии новообразований, обладающих собственной иммуностимулирующей активностью (сополимеры ВП), несущие противоопухолевые агенты (радиоизотопы) и обладающие вектором целевого транспорта в злокачественные клетки (поликатионы, получающиеся в результате введения в систему ненасыщенных аминов).

Это позволяет получить синергический эффект при химиотерапии опухолей и снижение иммунодепрессантного эффекта.

Указанная задача и технический результат достигаются за счет того, что способ получения водорастворимых полимерных комплексов включает синтез полимера носителя с привитым биологическим вектором и хелатными узлами для связывания радиометалла и процедуры радиомечения, при этом в качестве полимера носителя используют водорастворимый сополимер N-винилпирролидона с N-аллиламином и молекулярной массой 5000-50000 Да, содержанием хелатных узлов в виде иминодиацетатных фрагментов иминодиуксусной кислоты (ИДУК) 1-20 мол. %, введенных в макромолекулу путем алкилирования звеньев аминосодержащего сополимера монохлоруксусной кислотой в водном щелочном растворе с рН 8-10, содержанием винилпирролидона m=99-80 мол. % и n=1-20 мол. %, в качестве радиоактивного компонента используют соединения переходных металлов и лантаноидов в виде следующего ряда [99mTc(СО)3]+, [188Re(CO)3]+, [161Tb(CO)3]+, а взаимодействие полимера носителя хелатных узлов с радиоактивным компонентом проводят в спирте, в воде или водно-спиртовом растворе в атмосфере инертного газа при температуре 70°С и с концентрацией полимера 10 масс. % в течение 20 минут с получением радиоактивного металл-полимерного конъюгата в различных степенях окисления (+1÷+3) следующего строения:

На фиг. 1 представлены структурные формулы сополимеров N-винилпирролидон с N-аллиламином (ВП-АА) и N-винилпирролидон с N-виниламином (ВП-ВА);

на фиг. 2 - схема синтеза сополимеров-прекурсоров;

на фиг. 3 - хроматограмма конъюгата сополимера с трикарбонилтехнецием [99mTc(CO)3]+, полученным при pH=5.5;

на фиг. 4 - хроматограмма конъюгата сополимера с трикарбонилтехнецием [99mTc(CO)3]+, полученным при pH=8.0.

Поставленная задача решена также описываемым способом получения прекурсора, который включает: на первой стадии синтез сополимеров ВП-АА или N-винилпирролидона с N-виниламином (ВП-ВА); на второй стадии, введение в макромолекулу сополимера остатков иминодиуксусной кислоты (ИДУК) в виде иминодиацетатных фрагментов, путем алкилирования звеньев иминосодержащего сополимера монохлоруксусной кислоты в водном щелочном растворе с pH=8÷10; на третьей стадии связывание полученных хелатных иминодиацетатных групп сополимера с металлоорганическим фрагментом, несущим радиоселективную метку, например, с технецием-99m, причем ввод радиоизотопа осуществляется с использованием низковалентного металлорганического фрагмента трикарбонилтехнеция [99mTc(CO)3]+ в качестве предшественника по схеме:

Поставленная задача решается также путем использования сополимеров со строго заданными молекулярными массами (ММ), 5000-50000 Да и составом-содержанием звеньев ИДУК 1-20 мол.%.

Следует отметить, что в отличие от приведенных аналогов радиохимический синтез целевого полимерного препарата по предлагаемому способу позволяет достигать 90-95% конверсии исходного [99mTc(CO)3]+ в зависимости от pH и времени реакции и не требует дополнительной очистки конечного продукта, что является существенным преимуществом.

Излагаемая сущность данного способа раскрывается ниже на примерах его экспериментального осуществления.

Пример 1. Методика синтеза полимера-носителя (прекурсора) ВП-АА или ВП-ВА с последующим введением в макромолекулярную цепь хелатных групп - остатков иминодиуксусной кислоты (ИДУК).

Сополимеризацию проводили в атмосфере аргона при 60°C в этаноле в течение 48 ч. Массовая концентрация мономеров составляла 50 масс. %, концентрация инициатора АИБН (2,2 - динитрил азоизомасляной кислоты) - 1 масс. % от содержания мономера. Полимеры выделяли осаждением в диэтиловый эфир и очищали диализом на мембране с пределом исключения 1000 Да (Spectra/Por 7, USA) водным 2% раствором NaCl в течение 24 ч и водой также в течение 24 ч. Затем сополимеры подвергали лиофильной сушке.

Введение в состав сополимеров ВП-АА и ВП-ВА остатков иминодиуксусной кислоты осуществляли реакцией первичных аминогрупп сополимеров с монохлоруксусной кислотой (МХУК) в водном растворе при 90°C и pH 10.

К раствору 3,0 г сополимера ВП-АА (5,3 моль % звеньев АА, ММ=30000) в 10 мл воды добавили 0,556 г МХУК, мольное соотношение МХУК: звено амина - 4:1. С помощью 6 N раствора KОН pH реакционной смеси довели до 10,0. Реакцию проводили при 90°C в течение 12 часов. Затем смесь подвергали диализу против воды в течение 48 часов. Использовали диализные мембраны Spectra/Por 7 фирмы ″Spectrum Lab. Inc.″ (США), позволяющие удалять соединения с М≤1000. Сополимеры, содержащие 4,9 мол.% звеньев ИДУК, выделяли с помощью лиофильной сушки.

Состав полученных полимеров был подтвержден 1) данными УФ спектроскопии по поглощению комплекса первичных аминогрупп с 2,4,6-тринитробензолсульфоновой кислотой при λmax=420 нм, 2) данными потенциометрического титрования звеньев АА 0,1 N раствором HCl. Молекулярные массы (ММ) были определены методами вискозиметрии и эксклюзионной жидкостной хроматографии (ЭЖХ). Значения характеристической вязкости растворов полимеров [η] были определены в 0.1 М растворе ацетата натрия при 25°C в вискозиметре Уббелоде.

Реакцию свободных аминогрупп полимеров и монохлоруксусной кислоты проводили в водном растворе KОН. Содержание хелатных групп определяли по убыли свободных аминогрупп.

Примеры 2-5 выполнены в условиях примера 1. Полученные результаты приведены в Таблице 1.

Пример 2. Радиомечение полимерного носителя (прекурсора) трикарбонилом технеция [99mTc(CO)3]+. Проводили по оптимизированному протоколу.

Реакционный набор (кит) ″ISOLINK™″ производства (″TYCO - Mallincrodt″), состоящий из K2BH3CO2, фосфатного буфера и элюата T 99 m c O 4 (pH 5.5), нагревали при 150°C в условиях микроволновой активации (450 В, 15 с), после чего нейтрализовали до pH 6.5 фосфатным буфером. Полученный раствор разбавляли до 0,5 мл. К водному раствору ВП-АА-ИДУК (13000 Да) (С=10-4 М, 0,3 мл) добавляли 10 мкл разбавленного раствора [99mTc(CO)3]+ и нагревали при 70°C в течение 20 мин. Реакцию контролировали методом ВЭЖХ на ультракоротких CIM™ (GMA-EDMA) колонках BIASeparations (Austria) в изократическом режиме, элюент - 0,1% TFA, 0,3 мл/мин, детектирование - спектрофотометрическое (λn=210 нм) и радиометрическое (у-радиометрия).

Пример 3. Кит ″ISOLINK™″ производства (″TYCO - Mallincrodt″) нагревали при 150°C в условиях микроволновой активации (450 В, 15 с) с элюатом T 99 m c O 4 , после чего нейтрализовали до pH 6.5 фосфатным буфером. Полученный раствор разбавляли до 0,5 мл при pH 7. К водному раствору ВП-АА-ИДУК (9000 Да) (С=10-4 М, 0,3 мл) добавляли 10 мкл разбавленного раствора 99mТс(CO3) и нагревали при 70°C в течение 20 мин РХЧ-80%.

Пример 4. Кит ″ISOLINK™″ производства (″TYCO - Mallincrodt″) нагревали при 150°C в условиях микроволновой активации (450 В, 15 с) с элюатом T 99 m c O 4 , после чего нейтрализовали до pH 6.5 фосфатным буфером. Полученный раствор разбавляли до 0,5 мл при pH 8. К водному раствору ВП-АА-ИДУК (9000 Да) (С=10-4 М, 0,3 мл) добавляли 10 мкл разбавленного раствора 99mTc(CO3) и нагревали при 70°C в течение 20 мин РХЧ-90%.

Пример 5. Кит производства Mallinckrodt™ Кит ″ISOLINK™″ производства (″TYCO - Mallincrodt″) нагревали при 150°C в условиях микроволновой активации (450 В, 15 с) с элюатом T 99 m c O 4 , после чего нейтрализовали до pH 6.5 фосфатным буфером. Полученный раствор разбавляли до 0,5 мл при pH 5.5. К водному раствору ВП-АА-ИДУК (9000 Да) (С=10-4 М, 0,3 мл) добавляли 10 мкл разбавленного раствора 99mTc(CO3) и нагревали при 70°C в течение 20 мин. Радиохимическая чистота - 40%.

Таким образом, разработанные водорастворимые полимерные комплексы радиоизотопов на основе сополимеров N-винилпирролидона (ВП) с N-виниламином (ВА) или с N-аллиламином (АА) с хелатными узлами, содержащими остатки иминодиуксусной кислоты, и способ их получения позволяют создать новые гибридные радиофармпрепараты, обладающие комбинированным действием и не требующие сложных процедур выделения и очистки. Поэтому эти водорастворимые полимерные комплексы радиофармпрепаратов могут быть востребованы в медицине для диагностики новообразований организма методами однофотонной эмиссионной томографии (ОФЭКТ), позитронной эмиссионной томографии (ПЭТ) и лечения онкологических заболеваний (бета, гамма-терапия), - это свидетельствует о соответствии данного технического решения всем требуемым критериям изобретения, защищаемым Патентом.

Способ получения водорастворимых полимерных комплексов радиоизотопов, включающий синтез полимера носителя с привитым биологическим вектором и хелатными узлами для связывания радиометалла, процедуры радиомечения, отличающийся тем, что в качестве полимера носителя используют водорастворимый сополимер N-винилпирролидона с N-аллиламином и молекулярной массой 5000-50000 Да, содержанием хелатных узлов в виде иминодиацетатных фрагментов иминодиуксусной кислоты (ИДУК) 1-20 мол.%, введенных в макромолекулу путем алкилирования звеньев аминосодержащего сополимера монохлоруксусной кислотой в водном щелочном растворе с рН 8-10, содержанием винилпирролидона m=99-80 мол.% и аллиламина n=1-20 мол.%, при этом в качестве радиоактивного компонента используют соединения переходных металлов и лантаноидов в виде следующего ряда [99mTc(СО)3]+, [188Re(CO)3]+, [161Tb(СО)3]+, а взаимодействие полимера носителя хелатных узлов с радиоактивным компонентом проводят в спирте, в воде или водно-спиртовом растворе в атмосфере инертного газа при температуре 70°С и с концентрацией полимера 10 мас.% в течение 20 минут с получением радиоактивного металл-полимерного коньюгата в различных степенях окисления (+1÷+3) следующего строения:



 

Похожие патенты:

Изобретение относится к области химии биологически активных полимеров. Предложены сополимеры на основе N-винилпирролидона, содержащие в качестве концевых фрагментов остаток циановалериановой кислоты и атом водорода, общей формулы (I), где мономерное звено является фрагментом 4-винилпиридина (4-ВП), если X представляет или фрагментом 2-метил-5-винилпиридина (2-М-5-ВП), если X представляет , в котором содержание мономерных звеньев, являющихся фрагментами 4-ВП или 2-М-5-ВП, составляет 20-90 мольн.%, средневязкостная молекулярная масса Mµ сополимеров равна 10-350 кДа, а кислотное число равно (0,1-5,6)·10-3 мг KOH/г.

Изобретение относится к химии биологически активных сополимеров, которые могут найти применение в медицине и ветеринарии. Сополимер на основе N-винилпирролидона в форме фармацевтически приемлемых аддитивных солей кислот представлен общей формулой (I): где R обозначает водород или метил; содержание мономерных звеньев n составляет 25-90 мол.%; X обозначает анион фармацевтически приемлемой неорганической или органической кислоты; k равно 1 или 2; m принимает значения от 0,1 до 1,0; и средневязкостная молекулярная масса сополимера Мµ равна 15-150 кДа.

Изобретение относится к области химии биологически активных полимеров. .

Изобретение относится к сополимерам на основе N-винилпирролидона. .

Изобретение относится к химии биологически активных полимеров. .

Изобретение относится к способу получения полимерной водорастворимой формы биологически активного соединения - бетулоновой кислоты, которое может найти применение в пищевой, фармацевтической промышленности и в сельском хозяйстве.
Изобретение относится к химии высокомолекулярных соединений, в частности к способу получения поливинилпирролидона. .

Изобретение относится к технологии получения мягких контактных линз (МКЛ) путем введения тонирующего красителя в процесс сополимеризации мономеров. .
Изобретение относится к медицине, а именно к онкологии, и может быть использовано для лечения больных с узловыми и радиорезистентными злокачественными опухолями. Больному однократно внутривенно вводят фотосенсибилизатор Фотосенс в дозе 0,3-0,4 мг/кг.

Изобретение относится к пиразолиндионовому производному формулы (I), а также к его фармацевтически приемлемой соли, где R1 выбран из водорода; возможно замещенного C1-C6алкила; возможно замещенного фенила; возможно замещенного C1-C6алкилфенила; возможно замещенного фенилC1-C6алкила; возможно замещенного пиридила; возможно замещенного C1-C6алкилпиридила; и возможно замещенного пиридилC1-C6алкила; R2 является водородом; R3 является водородом; R4, R5, R6 и R7 являются водородом; R8, R9, R10 и R11 независимо выбраны из атомов водорода и C1-С6алкилов; R12 выбран из водорода; -CHR17R18; возможно замещенного C1-C6алкокси-карбонила, возможно замещенного -C(O)-фенила; возможно замещенного C1-C6алкилфенила; возможно замещенного фенилC1-C6алкила, возможно замещенного C1-C6алкилгетероарила или возможно замещенного гетероарилC1-C6алкила, где гетероарил выбран из пиридила, пирролила, пиримидинила, фурила, имидазолила, оксазолила, изоксазолила, пиразолила, 1,2,3-триазолила, 1,2,4-триазолила, 1,2,3-оксадиазолила, 1,2,4-оксадиазолила, 1,2,5-оксадиазолила, 1,3,4-оксадиазолила, 1,3,4-триазинила и 1,2,3-триазинила; R17 и R18 независимо выбраны из водорода; возможно замещенного фенила; возможно замещенного гетероарила, где гетероарил выбран из пиридила, пирролила, пиримидинила, фурила, имидазолила, оксазолила, изоксазолила, пиразолила, 1,2,3-триазолила, 1,2,4-триазолила, 1,2,3-оксадиазолила, 1,2,4-оксадиазолила, 1,2,5-оксадиазолила, 1,3,4-оксадиазолила, 1,3,4-триазинила и 1,2,3-триазинила; X выбран из О, NR12, S и S(O)2; n является целым числом, выбранным из 0 и 1; причем термин «замещенный» означает, что данная группа замещена 1-5 заместителями, выбранными из «C1-C6алкила», «C1-C6алкокси» и «галогенов».

Изобретение относится к противоопухолевому блок-сополимеру. Блок-сополимер включает гидрофильный сегмент, включающий полиэтиленгликоль; гидрофобный сегмент, включающий полиаминокислотную цепь; и остаток соединения бороновой кислоты, связанный с боковой цепью гидрофобного сегмента через связующее звено, включающее гетероциклическую структуру.

Изобретение относится к применению веществ, которые обладают ингибирующей способностью для лечения гиперпролиферативных заболеваний. Изобретение касается применения соединения, представляющего собой 1-[(4-метилхиназолин-2-ил)метил]-3-метил-7-(2-бутин-1-ил)-8-(3-(R)-аминопиперидин-1-ил)-ксантин или его соли для приготовления фармацевтической композиции, предназначенной для лечения гиперпролиферативных заболеваний, которые реагируют на ингибирование БАФ (белок-активатор фибробластов), выбранных из группы, включающей цирроз или нарушения заживления ран, лечение акне и пролиферативных заболеваний кожи, таких как, например, псориаз.

Изобретение относится к фармацевтике, в частности к противоопухолевому средству, содержащему Nδ-нитрозо-Nδ-[(2-хлорэтил)карбамоил]-L-орнитин, поливинилпирролидон низкомолекулярный Mm=7000-11000 и кислоту хлористоводородную.

Изобретение относится к соединениям формулы (I), их рацемической смеси, энантиомерам, диастереомерам и фармацевтически приемлемым солям, обладающим свойствами ингибитора Syk, фармацевтической композиции и лекарственному препарату на их основе, их применению, способу ингибирования и способу лечения с их использованием.

Изобретение относится к кристаллической форме 2-хлоро-4-метокси-N-[4-(8-метил-имидазо[1,2-а]пиридин-2-ил)-фенил]-бензамида формулы 1. Также изобретение относится к фармацевтической композиции и лекарственному средству на основе соединения формулы 1, которые могут быть применимы для профилактики и лечения пролиферативного заболевания, связанного с запуском эмбрионального сигнального каскада Hedgehog (Hh).

Изобретение относится к области органической химии, а именно к новому пиразолопиридиновому производному формулы (I), а также к его таутомеру, геометрическому изомеру, оптически активным формам, таким как энантиомеры, диастереомеры и рацематы, и к его фармацевтически приемлемой соли, где G1 выбирают из -С(О)-R1; R1 выбирают из C1-С6-алкокси-C1-С6-алкила; C1-С6-алкила; замещенного С6-арил-C1-С6-алкила; замещенного пиперидина; G2 выбирают из необязательно замещенного С6-арила; G3 выбирают из C1-С6-алкила; G4 выбирают из пиридин-C1-С6-алкила; G5 выбирают из Н; где термин «замещенный» обозначает группы, замещенные 1 заместителем, выбираемым из группы, которая включает «C1-С6-алкил», «C1-С6-алкокси», «C1-С6-алкоксикарбонил» и «галоген».

Изобретение относится к полиморфу мезилатной соли 2-(5-(4-(2-морфолиноэтокси)фенил)пиридин-2-ил)-N-бензилацетамида, обладающему свойствами ингибитора Syk, способу его синтеза, фармацевтической композиции на его основе и ее применению для лечения и профилактики пролиферации клеток.

Изобретение относится к области биохимии, в частности к антителам против ангиопоэтина-2 человека, кодирующим их нуклеиновым кислотам и клеткам-хозяевам. Антитело отличается тем, что не связывается с ангиопоэтином-1 человека.

Изобретение относится к области радиофармацевтики и представляет собой способ получения термочувствительного йодсодержащего радиофармпрепарата (РФП) с радиохимической чистотой 95-98%, заключающийся в ковалентном присоединении изотопов радиоактивного йода к тирозиновым группам, включенным в цепь поли-N-изопропилакриламида, с последующим отделением меченой полимерной компоненты от низкомолекулярных соединений на хроматографической гелевой колонке путем элюирования водой, отличающийся тем, что в качестве подвижной фазы используются водные растворы химических соединений, преимущественно неорганических солей, обладающих коэффициентом дестабилизации полимер-гидрат-йодидных комплексов γ = − d T f t d C s из интервала γ=30-60 град·л/моль, где Tft - температура фазового перехода в растворе, содержащем дестабилизирующую добавку, Cs - концентрация добавки, ограниченная сверху условием γ ⋅ C s < T f t 0 − T к ( T f t 0 = T f t , при Cs=0, Tк - температура в колонке).
Наверх