Способ получения литого алюминиево-кремниевого композиционного сплава

Изобретение относится к области металлургии цветных металлов и сплавов, в частности к кремнийсодержащим алюмоматричным композиционным сплавам антифрикционного назначения. Способ включает введение кремнезема в расплавленный алюминий и обработку расплава продуктами реакции водяного пара с материалом, содержащим восстановитель. Водяной пар получают термической дегидратацией кремнеземсодержащей шихты, вводимой в расплавленный алюминий, а в качестве материала, содержащего восстановитель, используют обрабатываемый расплавленный алюминий. Обработку производят при 690-700°С в течение 1-2 мин. Обеспечивается получение алюмоматричного композиционного сплава, содержащего микрочастицы кремния, обладающего высокими механическими свойствами в сочетании с малым удельным весом. 1 ил.

 

Изобретение относится к области металлургии цветных металлов и сплавов, в частности к кремнийсодержащим алюмоматричным композиционным сплавам антифрикционного назначения, к которым предъявляют требования высокого уровня механических свойств в сочетании с малым удельным весом.

Известен способ получения литого алюминиево-кремниевого сплава, включающий подачу кремнезема и обработку расплава восстановителем (Патент РФ №2148670. Способ производства алюминиево-кремниевого сплава. Опубликован 10.05.2000).

К недостаткам данного способа можно отнести его ограниченную применимость вследствие использования специального термического оборудования, сложность и трудоемкость, а также существенные энергетические затраты, связанные с необходимостью достижения температуры 2100°С.

Известен способ получения литого алюминиево-кремниевого сплава, включающий введение кремнезема в расплавленный алюминий и обработку расплава (Патент BY №16558. Способ получения алюминиево-кремниевого сплава. Опубликован 30.08.2012).

Недостатком данного способа является энергозатратность, обусловленная выдержкой расплавленной композиции при температуре выше линии ликвидус (порядка 700-900°С) в течение 20-60 мин.

Наиболее близким к заявленному способу является способ получения литого алюминиево-кремниевого сплава, включающий введение кремнезема в расплавленный алюминий и обработку расплава продуктами реакции водяного пара с материалом, содержащим восстановитель (Патент РФ №2063460. Способ получения алюминиево-кремниевых сплавов. Опубликован 10.07.1996).

Основным недостатком способа является его ограниченная применимость, так как в качестве источника водяного пара и материала-восстановителя предлагается водная графитовая суспензия, нанесенная на асбест. Другим недостатком способа является его энергозатратность, обусловленная температурными условиями 800-850°С и длительностью обработки расплавленного алюминия в течение 15-20 мин. Кроме этого асбест относится к потенциально канцерогенным веществам, способным представлять опасность для человека.

Задача предлагаемого изобретения состоит в создании энергосберегающего способа получения литого алюминиево-кремниевого композиционного сплава без использования как потенциально канцерогенного вещества, так и графита, образующего карбиды, загрязняющие металлический материал.

Задача решается следующим образом. В способе получения литого алюминиево-кремниевого сплава, включающем введение кремнезема в расплавленный алюминий и обработку расплава продуктами реакции водяного пара с материалом, содержащим восстановитель, расплав обрабатывают при температуре 690-700°С в течение 1-2 мин, при этом водяной пар получают термической дегидратацией кремнеземсодержащей шихты, вводимой в расплавленный алюминий, а в качестве материала, содержащего восстановитель, используют обрабатываемый расплавленный алюминий.

На картинке приведена фотография структуры полученного сплава.

Способ осуществляется следующим образом.

В расплавленный алюминий при 690-700°С вводят содержащий кристаллизационную воду алюмосиликатный минерал в количестве 10-15% от массы расплава и обрабатывают расплав в течение 1-2 мин продуктами реакции водяного пара с расплавленным алюминием.

В предлагаемом способе источником кремнезема является кремнеземсодержащая шихта - алюмосиликатный минерал, имеющий в своем составе кристаллизационную воду. Получение литого алюминиево-кремниевого композиционного сплава осуществляется за счет восстановления кремния из SiO2 расплавленным алюминием по реакции:

3SiO2+4Al=2Al2O3+3Si.

Алюмосиликатный минерал в расплавленном алюминии подвергается термической дегидратации. Восстановителем образующихся паров воды также служит расплавленный алюминий:

2O+2Аl=3Н2+Аl2O3.

Наличие водорода способствует интенсивному восстановлению кремнезема и образованию в расплавленном металле дисперсных микрочастиц кремния:

SiO2+2H2=Si+2H2O.

Предлагаемый способ получения литого алюминиево-кремниевого композиционного сплава реализован в лабораторных условиях.

Навеску первичного алюминия (марка А0) массой 50 г расплавляли в алундовом тигле. При 690°С вводили в расплав 5 г кремнеземсодержащей шихты - алюмосиликатный минерал каолинит, содержащий кристаллизационную воду (химическая формула минерала Аl2O3·2SiO2·2Н2O). После введения шихты выдерживали расплав в течение 1 мин для его обработки продуктами реакции водяного пара, образовавшегося при термической дегидратации каолинита, с расплавленным алюминием. Затем расплавленный алюминий, содержащий микрочастицы восстановленного кремния, сливали в кристаллизатор.

Структуру и химический состав полученного литого алюминиево-кремниевого композиционного сплава регистрировали с помощью растрового электронного микроскопа JSM JEOL 6390LA, интегрированного с микроренттеноспектральным энергодисперсионным анализатором. Поверхность литого алюминиево-кремниевого композиционного сплава готовили для электронной микроскопии механическим полированием с последующим травлением соляной кислотой.

На приведенной фигуре стрелками отмечены микрочастицы кремния, армирующие структуру металла. Преобладающий линейный размер частиц кремния в матрице алюминия составляет 0,5-1,5 мкм. По результатам микрорентгеноспектрального анализа частицы содержат около 97% кремния и 2-3% матричного металла. При этом массовая доля кремния в сплаве достигает 10%.

Установлено, что в результате взаимодействия расплавленного алюминия с алюмосиликатным минералом, содержащим кристаллизационную воду, образуется литой алюмоматричный композиционный сплав. Структура сплава характеризуется наличием полиэдрических зерен матричного металла с включениями микрочастиц кремния (фигура). Элементный анализ свидетельствует о составе матрицы с 99,7% содержанием алюминия.

Предлагаемый способ позволяет обеспечить энергосбережение, получая за небольшой промежуток времени алюмоматричный композиционный сплав, содержащий микрочастицы кремния.

Армирование металлической матрицы дисперсными частицами способствует снижению коэффициента трения трибосопряжений и увеличивает износостойкость, расширяет диапазон допустимых скоростей скольжения и нагрузок. Рассмотренный выше материал позволяет сделать вывод о промышленной применимости предложенного способа для получения литого алюминиево-кремниевого композиционного сплава.

Способ получения литого алюминиево-кремниевого композиционного сплава, включающий введение кремнезема в расплавленный алюминий и обработку расплава продуктами реакции водяного пара с материалом, содержащим восстановитель, отличающийся тем, что расплав обрабатывают при температуре 690-700°C в течение 1-2 мин, при этом водяной пар получают термической дегидратацией кремнеземсодержащей шихты, вводимой в расплавленный алюминий, а в качестве материала, содержащего восстановитель, используют обрабатываемый расплавленный алюминий.



 

Похожие патенты:

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия системы Al-Si-Cu-Mg, применяемых в качестве базовых деталей агрегатов управления топливной системой в авиационной, автомобильной и других отраслях промышленности.

Изобретение относится к литейному производству. Алюминиевый сплав содержит, вес.%: кремний 8-11,6, марганец 0,8-1,9, железо 0,1-0,5, магний 0,2-0,7, бор 0,002-0,15, стронций 0,006-0,017, медь 0-0,25, цинк 0-0,35, титан 0-0,25, алюминий - остальное.

Изобретение относится к способам, специально предназначенным для изготовления или обработки микроструктурных устройств или систем, и может быть использовано при изготовлении композитных материалов.

Изобретение относится к способу изготовления многослойного материала для высокотемпературной пайки и может быть использовано, например, для изготовления тонких листов в теплообменниках.
Изобретение относится к области металлургии, в частности для получения пропиткой композиционных материалов, имеющих пористый углеграфитовый каркас, и может быть использовано для получения вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, щеток, вставок пантографов, токосъемников, а также в различных узлах и изделиях ракетно-космического назначения.

Изобретение относится к многослойной трубе и ее применению. Многослойная труба включает металлическую трубу с внутренней поверхностью и внешней поверхностью, первый полимерный слой, связанный с внешней поверхностью, и, предпочтительно, второй полимерный слой, связанный с внутренней поверхностью, и при этом металлическая труба изготовлена из алюминиевого сплава, содержащего, вес.%: Si от 1,5 до 2,45, Fe от 0,5 до 1,2, Mn от 0,5 до 1,2, Cu от 0,3 до 1, Mg от 0,04 до 0,3, Ti<0,25, Zn<1,2 и другие примеси или случайные элементы <0,05 каждого, включая Cr<0,05 и Zr<0,05, всего <0,25, а остальное - алюминий.
Изобретение относится к листовому припою из многослойного алюминиевого сплава и может быть использовано при изготовлении теплообменников. Листовой припой из многослойного алюминиевого сплава, состоящий из: материала основного слоя, который на одной или двух сторонах имеет промежуточный слой, состоящий из Al-Si твердого припоя, расположенного между основным слоем и тонким покрывающим слоем поверх промежуточного слоя.
Изобретение относится к сплавам на основе алюминия, обладающим хорошей электропроводностью и теплопроводностью, и может быть использовано для производства деталей посредством литья под давлением, например радиаторов, применяемых для защиты электроники в автомобилях.
Изобретение относится к экструдированному или катаному плакированному металлическому изделию и может быть использовано в транспортной промышленности, аэрокосмических изделиях, судах.
Изобретение относится к порошковой металлургии, в частности к созданию легких материалов с низким коэффициентом линейного расширения, и может быть использовано в качестве конструкционного материала при создании командных приборов систем управления летательных аппаратов с высокими эксплуатационными характеристиками.

Изобретение относится к порошковой металлургии, в частности к получению композиционных катодов для ионно-плазменного синтеза многокомпонентных наноструктурных нитридных покрытий.

Изобретение относится к порошковой металлургии. Способ изготовления наноразмерного твердого сплава включает приготовление смеси из наноразмерных порошков карбида вольфрама и кобальта, прессование ее в стальной пресс-форме и спекание в вакууме.

Изобретение относится к порошковой металлургии. Способ получения спеченного пористого вольфрамового каркаса включает смешение порошка вольфрама с порошковой активирующей добавкой, состоящей из порошков никеля и железа, прессование и спекание.

Изобретение относится к получению наноструктурированного конгломерированного порошкового материала для нанесения износо-коррозионностойких покрытий гизодинамическим и газотермическим напылением.
Изобретение относится к области металлургии, а именно к высокотемпературным композиционным материалам на основе ниобия, упрочненным оксидными волокнами, применяемым для изготовления конструкционных деталей авиационного назначения.

Изобретение относится к получению упрочненных легких сплавов на основе алюминия. В расплав алюминиевого сплава при температуре 750÷800ºС вводят 6 мас.% порошка криолита Na3AlF6, через промежуток времени не менее 10 мин в расплав вводят 5÷6 мас.% модификатора при одновременной активации расплава в течение не менее 20 мин механическим перемешиванием и/или воздействием ультразвуковых колебаний частотой 10 кГц, и/или воздействием электромагнитного поля частотой 40 Гц.

Изобретение относится к области цветной металлургии, в частности к производству графитсодержащих композиционных материалов электротехнического назначения на основе меди, и может быть использовано для изготовления электрических разрывных контактов низковольтной аппаратуры.

Изобретение относится к изготовлению породоразрушающего инструмента. Формируют в графитовой форме композиционную матрицу инструмента, содержащую включения в виде алмаза или твердого сплава, прессуют, затем проводят нагрев спрессованного инструмента до температуры пропитки с горячим прессованием и охлаждают инструмент на воздухе до 350°C.
Изобретение относится к изготовлению электротехнических изделий из композиционного материала. Электротехническое изделие изготовлено из токопроводящего композиционного материала формованием методом холодного прессования, при этом токопроводящий композиционный материал содержит 40÷55 мас.% порошка естественного графита, 30÷15 мас.% связующего на основе новолачной смолы, 30 мас.% медного порошка и дополнительно поливинилацетат в качестве пластификатора в количестве 9÷35 мас.% от суммарной массы порошкообразных компонентов.

Изобретение относится к металлургии, а именно к получению пористых металлических материалов методом самораспространяющегося высокотемпературного синтеза, и может использоваться в медицинской имплантологии.
Изобретение относится к области металлургии, в частности к вторичной переработке алюминиевых отходов, таких как бывшая в употреблении алюминиевая тара из-под напитков и продуктов, и может быть использовано для получения вторичных алюминиевых сплавов, алюминиевых раскислителей для выплавки сплавов, в том числе сталей. Способ включает дефрагментации пакетированных алюминиевых отходов до размера частиц с фракционным составом +50-100 мм, магнитную сепарацию вторичного алюминиевого сырья для удаления магнитной фракции, магнитно-вихретоковую сепарацию, дефрагментацию до размера частиц с фракционным составом +5-30 мм, термическую очистку при температуре 400-625°С и удаление пылевидных продуктов. В результате получают алюминиевую крупку с содержанием алюминия в количестве, большем или равном 95% с фракционным составом +5-30 мм, которую можно использовать в качестве раскислителя стали. Техническим результатом изобретения является повышение степени очистки алюминиевой крупки, однородности ее химического состава и, получение алюминиевой крупки с содержанием алюминия не менее 95%. 3 н. и 3 з.п. ф-лы, 1 пр.
Наверх