Способ определения вязкости металлических материалов

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на ударный изгиб призматических образцов с надрезом с записью кривой разрушения в координатах нагрузка - смещение бойка путем идентификации на ней характерных точек. На полученной кривой разрушения выделяют линейный ниспадающий участок, идентифицируют на нем значения нагрузки FH, FК и смещения SH, SК, соответствующие началу и окончанию данной стадии разрушения, находят площадь под выделенным участком, а уровень вязкости KB определяют по формуле. Технический результат: возможность определения характеристик вязкости для аттестации недоломанных образцов. 2 ил.

 

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов.

При работе деталей машин и конструкций возможны динамические нагрузки, при которых многие, даже высокопластичные металлы проявляют склонность к хрупкому разрушению. Опасность разрушения усиливают надрезы - концентраторы напряжений. Для оценки склонности металла к хрупкому разрушению под влиянием этих факторов проводят динамические испытания на ударный изгиб на маятниковых копрах (ГОСТ 9454-78. Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах. М.: Изд-во стандартов, 19 с.).

При этом стандартный призматический образец с надрезом испытывают путем приложения к нему динамической нагрузки по схеме трехточечного изгиба, а по показаниям копра измеряют работу удара А, Дж, которая при делении на площадь образца в месте надреза дает значение ударной вязкости KCV, МДж/м2 (здесь для образца с V-образным типом надреза). Ударная вязкость из всех характеристик механических свойств наиболее чувствительна к снижению температуры, поэтому испытания на ударную вязкость при пониженных температурах используют для определения порога хладноломкости tXP - температуры или интервала температур, в котором происходит снижение ударной вязкости.

Общим требованием к испытаниям на ударную вязкость является осуществление перехода металла в хрупкое состояние при температурах, легко достижимых в лабораторных условиях (tисп=+100…-100°C). Однако в случае отсутствия явного вязкохрупкого перехода в этом диапазоне температур, например в случае высоковязких материалов, определить tXP затруднительно.

Высоковязкими материалами считаются те, которые разрушаются вязко и с высокой энергоемкостью в широком диапазоне отрицательных температур испытаний tисп≅-40…-100°C. Примером таких высоковязких материалов являются низкоуглеродистые стали типа 05Г2МФ, используемые для нефте- и газопроводов нового поколения. Главным требованием к металлу таких труб является то, что он должен работать в условиях, далеких от появления хрупкого механизма разрушения, и иметь уровень ударной вязкости KCV≥2,5 МДж/м2 при tисп=-40°C.

Результаты испытаний на ударный изгиб свидетельствуют об очень высоком уровне ударной вязкости таких сталей (KCV≥1,5 МДж/м2 при tисп=-80°C). На сериальных кривых KCV=f(tисп) не наблюдается явного вязкохрупкого перехода, полностью хрупкое разрушение наступает только при tисп<-100°C, а образцы полностью не разрушаются вплоть до tисп=-80°C. Кроме того, согласно приведенному выше стандарту, если в результате испытания образец не разрушился, то показатель качества материала (ударная вязкость) считается неустановленным. Таким образом, необходим другой подход для определения вязкости высоковязких материалов при испытаниях на ударный изгиб.

Известен способ определения вязкости разрушения материалов при статическом изгибе призматических образцов с острой трещиной с записью диаграмм разрушения (Пат. 2009463. Российская Федерация, МПК G01N 3/00. Способ определения вязкости разрушения материала / Водопьянов В.И., Белов А.А., Лобанов С.М. Волгоградский политехнический институт - №4935986/28, опубл. 15.03.94).

Особенностью данного способа является то, что в момент страгивания острой трещин, по диаграмме разрушения определяют коэффициент сопротивления смещению η, а величину смещения fA и соответствующее значение нагрузки FA принимают за параметры сопротивления исследуемого материала разрушению.

Однако усложнение эксперимента, связанное с необходимостью перестройки диаграммы разрушения в координаты «сопротивление смещению η - смещение f», обуславливает появление погрешности измерения, а следовательно, понижение точности определения измеряемых характеристик.

Наиболее близким по технической сущности к предлагаемому методу является способ определения вязкости металлических материалов при испытании на ударный изгиб образцов с V-образным надрезом с записью осциллограмм разрушения (ASTM E2298. Standard test method for instrumented impact testing of metallic materials, 2013. 9 p.).

Способ заключается в выполнении следующих операций:

- нанесение V-образного надреза на боковую поверхность призматического образца;

- ударный изгиб образца с надрезом (приложение динамической нагрузки) с одновременной записью кривой в координатах «нагрузка F - смещение S»;

- определение (выделение) на полученной кривой значений нагрузки, соответствующих определенным этапам разрушения;

- определение параметров вязкости (энергоемкости, напряжения, смещения, доли вязкой составляющей в изломе) на соответствующих стадиях разрушения по виду кривой разрушения.

Недостатком данного способа определения вязкости является то, что в случае высоковязких материалов недолом образцов приводит к недействительности результатов испытания, а на поверхности излома образцов невозможно выделить область «хрупкого квадрата», соответствующую хрупкому механизму разрушения.

Таким образом, существующие стандартные способы определения вязкости металлических материалов при испытаниях на ударный изгиб не могут быть использованы для аттестации высоковязких материалов.

Техническая задача, решаемая изобретением, заключается в определении вязкости металлических материалов при испытании на ударный изгиб образца с надрезом путем выделения на кривой разрушения ниспадающего линейного участка, на котором отсутствуют осцилляции нагрузки, и определения на этом участке характеристик вязкости для аттестации недоломанных образцов.

Поставленная задача решается способом, при котором после охлаждения образца с надрезом до температуры испытания и приложения к образцу ударной изгибающей нагрузки с одновременной записью нагрузки F и смещения S на полученной кривой разрушения выделяют ниспадающий линейный участок и определяют для него значения, соответствующие началу (FH, SH) и окончанию (FК, SК) данной стадии разрушения, а уровень вязкости KB определяют по формуле:

где WB - работа разрушения (площадь под кривой) на ниспадающем линейном участке кривой разрушения, определяемая по формуле:

где FH и FК - значения нагрузки, соответствующие началу и концу ниспадающего линейного участка кривой; SH и SК - соответствующие им значения смещения бойка.

Изобретение иллюстрируется следующими чертежами.

На фиг. 1 приведены сглаженные диаграммы разрушения высоковязкого материала - стали 05Г2СФ, в координатах нагрузка F - смещение S, графическое выделение на ней ниспадающего линейного участка и определение значений FH, FК, SH, SК.

Разрушение стандартных образцов Шарли размером 10×10×55 мм с V-образным надрезом проводилось на копре с падающим грузом INSTRON CEAST 9350 в диапазоне температур испытаний tисп=+20…-100°C с записью диаграмм разрушения. Частота съема измерений с датчиков по нагрузке и смещению составляла 0,001 мс на точку. Дальнейшая обработка кривой в координатах нагрузка F - смещение S заключалась в ее сглаживании путем инструментальной фильтрации массива измеренных данных с целью уменьшения влияния факторов, вносимых упругим взаимодействием системы «опоры-образец-молот».

На фиг. 2 представлены зависимости ударной вязкости KCV и параметра вязкости KB, определенного для выбранных высоковязких материалов по кривым разрушения при различных температурах испытаний для полностью разрушенных образцов. Прямая корреляция значений KCV и KB хорошо описывается линейной функцией с доверительной вероятностью R2=0,93.

Результаты испытаний не только высоковязких материалов (например, низко- и среднеуглеродистых сталей типа 05Г2СФ, 32Г2Р, 09Г2С), когда образец при испытании полностью не разрушался, но и менее вязких материалов, когда полное разрушение образца происходило, свидетельствуют о том, что на кривой разрушения всегда можно выделить ниспадающий линейный участок, затем по предлагаемому способу определить параметр KB и использовать его для аттестации вязкости любых металлических материалов при наличии возможности инструментальной записи кривой разрушения.

Способ определения вязкости металлических материалов при испытаниях на ударный изгиб призматических образцов с надрезом с записью кривой разрушения в координатах нагрузка - смещение бойка путем идентификации на ней характерных точек, отличающийся тем, что на полученной кривой разрушения выделяют линейный ниспадающий участок, идентифицируют на нем значения нагрузки FH, FК и смещения SH, SК, соответствующие началу и окончанию данной стадии разрушения, находят площадь под выделенным участком, а уровень вязкости KB определяют по формуле:



 

Похожие патенты:

Изобретение относится к испытательной технике, а именно к машинам для испытания железобетонных образцов на совместное действие изгибающего и крутящего моментов, создаваемых воздействием кратковременной динамической нагрузки.

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на расстоянии друг от друга в зоне вероятного падения объекта.

Изобретение относится к испытательной технике и может быть использовано для проведения экспериментальных исследований свойств материалов в условиях высокоскоростного нагружения.

Изобретение относится к области определения характеристик материалов при ударном нагружении, в частности к способам определения динамического предела текучести грунта при проникании в образец из исследуемого материала ударника при заданной ему средствами разгона скорости.

Способ проверки затяжки сердечника статора электрической машины, содержащей сердечник (2) статора и ротор (3), образующие воздушный зазор (5) между собой, причем способ включает в себя этапы, на которых вводят контрольно-измерительный прибор (12), который соединен с подвижной опорой (10), в воздушный зазор (11), вводят пластину (21) между стальными листами (5) сердечника статора и приводят пластину (21) во вращение, располагают локально контрольно-измерительный прибор (12) и осуществляют локальную проверку определенных зон сердечника (2) статора генератора.

Изобретение относится к испытательной технике и может быть использовано для проведения ударных испытаний. Имитатор преграды содержит металлический ударник со скошенной под заданным углом к направлению его движения плоскостью и обтюратор из полимерного материала.

Изобретение относится к области испытания материалов и может быть использовано для определения сопротивления протяженному вязкому разрушению высокопрочных трубных сталей класса прочности К65 и выше с ударной вязкостью более 2,5 МДж/м2.

Изобретение относится к испытательной технике, к испытаниям на прочность образцов материалов и изделий. Стенд содержит основание, шаровой ударник, приспособление для сброса ударника, закрепленную на основании направляющую трубу для перемещения в ней ударника, выполненную с двумя параллельными участками различной высоты, соединенными между собой в нижней части коленом, имеющим окно, и поворотную заслонку, перекрывающую окно.

Изобретение относится к испытательной технике, а именно к установкам для ударных испытаний материалов. .

Изобретение относится к области материаловедения, в частности к металловедению, определяющему ударную вязкость, динамическую трещиностойкость металлов. .

Изобретение относится к машиностроению и предназначено для взврывозащиты технологического оборудования, в частности защиты аппаратов от разрушения при взрыве горючей смеси разрывной мембраной. Способ испытания взрывозащитных мембран заключается в том, что осуществляют взрыв паров горючей жидкости, взрывной сосуд оснащают узлом крепления мембраны, который устанавливают в торцевой части сосуда, закрытой предохранительным экраном, параллельно с механическим индикатором давления с тумблером включения двигателя индикатора. Взрывную камеру со свечой зажигания, имеющей кнопку включения зажигания, располагают оппозитно торцевой части сосуда, закрытой предохранительным экраном. При этом сосуд комплектуют штуцерами для продувки взрывного сосуда после проведения эксперимента. Штуцер для заливки горючей жидкости с установленной на нем пробкой закрепляют в стенке сосуда над контактами свечи зажигания. Элементы, участвующие в испытании: индикатор давления, свеча зажигания, штуцер для заливки горючей жидкости, штуцера для продувки взрывного сосуда подбирают по прочности на «разрыв», превосходящей прочность исследуемой мембраны не менее чем в два раза. Давление взрыва регистрируют механическим индикатором давления. После каждого эксперимента производят продувку воздухом внутреннего объема сосуда. Необходимую концентрацию смеси паров с воздухом обеспечивают дозировкой жидкости пипеткой через штуцер, который после заливки жидкости закрывают пробкой. Необходимое количество горючей жидкости (например, ацетона C3H6O) для создания стехиометрической концентрации в сосуде рассчитывается по определенной формуле. Изобретение направлено на повышение эффективности защиты технологического оборудования от взрывов за счет увеличения быстродействия мембранного узла и надежности его срабатывания путем сопоставления данных аналитического расчета и экспериментального определения проходного сечения мембраны для конкретного способа ее установки на аппарате. 1 ил.

Изобретение относится к устройствам для проведения испытаний по определению устойчивости разнообразных материалов и изделий к удару. Приспособление для определения устойчивости материала к удару содержит станину, направляющую, ударный элемент с механизмом приведения его в движение, при этом направляющая выполнена в виде трубы, продольно закрепленной на штативе с возможностью поворота, в полости трубы расположен ударный элемент, выполненный составным из наборных пластин и сменного бойка. Труба имеет разметку по длине в виде сквозных отверстий в ее стенке для установки в них переставного штифта. Труба снизу имеет винтовое соединение с гайкой, снабженной защитным кожухом и ручками для поворота. Механизм приведения ударного элемента в движение содержит поворотные блоки, трос, имеющий рукоятку на свободном конце. Предложенное приспособление расширяет ассортимент лабораторного оборудования для испытания строительных материалов и изделий, а также упрощает сам процесс испытаний. 3 з.п. ф-лы, 13 ил.

Изобретение относится к области строительства и может быть использовано при испытании конструкций и отдельных элементов зданий и сооружений, работающих на изгиб с кручением при статическом и кратковременном динамическом воздействии с определением точной деформационной модели конструкции, например балок или плит. Сущность: сначала испытуемый образец устанавливают на жесткие опоры. В заданных местах на испытуемом образце закрепляют оголовники с противоположно направленными вылетами, на вылетах оголовников размещают концы распределительной траверсы. Через распределительную траверсу испытуемый образец нагружают и исследуют его деформированное состояние, вызванное одновременным изгибом и кручением под воздействием нагрузки, фиксируя перемещения в сечениях испытуемого образца. Деформированное состояние испытуемого образца оценивают по абсолютному значению вертикальных прогибов испытуемого образца и абсолютному углу закручивания испытуемого образца, для этого одновременно с двух сторон от продольной оси испытуемого образца вблизи каждого из оголовников и симметрично относительно продольной оси испытуемого образца устанавливают прогибомеры, с помощью которых измеряют вертикальные перемещения противоположных сторон испытуемого образца под воздействием заданной нагрузки, причем каждый прогибомер устанавливают с возможностью обеспечения строго вертикального положения подвижного штока, а абсолютный вертикальный прогиб fпр в рассматриваемом сечении испытуемого образца определяют по формуле. Технический результат: возможность определения абсолютных величин угла закручивания и вертикальных прогибов конструкции, работающей на изгиб с кручением, которые позволяют определить точную схему деформирования элемента, находящегося в условиях сложного НДС. 3 з.п. ф-лы, 1 табл., 9 ил.

Изобретение относится к области строительства и может быть использовано при испытании конструкций и отдельных элементов зданий и сооружений, работающих на изгиб с кручением при статическом и кратковременном динамическом воздействии с определением точной деформационной модели конструкции, например балок или плит. Сущность: сначала испытуемый образец устанавливают на жесткие опоры. В заданных местах на испытуемом образце закрепляют оголовники с противоположно направленными вылетами, на вылетах оголовников размещают концы распределительной траверсы. Через распределительную траверсу испытуемый образец нагружают и исследуют его деформированное состояние, вызванное одновременным изгибом и кручением под воздействием нагрузки, фиксируя перемещения в сечениях испытуемого образца. Деформированное состояние испытуемого образца оценивают по абсолютному значению вертикальных прогибов испытуемого образца и абсолютному углу закручивания испытуемого образца, для этого одновременно с двух сторон от продольной оси испытуемого образца вблизи каждого из оголовников и симметрично относительно продольной оси испытуемого образца устанавливают прогибомеры, с помощью которых измеряют вертикальные перемещения противоположных сторон испытуемого образца под воздействием заданной нагрузки, причем каждый прогибомер устанавливают с возможностью обеспечения строго вертикального положения подвижного штока, а абсолютный вертикальный прогиб fпр в рассматриваемом сечении испытуемого образца определяют по формуле. Технический результат: возможность определения абсолютных величин угла закручивания и вертикальных прогибов конструкции, работающей на изгиб с кручением, которые позволяют определить точную схему деформирования элемента, находящегося в условиях сложного НДС. 3 з.п. ф-лы, 1 табл., 9 ил.

Изобретение относится к машиностроению и предназначено для взврывозащиты технологического оборудования, в частности защиты аппаратов от разрушения при взрыве горючей смеси разрывной мембраной. Установка для исследования взрывозащитных мембран содержит взрывной сосуд, в котором производится взрыв горючей смеси, узел крепления мембраны, установленный в гнезде взрывного сосуда параллельно его оси и в торцевой части сосуда, закрытой предохранительным экраном. В торцевой части сосуда, закрытой предохранительным экраном, параллельно оси узла крепления мембраны имеется механический индикатор давления с тумблером включения двигателя индикатора. Взрывная камера расположена соосно и оппозитно торцевой части сосуда, закрытой предохранительным экраном, и имеет штуцера для продувки взрывного сосуда после проведения эксперимента. В торцевой части взрывной камеры, соосно ей, расположена свеча зажигания, имеющая кнопку включения зажигания, выведенную из внутренней части взрывной камеры. Штуцер для заливки горючей жидкости с установленной на нем пробкой закреплен в стенке сосуда и расположен над контактами свечи зажигания. Штуцера для продувки взрывного сосуда оснащены вентильными устройствами, блокирующими прорыв продуктов взрыва горючей смеси. Элементы, участвующие в испытании: индикатор давления, свеча зажигания, штуцер для заливки горючей жидкости, штуцера для продувки взрывного сосуда по прочности на «разрыв», превосходят прочность исследуемой мембраны не менее чем в два раза. В упомянутой торцевой части сосуда устанавливается датчик давления, выход которого соединен с усилителем сигнала давления, сигнал с которого поступает на компьютер, в котором осуществляется его запись и вывод сигнала давления на монитор компьютера. Предохранительный экран выполняют герметичным в виде стакана, закрепленного в торцевой части сосуда таким образом, что днище стакана расположено напротив узла крепления мембраны. Предохранительный экран выполняют из бронебойного светопрозрачного материала. Изобретение направлено на повышение эффективности защиты технологического оборудования от взрывов за счет увеличения быстродействия мембранного узла и надежности его срабатывания. 6 ил.

Изобретение относится к области материаловедения, в частности к способам комплексной оценки физико-механических свойств высоковязких конструкционных сталей, и может быть использовано для экспресс-анализа состояния трещиностойкости материала и прогнозирования трещиностойкости материала стали. Сущность: изготавливают для исследования два образца типа 15 по ГОСТ 9454-78, наносят на оба образца боковые V-образные надрезы, проводят закалку и отпуск образцов. Отпуск одного из образцов проводят при нижнем значении исследуемых температур из задаваемого интервала температур исследования, а другого - при верхнем значении. Наносят на оба образца усталостную трещину-концентратор, причем усталостную трещину-концентратор наносят на оба образца одной относительной длины - λ. Разрушают образцы однократным ударным воздействием с получением двух частей от каждого образца. После разрушения определяют динамическую трещиностойкость КСТ* обоих образцов и визуально определяют степень вязкости исследуемого материала образцов. Исследуют зону пластической деформации на вновь образовавшихся двух поверхностях каждого образца в стартовом участке развития трещины и определяют микротвердости HVmax, HV соответственно в деформированных и недеформированных частях исследуемых поверхностей и глубину пластической зоны - rзпд в стартовых участках исследуемых поверхностей. По результатам испытаний образцов строят зависимости динамической трещиностойкости КСТ*, глубины пластической зоны rзпд, микротвердостей HV, HVmax при нижнем и верхнем значениях исследуемых температур отпуска -Тотп., аппроксимируют их наклонными прямыми линиями, причем зависимости строят в виде номограмм: на одном координатном поле или в виде столбчатой номограммы, при этом получают комплекс исследуемых взаимосвязанных величин КСТ* - rзпд; rзпд - HVmax; КСТ* - rзпд - HVmax при всех температурах отпуска Тотп задаваемого интервала, по которым оценивают исследованные величины и прогнозируют свойства высоковязких листовых конструкционных сталей во всем интервале температур отпуска. Технический результат: повышение точности прогнозирования трещиностойкости стали и качества оценки параметрических зависимостей, ответственных за трещиностойкость, упрощение способа. 3 ил.

Изобретение относится к измерительной технике, в частности к способам определения параметров удара о преграду зерен алмазно-абразивных порошков, имеющих неправильные геометрические формы. Сущность: разгоняют зерна алмазно-абразивных порошков в струе сжатого воздуха, а затем ударяют их о жесткую преграду. Жесткую преграду изготавливают из материала, твердость которого позволяет получить на ней отпечатки, размеры которых дают возможность определить их объемы. Зерна алмазно-абразивных порошков разгоняют до скоростей, создающих недостаточные для их разрушения усилия. Технический результат: возможность создать управляемый процесс классификации зерен по прочности, а следовательно, прогнозировать срок службы алмазно-абразивных инструментов. 3 з.п. ф-лы, 4 ил.

Изобретение относится к определению механических свойств металла, а именно к способам разделения ударной вязкости на работу зарождения и работу распространения трещины при испытании на ударный изгиб, и может быть использовано в металлургии, машиностроении и других отраслях народного хозяйства. Сущность: осуществляют определение работы разрушения образца (А) при постоянной температуре. Испытывают два образца с одинаковыми концентраторами напряжения и различными размерами поперечного сечения в месте надреза, а работу зарождения и работу распространения трещины соответственно для первого (АЗ1 и Ap1) и для второго (АЗ2 и Аp2) образцов рассчитывают по формулам:АЗ1=а1⋅α; АЗ2=а2⋅α;APl=a1⋅H1⋅β; АР2=а2⋅Н2⋅β,где α - удельная работа зарождения трещины в образцах данного материала;β - удельная работа распространения трещины для данного материала рассчитываются из системы уравнений где А1 и А2 - работа удара для первого и второго образцов, a 1, Н1 и a2, H2 - размеры сечения первого и второго образцов в месте надреза.Технический результат: расширение технологических возможностей способа разделения работы удара на работу зарождения и распространения трещины. 1 табл., 3 ил.

Изобретение относится к области научно-исследовательских методов, применяемых при выявлении причин разрушения изделий, а также используемых при изучении свойств твердых тел и механизмов их разрушения, и может быть использовано в химической, нефтехимической, энергетической, машиностроительной и металлургической промышленности, на объектах транспорта для контроля качества и оценки работоспособности материалов, при прогнозировании эксплуатационной надежности изготовленных из них деталей и узлов машин производственного назначения. Сущность: в качестве параметра, описывающего характер поверхности разрушения, используют характеристическую площадь поверхности Sr - площадь рельефа поверхности, отнесенную к площади поля зрения. Технический результат: возможность объективного определения соотношения вязкой и хрупкой составляющих в изломах сталей. 1 ил.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия различных приборов и оборудования. Стенд состоит из силового каркаса в виде прямоугольной рамы на ножках с продольными направляющими для установки через амортизаторы подпружиненной платформы, выполненной в виде резонансной плиты, поперечная собственная частота которой соответствует частоте перехода на требуемом ударном спектре ускорений, и рамы для крепления маятника с бойком, состоящим из стержня с профилированным торцом и резьбой, для установки и фиксации дополнительных грузов. На резонансной плите в месте максимального отклика установлена дополнительная плита в виде параллелепипеда, стороны которого параллельны сторонам резонансной плиты, предназначенная для закрепления на ее поверхности объекта испытаний, а на торцах - контрольных регистрирующих датчиков по трем взаимно перпендикулярным направлениям. Резонансная плита не менее чем по двум ее сторонам установлена на амортизаторы, которые перпендикулярны ее плоскости и занимают не более половины длины каждой стороны. По торцам резонансной плиты в ее плоскости установлены фиксаторы-ограничители из упругого материала, жесткость которых не менее чем на порядок меньше жесткости амортизаторов. Дополнительная плита установлена от противоположной стороны относительно места крепления маятника на расстоянии от половины до одной четвертой длины стороны резонансной плиты. На резонансной плите в узел формы колебаний установлен крешер, профиль которого совпадает с профилем торцевой части стержня бойка. Технический результат: возможность уменьшить габариты стенда, а также обеспечить более точное воспроизведение ударной нагрузки, создавая ударное воздействие одновременно по трем взаимно перпендикулярным направлениям. 2 з.п. ф-лы, 1 табл., 7 ил.

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на ударный изгиб призматических образцов с надрезом с записью кривой разрушения в координатах нагрузка - смещение бойка путем идентификации на ней характерных точек. На полученной кривой разрушения выделяют линейный ниспадающий участок, идентифицируют на нем значения нагрузки FH, FК и смещения SH, SК, соответствующие началу и окончанию данной стадии разрушения, находят площадь под выделенным участком, а уровень вязкости KB определяют по формуле. Технический результат: возможность определения характеристик вязкости для аттестации недоломанных образцов. 2 ил.

Наверх