Баллон из композиционного материала

Изобретение относится к машиностроению, а именно к баллонам из композиционного материала, получаемых методом непрерывной намотки армирующей нити (ленты, жгута), и может быть использовано при создании корпусов твердотопливных двигателей ракет, в химическом машиностроении, а также в других отраслях промышленности. В баллоне из композиционного материала днище с центральным полюсным отверстием имеет вытянутую форму, состоящую из последовательно соединенных, сопряженных между собой, чередующихся сферических и однополостных гиперболических оболочек вращения, размеры которых уменьшаются от экватора днища к полюсному отверстию. Повышается прочность. 3 ил.

 

Изобретение относится к машиностроению, а именно к баллонам из композиционного материала (КМ), получаемых методом непрерывной намотки армирующей нити (ленты, жгута), и может быть использовано при создании твердотопливных двигателей ракет (РДТТ), в химическом машиностроении, а также в других отраслях промышленности.

Тенденция создания легких и прочных конструкций привела к необходимости применения в них КМ. Так, из технической и патентной литературы широко известны конструкции цельномотанных баллонов из КМ, содержащих два сфероподобных днища с полюсными отверстиями, соединенные между собой цилиндрической оболочкой (Д.В. Росато, К.С. Грове. Намотка стеклонитью. - М.: Машиностроение, 1969. Стр. 212, рис. 7.25). Известен баллон с изотенсоидными днищами, содержащими центральные полюсные отверстия (И.Ф. Образцов, В.В. Васильев, В.А. Бунаков. Оптимальное армирование оболочек вращения из композиционных материалов. - М.: Машиностроение, 1977. Стр. 51, рис. 2.5).

В настоящее время одним из направлений совершенствования ракет является создание конструктивно компоновочных схем, в которых внутренний объем межступенчатых отсеков используется в максимально полезных целях. На фиг. 1 приведена компоновка РДТТ в ракете с корпусом, имеющим вытянутую форму переднего днища в виде конуса с углом полураствора β0, размещенного в сопле двигателя последующей ступени.

Однако изготовление днища из КМ в форме конуса или приближенного к нему весьма проблематично вследствие неустойчивости процесса намотки из-за «сползания» армирующей ленты с поверхности конусной оправки. Кроме того, неравновесная структура конусных армированных оболочек не обеспечивает требуемую прочность конструкции, поэтому в настоящее время не создан конус из КМ высокого давления минимальной массы.

Технической задачей изобретения является создание баллона (корпуса) из КМ минимальной массы, содержащего армированное днище вытянутой формы, технологический процесс намотки которого исключает явление «сползания» армирующей ленты, а также имеющего требуемую прочность при действии внутреннего давления.

Технический результат достигается тем, что армированное днище вытянутой формы выполнено из последовательно соединенных между собой сферических и однополостных гиперболических оболочек вращения, размеры которых уменьшаются от экватора днища к полюсному отверстию. Отличительный признак заявленного технического решения является существенным по сравнению с прототипом, так как позволяет создать легкую, прочную и требуемой формы конструкцию баллона из КМ с устойчивым процессом намотки при изготовлении.

На фиг. 2 приведена предлагаемая конструкция баллона с полюсными фланцами 1 и 2 (радиусы отверстий r01 и r02), с вытянутым днищем 3 (ось У1 и радиус экватора Ra1), изотенсоидным днищем 4 (ось У2 и радиус экватора Ra2), соединенными цилиндрической оболочкой 5 длиной L, выполненной из спиральных и кольцевых слоев того же материала, что и днища. Вытянутое днище 3 состоит из сферических 6 и однополостных гиперболических 7 оболочек вращения, размеры которых уменьшаются от экватора днища к полюсному отверстию.

На фиг. 3 приведен профиль вытянутого днища. По длине днище разбито на несколько участков из сферических С1-С3 и однополостных гиперболических Г1-Г2 оболочек вращения. Сферические участки С1-С3 являются изотенсоидными участками днищ (оси экваторов, соответственно, УС1, УС2, У1) с углами армирования примыкающих гиперболических участков. Оболочки соединяются в точках сопряжения А, Б, В, Г (радиусы RA, RБ и т.д.). Углы наклона касательной к профилю в точках сопряжения обозначены как βА, βБ и т.д.

Для минимальной потери внутреннего объема днища на участках Г1 и Г2 используется часть однополостной гиперболической поверхности с большой крутизной.

Намотку баллона осуществляют следующим образом. Сначала наматывают спиральные слои на днищах (от полюса до полюса) и на цилиндрической части баллона. Между спиральными слоями на цилиндрической части баллона наматывают кольцевые слои. Затем на участках однополостных гиперболических оболочек Г1, Г2, сферических участках С2, С3, на цилиндре и на изотенсоидном днище заматывают зонные спиральные слои. Поверх каждого зонного слоя на цилиндрической части баллона проводят намотку кольцевых слоев.

Вогнутый профиль участков Г1 и Г2 обеспечивает «кинематическую яму» для спиральных слоев и позволяет осуществить устойчивую намотку зонных слоев на вытянутом профиле днища и баллона в целом.

Технологический процесс намотки баллона является устойчивым, непрерывным и не требует ручного труда.

Данное изобретение позволяет создать новые конструкции баллонов из КМ заданной формы высокой массовой эффективности.

Баллон из композиционного материала, содержащий образованные непрерывной намоткой слоев армирующей нити из одного материала днища с центральными полюсными отверстиями и соединяющую их цилиндрическую оболочку, отличающийся тем, что одно из днищ выполнено вытянутым из последовательно соединенных, сопряженных между собой и чередующихся сферических и однополостных гиперболических оболочек вращения, размеры которых уменьшены от экватора днища к полюсному отверстию.



 

Похожие патенты:

Изобретение относится к машиностроению, а именно к баллонам из композиционного материала, получаемым методом непрерывной намотки армирующей нити, и может быть использовано при создании твердотопливных двигателей ракет, в химическом машиностроении, а также в других отраслях промышленности.

Изобретение относится к корпусам для высокого давления из композиционных материалов, используемых, в частности, в двигательных установках, а также может быть использовано во всех конструкциях машиностроительных и химических отраслей с корпусами для газовых и жидких сред.

Изобретение относится к комбинированным баллонам высокого давления из композитных материалов и может быть использовано при изготовлении облегченных баллонов, применяемых на транспорте и для перевозки газов.

Баллон предназначен для помещения или хранения газов в сжатом, сжиженном или твердом состоянии. Баллон содержит металлический лейнер, имеющий нижнее и верхнее днища, внешнюю упрочняющую армирующую оболочку из ленточного композиционного материала, пропитанного связующим.

Изобретение относится к конструкциям комбинированных баллонов высокого давления и может быть использовано при изготовлении облегченных баллонов, применяемых на транспорте и для перевозки газов.

Изобретение относится к области машиностроения, в частности к замкнутым оболочкам высокого давления. В оболочке из композиционных материалов для высокого внутреннего давления, содержащей цилиндрическую часть 1 и выпуклые днища, образованной комбинацией слоев кольцевых 4, на цилиндрической части, и соответственно перекрещивающихся спиральных лент 5, ориентированных в окружном и спиральном направлениях, из непрерывных однонаправленных нитей, скрепленных полимерным связующим, с фланцами, установленными по полюсным отверстиям днищ.

Оболочка может быть использована в конструкциях аккумуляторов и всех подобных емкостей. Оболочка выполнена в виде двух секций 1 и 2 с цилиндрическими участками 3 и 4 и торцевыми выпуклыми днищами 5 и 6 с образованием на цилиндрической части каждой кольцевого торца 13, 14, у которых с наружной поверхности цилиндрической части расположены уступами со стороны днищ дополнительные слои из пропитанного связующим тканого материала 15, 16, 17, 18 с образованием конических поверхностей 19, 20, все тканые слои разделены по меньшей мере на две группы 15, 16 и 17, 18, каждая из которых охвачена, как минимум, одним слоем материала силового каркаса 23, 24 и 25, 26, на торце у внутренней поверхности одной секции выполнен выступ 27 с центрирующей поверхностью 29, а на второй - ответное выступу углубление 28 с поверхностью 30, эквидистантной центрирующей поверхности выступа, торцевые поверхности выступа и углубления 31, 32 разнесены между собой с образованием кольцевого паза 33, в котором расположен герметизирующий элемент.

Баллон предназначен для использования в установках гидроабразивной резки. Баллон состоит из лейнера (1) и внешней силовой композиционной оболочки (2).

Способ предназначен для изготовления металлопластикового баллона высокого давления. Способ включает: изготовление металлического лейнера из верхнего и нижнего днищ полусферической формы с одинаковой толщиной их стенок и герметичное их соединение сварочным швом по периметру их краев, по которому выполнены равномерно расположенные элементы крепления баллона с отверстиями; изготовление трубки высокого давления, снабженной заправочной горловиной, и герметичное ее соединение сваркой с лейнером баллона; термическую обработку металлического лейнера; изготовление внешней упрочняющей армирующей оболочки из ленточного композиционного материала методом мокрой кольцевой намотки с натяжением нитей или лент армирующего материала, пропитанных связующим; операцию сушки и полимеризации упрочняющей армирующей оболочки; операцию автофреттажа. Технический результат - повышение надежности баллона при эксплуатации, снижение массовых и энергетических затрат на его изготовление. 3 ил.

Изобретение относится к общему машиностроению и может быть использовано на космических аппаратах для хранения и расходования газов под высоким давлением в сжатом, сжиженном или твердом их первоначальном состоянии. Металлопластиковый баллон высокого давления космического аппарата содержит металлический лейнер, выполненный из верхнего и нижнего выпуклых днищ одинаковой толщины, герметично соединенных по периметру их краев. Внешняя упрочняющая армирующая оболочка выполнена по всей наружной поверхности лейнера с элементами крепления баллона к космическому аппарату, выполненными одной и той же лентой в процессе намотки армирующей оболочки. При этом ленты образуют петли, равномерно размещенные снаружи по периметру соединения краев днищ. Соседние петли попарно скреплены при помощи пластин в одной точке. При этом все пластины находятся на равноудаленном от баллона расстоянии и каждая из них выполнена с отверстием под резьбовое соединение с применением болта, гайки и шайб. Каждая шайба выполнена с кольцевой выпуклой сферической поверхностью в месте контакта ее с отверстием пластины и в месте крепления баллона на космическом аппарате, которое выполнено в форме втулки с внутренней поверхностью в виде усеченного конуса. Меньший диаметр указанного конуса больше диаметра болта и имеет ответную сопряженную поверхность под сферическую поверхность шайбы. Основание конуса направлено в сторону соединения с пластиной, отверстие которой выполнено с ответной сопряженной поверхностью под сферическую поверхность второй шайбы. Изобретение направлено на повышение надежности работы устройства. 3 ил.

Способ предназначен для производства облегченных сосудов высокого давления с применением композиционных материалов. Способ включает изготовление металлического лейнера, имеющего верхнее и нижнее выпуклые днища одинаковой толщины, которые герметично соединяются своими краями по периметру; термическую обработку металлического лейнера, нанесение антикоррозионного покрытия на его внешнюю поверхность и изготовление внешней упрочняющей армирующей оболочки из ленточного композиционного материала; при этом намотка каждой ленты выполняется с образованием петли посредством намотки на пластину, закрепленную снаружи технологического разборного съемного кольца. Конструкция резьбовых соединений обеспечивает равномерное натяжение каждой пары петель лент элементов крепления баллона и сразу шесть регулировочно-натяжных степеней свободы одновременно. Техническим результатом является повышение надежности баллона в процессе изготовления и эксплуатации, упрощение технологии изготовления. 2 з.п. ф-лы, 4 ил.
Наверх