Устройство для измерения уровня потока жидкости в открытом канале

Изобретение относится к технике измерения уровня потока жидкости, протекающего по открытому каналу. Техническим результатом является повышение надежности измерения уровня. Устройство состоит из первичного преобразователя, имеющего участок канала, по которому протекает поток жидкости, и измерительного блока, имеющего источник переменного напряжения низкой частоты, причем первичный преобразователь имеет кран, выполненный из электропроводного материала и подключенный к водопроводной сети, и два электрода, из которых один расположен по линии траектории струи, приблизительно на ее середине, а другой расположен в потоке на дне канала, причем кран и электрод, расположенный на дне канала, подключены к источнику переменного напряжения низкой частоты, а электрод, расположенный приблизительно на середине струи, и электрод, расположенный на дне канала, подключены ко входу измерительного блока, и отличается тем, что первичный преобразователь имеет лоток, выполненный из неэлектропроводного материала и расположенный между краном и электродом, находящимся на дне канала, под углом α<π/2 к поверхности раздела сред «воздух - жидкость», а электрод, расположенный по линии траектории струи приблизительно на ее середине, закреплен в полости лотка. 1 ил.

 

Изобретение относится к области приборостроения, а именно к технике измерения уровня потока жидкости, протекающего по открытому каналу.

Вопросы защиты окружающей среды и экологии, в последнее время получившие большое значение, выдвинули более жесткие требования к контролю безнапорных потоков и их коммерческому учету, на основе которых определяются зачастую и штрафные санкции при сбросе загрязненных стоков, если они по физико-химическому составу и объему достигли значений выше нормированных.

Контроль уровня безнапорных потоков необходим в канализационных сооружениях при очистке сточных вод и загрязненных жидкостей, на гидростанциях при сливе в водоем использованной воды после охлаждения ею энергетических машин и агрегатов, в ирригационных и оросительных системах, широко применяется в угольной и горнорудной промышленности, например, при гидравлических способах добычи и транспортировании каменного угля, руды, породы и т.п.

Физико-химический состав жидкостей, протекающих по каналам, весьма широк. Обычно это многофазные (в том числе замутненные) водные потоки при температуре не более (30-50)°C, содержащие мелкие включения песка, глины, почвы, каменного угля, породы, нефтепродуктов, органических соединений, водорослей, растворенного воздуха, газов и т.п. В канализационных системах в составе сточных вод и загрязненных жидкостей содержится значительный процент фекалий, щелочей, кислот и солей, причем некоторые из примесей склонны к выпадению в осадок, особенно при малых скоростях потока.

Известно поплавковое устройство для измерения уровня потока жидкости, протекающей по открытому каналу [1]. Оно состоит из поплавка и гибкого каната, соединяющего поплавок с жестко закрепленным кронштейном, который расположен выше измеряемого уровня. Относительной мерой уровня является длина каната.

Недостатком поплавкового уровнемера является низкая точность и надежность измерения уровня. Точность измерения зависит от плотности и удельного веса поплавка и жидкости. Контакт поплавка с жидкостью не надежен, к дополнительным погрешностям измерения уровня приводят возможные налипания на поплавке частиц жидкости, снос поплавка потоком жидкости.

Известен резистивный струйный уровнемер, принцип действия которого основан на зависимости электрического сопротивления участка струи воды, ниспадающей с определенной высоты на поверхность жидкости, протекающей по каналу [2]. В струйном уровнемере контакт струи с жидкостью непрерывно обновляется и поэтому надежен. Резистивный, струйный уровнемер обладает более высокой точностью.

Уровнемер [2] состоит из первичного преобразователя и измерительного блока, имеющего источник переменного напряжения низкой частоты. Первичный преобразователь состоит из участка канала, по которому протекает поток жидкости, водопроводной линии, в виде шланга, на конце которого имеется кран, выполненный из электропроводного материала, причем кран открытым выходным устройством направлен вниз на поток жидкости в канале, и двух электродов, из которых один расположен по линии траектории струи, вытекающей из крана, приблизительно на ее середине и выше возможного максимального значения уровня заполнения канала жидкостью, а другой расположен на дне канала. Кран и электрод, расположенный на дне канала, подключены к источнику переменного напряжения низкой частоты, находящемуся в измерительном блоке, а электрод, расположенный приблизительно на середине струи, и электрод, расположенный на дне канала, подключены ко входу измерительного блока.

Недостатком уровнемера [2] является низкая стабильность контакта струи воды с электродом, расположенным в струе на средней части ее траектории. Источником нестабильности контакта электрода и струи являются отрывы струи от электрода, вызванные турбулентностью струи, пузырьками воздуха, воздействием на струю колебаний воздуха, образованных вентиляционными устройствами.

Целью изобретения является устранение этого недостатка. Эта цель достигается помещением струи в лоток, который защищает струю от движения воздуха и направляет ее в канал, причем лоток находится под углом α, меньшим π/2, к поверхности раздела сред «воздух - жидкость». Электрод, который должен контактировать со струей приблизительно на средней части траектории струи, крепится в полости лотка. Лоток выполнен из неэлектропроводного материала, обладающего малым углом смачиваемости с водой и хорошей адгезией, благодаря которым струя, истекающая из крана по полости лотка, «прилипает» к стенке лотка и тем самым стабилизируют обтекание струей электрода. Верхняя сторона лотка крепится к выходному устройству крана, а нижняя сторона располагаются вблизи электрода на дне канала.

Рис. 1 поясняет конструкцию и принцип действия предлагаемого устройства.

Устройство состоит из первичного преобразователя и измерительного блока 1. Первичный преобразователь имеет водопроводный кран 2, подсоединенный с помощью резинового шланга 3 к системе водопроводного снабжения. Кран выполнен из электропроводного материала, например резины. Между краном и дном канала 4 расположен лоток 5, который обеспечивает направление протекания струи воды из крана в жидкость под углом, приблизительно равным 45°, к поверхности раздела сред «воздух-жидкость» по направлению, противоположному движению потока жидкости. По траектории струи, приблизительно на ее середине в лотке, расположен электрод 6, который омывается струей, если она течет из крана. На дне канала находится еще один электрод 7. К крану и электроду 7 подведено напряжение Un источника переменного тока низкой частоты, расположенного в измерительном блоке 1. Входная электрическая цепь измерительного блока подсоединена к электродам 6 и 7.

Устройство работает следующим образом.

Из крана вытекает струя водопроводной воды с поперечным сечением S порядка (100-200) мм2. С помощью измерительного блока измеряется напряжение Ux между электродами 6 и 7. Величина напряжения Un известна и находится в памяти измерительного блока. Кроме того, в памяти измерительного блока заложены константы: L - расстояние от крана до электрода 7 и Lb - расстояние от крана до электрода 6.

Из анализа схемы измерения, изображенной на рис. 1, можно записать следующую систему уравнений:

где I - ток, протекающий по струе и потоку жидкости от крана до электрода 7;

d - характерный линейный размер контактной площади струи с поверхностью раздела сред «воздух - жидкость», ;

σ - электропроводность водопроводной воды, вытекающей из крана, порядка (10-2-10-4) См/м;

σs - электропроводность жидкости, порядка (102-10) См/м;

Rb - электрическое сопротивление участка струи воды, расположенного между краном и электродом 6;

Rx - электрическое сопротивление участка струи воды, расположенного между электродом 6 и контактом струи с поверхностью раздела сред «воздух - жидкость»;

Rs - электрическое сопротивление жидкости в канале между контактом струи с поверхностью раздела сред «воздух - жидкость» и электродом 7.

Сопротивление Rs пренебрежимо мало по сравнению с сопротивлениями Rb и Rx.

В этом случае из решения системы уравнений (1)-(6) получаем значение уровня h по формуле

Изменения температуры, электропроводности, скорости потока струи и ее поперечного сечения не влияют на результат измерения уровня h, так как при изменении этих параметров изменяется погонное сопротивление струи, но остается постоянным отношение напряжений Ux/Un. Иными словами, каждая отдельная частица жидкости со своими индивидуальными параметрами (размерами, температурой, электропроводностью и т.п.) и все частицы вместе непрерывно перемещаются по траектории струи и проходят по ее обоим участкам за десятые доли секунды. Поэтому сомневаться в одинаковости усредненных за некоторый интервал времени характеристик участков струи, кроме их длин, не приходится.

Таким образом, в устройстве решена задача линейного измерения величины уровня заполнения канала, при этом обеспечивается непрерывно обновляемый электрический контакт между струей и жидкостью в открытом канале, что существенно повышает надежность измерения.

Источники информации

1. Кремлевский П.П. Расходомеры и счетчики количества, 1989, с.154, 440.

2. Патент РФ на изобретение №2162208, бюллетень №2, 2001 г.

Устройство для измерения уровня потока жидкости в канале, состоящее из первичного преобразователя, имеющего участок канала, по которому протекает поток жидкости, и измерительного блока, имеющего источник переменного напряжения низкой частоты, причем первичный преобразователь имеет кран, выполненный из электропроводного материала и подключенный к водопроводной сети, и два электрода, из которых один расположен по линии траектории струи, приблизительно на ее середине и выше возможного максимального значения уровня заполнения канала жидкостью, а другой расположен в потоке на дне канала, причем кран и электрод, расположенный на дне канала, подключены к источнику переменного напряжения низкой частоты, а электрод, расположенный приблизительно на середине струи, и электрод, расположенный на дне канала, подключены ко входу измерительного блока, отличающееся тем, что первичный преобразователь имеет лоток, выполненный из неэлектропроводного материала и расположенный между краном и электродом, находящимся на дне канала, под углом α<π/2 к поверхности раздела сред «воздух - жидкость», а электрод, расположенный по линии траектории струи приблизительно на ее середине, закреплен в полости лотка.



 

Похожие патенты:

Изобретение относится к области контроля уровня электропроводных сред, преимущественно жидких металлов в атомно-энергетической промышленности. Кондуктометрический способ позволяет измерять уровень жидкого металла без введения каких-либо элементов конструкции уровнемера внутрь резервуара, где находится жидкий металл.

Изобретение относится к области криогенной техники. Способ измерения уровня жидкого гелия дискретным уровнемером с точечным резистивным датчиком температуры марки ТВО и контроллером управления процессом измерения отличается тем, что датчик устанавливается на разных уровнях и определяется разброс показаний значений сопротивления датчика: стабильный и малый разброс указанных значений характеризует расположение датчика в жидкой среде гелия, несколько худший разброс указанных значений характеризует расположение датчика в газообразной среде, наибольший разброс указанных значений соответствует положению датчика у поверхности жидкого гелия, и по итогу анализа разброса показаний сопротивления определяют уровень жидкого гелия.

Изобретение относится к технике измерения уровня жидкости и может быть использовано в автоматических системах автоматики и аварийной сигнализации для измерения уровня жидкого азота.

Изобретение относится к контрольно-измерительной технике и предназначено для контроля и сигнализации границы раздела сред нефтепродукт-вода в установках для очистки воды от нефтепродуктов или обводненных нефтепродуктов от воды.

Описывается устройство (1) для измерения электропроводности, по меньшей мере, для определения уровня наполнения электропроводных жидкостей. Предусмотрен измерительный элемент (10), по меньшей мере, с одним несущим корпусом (12) и, по меньшей мере, двумя, имеющими первый (42) и второй (44) концы и проходящими в вертикальном направлении электродами (40а, b), причем электроды (40а, b) в зоне первого конца (42) имеют, по меньшей мере, одну экранированную зону (22), и каждый электрод (40а, b) имеет, по меньшей мере, одну первую и одну вторую соответственно граничащую с экранированной зоной (22) свободную контактную поверхность (46, 52).

Изобретение относится к измерительной технике и может быть использовано при определении раздела фаз в парогенерирующих установках. Способ заключается в том, что устанавливают датчик, выполненный, например, в виде электропроводной проволоки, в канале по направлению силы тяжести нагревают датчик путем пропускания тока через датчик, измеряют электрическое сопротивление датчика R, отличающийся тем, что измеряют ток I, проходящий через датчик, определяют приращение температуры датчика на участках датчика, контактирующих с паровой и жидкой фазами Δtп=I2R/πdLαп, Δtж=I2R/πdLαж, определяют удельное электрическое сопротивление датчика, контактирующего с паровой и жидкой фазами ρп=ρ0(1+βΔtп), ρж=ρ0(1+βΔtж), определяют толщину парового hп и жидкостного слоя hж:hп=(RS-ρжL)/(ρп-ρж), hж=L-hп, где ρж и ρп - удельное электрическое сопротивление датчика, находящегося в жидкой ρж и паровой фазе соответственно; R - электрическое сопротивление датчика; I - ток через датчик; L - длина датчика; S - поперечное сечение датчика, β - термический коэффициент сопротивления, d - диаметр датчика, ρ0 - удельное электрическое сопротивление материала датчика при t=20°C, αп, αж - коэффициенты теплоотдачи на поверхности датчика при взаимодействии с паровой и жидкой фазами.

Изобретение относится к устройствам для определения уровня криогенной жидкости и может быть применено как в криогенерирующих установках, так и в системах, потребляющих криопродукцию.

Изобретение относится к приборостроению, а именно к дискретным датчикам контроля уровня, и может быть использовано в системах и приборах для контроля уровня топлива при хранении, заправке, а также в процессе работы двигателей на криогенном топливе при жестких механических воздействиях.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения уровня диэлектрических и токопроводящих жидкостей, например в резервуарах с нефтью или нефтепродуктами.

Изобретение относится к измерительному устройству для определения количества d(V(z)) электрически проводящей жидкости с проводимостью LF с помощью емкости при изменяющихся в вертикальном направлении (z-направлении) уровнях заполнения.

Изобретение относится к измерениям расхода реверсируемого многофазного потока. Устройство измерения расхода многофазного потока состоит из одновинтовой машины, винт которой является движителем для равномерного подвода дозированного количества механической энергии в реверсируемый многофазный поток и одновременно чувствительным элементом устройства измерения.

Электромагнитный расходомер жидких металлов, имеющий цилиндрическую трубу, выполненную из немагнитного материала, два измерительных электрода, приваренных к внешней поверхности трубы, индуктор, имеющий индукционную катушку и магнитопровод, имеющий две полюсные пластины, соединенные скобой, причем полюсные пластины находятся на одной стороне трубы таким образом, что оси каждой полюсной пластины проходят через центр канала перпендикулярно оси канала и образуют между собой угол, меньший 180°, а измерительные электроды находятся диаметрально противоположно на линии, проходящей через центр канала трубы, индукционная катушка расположена на скобе таким образом, что линия, соединяющая измерительные электроды, является осью симметрии катушки.

Изобретение относится к устройствам для измерения скорости течения среды. Измерительное устройство (1) имеет средства для создания ортогонального к направлению течения (v) среды (5) постоянного магнитного поля (B), а также, по меньшей мере, две области (7, 7') отбора, которые расположены в лежащей ортогонально к направлению течения (v) среды (5) плоскости (E) на стенках (9) измерительной трубы (3), при этом каждая область (7, 7') отбора имеет электрод (13, 13'), который на обращенной к среде (5) стороне имеет неметаллический пористый слой (11), и измерительный прибор (19) для регистрации сигнала измерения.

Изобретение относится к области приборостроения, в частности к тепло- и расходометрии, и позволяет измерять расходы электропроводной жидкости и теплоносителя в напорных трубопроводах.

Изобретение относится к приборостроению, в частности к электромагнитным устройствам для измерения расхода (расходомерам) электропроводящих сред. Способ контроля измерений расхода текучих сред заключается в том, что дополнительно к измерению величины расхода жидкости при преобразовании в микроконтроллере измеренной измерительным АЦП напряжения, пропорционального скорости измеряемой среды в измерительном канале, измеряют напряжения, пропорциональные току через индуктор, и напряжению на индукторе и определяют величину отклонения текущих значений активного и индуктивного сопротивлений, определенных в микроконтроллере программно-аппаратным образом по указанным значениям напряжений на индукторе от предустановленных в памяти их эталонных значений.

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью электромагнитного способа, т.е. способа, основанного на взаимодействии движущейся жидкости с магнитным полем.

Изобретение относится к области приборостроения, а именно к технике измерения расхода жидкого металла с помощью безэлектродных электромагнитных расходомеров. Безэлектродный электромагнитный расходомер, состоит из трубы, трех индукционных катушек и магнитопровода.

Электромагнитный способ измерения расхода электропроводной жидкости, протекающей в магнитном поле через немагнитную трубу, в которой установлены два электрода, магнитное поле создается с помощью электромагнита, имеющего индукционную катушку, через которую пропускается электрический ток, причем расход жидкости определяется в результате измерения тока, протекающего через индукционную катушку, и разности потенциалов между электродами, отличающийся тем, что дополнительно измеряют напряжение на клеммах индукционной катушки, а величину расхода вычисляют по формуле Q = k U I [ 1 − λ ρ k ( U k I − R k ) ] где Q - расход измеряемой среды, k - градуировочный коэффициент, U - разность потенциалов между электродами, I - ток, протекающий через индукционную катушку, Uk - напряжение на клеммах индукционной катушки, Rk - электрическое сопротивление индукционной катушки при градуировочной температуре измеряемой среды, λ - температурная погрешность расходомера [1/°С], ρk - изменение электрического сопротивления индукционной катушки при изменении температуры измеряемой среды на градус Цельсия.

Способ измерения расхода многофазного потока основан на том, что в поток транспортируемой среды движителем вносят дозированное количество механической энергии, компенсирующее потери энергии потока на участке измерения, при этом поступательная, вращательная или любая другая скорость движителя, синхронизированная с объемным расходом транспортируемой среды, является первичным сигналом при измерении расхода.

Предлагаемое изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью способа, основанного на взаимодействии движущейся жидкости с магнитным полем.

Изобретение относится к способу изготовления магнитно-индуктивного расходомера, содержащего по меньшей мере одну измерительную трубу для протекания электрически проводящей среды, по меньшей мере одно устройство для создания магнитного поля, проходящего, по меньшей мере, также перпендикулярно продольной оси измерительной трубы, и по меньшей мере два измерительных электрода. Измерительная труба (2) имеет металлическую основную часть, которая, по меньшей мере на внутренней стороне измерительной трубы, снабжена термопластичным покровным слоем, а виртуальная соединительная линия между двумя измерительными электродами проходит, по меньшей мере по существу, перпендикулярно направлению пронизывающего измерительную трубу перпендикулярно продольной оси измерительной трубы магнитного поля. Существенным отличием способа изготовления расходомера является то, что сначала в основной части (7) измерительной трубы (2) выполняют, предпочтительно посредством сверления, места (10) проникновения, служащие для ввода измерительных электродов (5, 6) в измерительную трубу (2). Затем основную часть (7) в области каждого из мест (10) проникновения снабжают термопластичным покровным слоем (8), после чего измерительные электроды (5, 6) посредством нагрева термопластичного покровного слоя (8) в области мест (10) проникновения непроницаемо для жидкости соединяют с измерительной трубой (2). Технический результат - упрощение способа изготовления магнитно-индуктивного расходомера, повышение его технологичности и снижение затрат энергии. 2 з.п. ф-лы, 5 ил.
Наверх