Способ оценки стойкости к образованию горячих трещин тонколистовых жаропрочных материалов


 


Владельцы патента RU 2570475:

Федеральное государственное унитарное предприятие "Научно-производственный центр газотурбостроения "Салют" (ФГУП "НПЦ газотурбостроения "Салют") (RU)

Изобретение относится к сварочному производству и может быть использовано для определения стойкости жаропрочных материалов к образованию горячих трещин при выборе сплава для сварных конструкций из тонколистовых материалов с толщиной менее 1,5 мм. Изготавливают образцы из исследуемых материалов и выполняют их проплавление, которое осуществляют при одинаковых напряжении и скорости сварки, последовательно изменяя при этом силу тока (от большей величины к меньшей или наоборот) и фиксируя состояние кратера. В кратере сварочного шва при его остывании после выключения сварочной дуги имеет место жесткое объемное деформационное поле, приводящее к возникновению горячих трещин. В качестве критерия оценки стойкости материала к образованию горячих трещин используют максимальную ширину проплавления, при которой в кратере сварочного шва исчезают горячие трещины. При этом чем больше ширина проплавления, при которой исчезают трещины - критическая ширина, тем устойчивее материал к образованию горячих трещин. Использование предлагаемого способа позволяет снизить трудоемкость и затраты на проведение исследований материалов при их выборе для тонколистовых сварных конструкций с обеспечением высокой точности определения стойкости материалов против образования горячих трещин. 1 табл.

 

Изобретение относится к сварочному производству и может быть использовано для оценки стойкости жаропрочных материалов к образованию горячих трещин при выборе сплава для сварных конструкций из тонколистовых материалов с толщиной менее 1,5 мм.

Известен способ определения склонности материалов к образованию горячих трещин, при котором изготавливают образец с выполненными в нем переменными по глубине и ширине канавками, заполняют их наплавленным металлом и выявляют в них наличие трещин, по суммарной длине которых оценивают трещиностойкость материала (SU 1731545 Α1, В23К 31/12, 07.05.1992). Недостатком известного способа является достаточно трудоемкий процесс подготовки образца и невозможность использования способа для тонколистовых материалов.

Известен способ испытания на склонность к образованию горячих трещин для тонколистовых никелевых сплавов, включающий изготовление образца с выполненными в нем поперечными прорезями определенных размеров, выполнение на образце сварного шва и оценку трещиностойкости материала по расстоянию от сварного шва до соответствующей прорези, где трещины еще не образуются (SU 1616010 Α1, В23К 31/12, 07.12.1991). Недостатком данного способа также является трудоемкий процесс подготовки образца и его ориентированность на оценку трещиностойкости в околошовной зоне.

Известен также способ оценки стойкости к образованию горячих трещин, в том числе и тонколистовых материалов, принятый за прототип, при котором изготавливают образцы в форме прямоугольных листов, закрепляют их по одной из длинных сторон и выполняют на каждом из образцов сварной шов под определенным углом к незакрепленной длинной стороне, при этом угол может меняться в диапазоне от 0 до 60°. Оценку трещиностойкости осуществляют по длине горячих трещин, образующихся в сварном шве (DE 102007007901 А1, В23К 31/12, 08.05.2008). Недостатком данного способа является довольно большой расход материала для изготовления образцов (каждый лист имеет размеры порядка 25×15 см), а также усложненный режим испытаний, поскольку необходимо выдерживать заданный угол расположения сварного шва относительно сторон листа.

Задачей предлагаемого изобретения является разработка способа оценки стойкости к образованию горячих трещин, который был бы пригоден для испытаний материалов с малыми толщинами и при этом был бы экономичным по расходованию исследуемых сплавов, а также простым в осуществлении.

Получаемый при этом технический результат заключается в снижении трудоемкости и затрат на проведение исследований материала с обеспечением при этом высокой точности оценки трещиностойкости.

Решение указанной задачи достигается тем, что в способе оценки стойкости к образованию горячих трещин, включающем изготовление образцов из исследуемых материалов, их проплавление и определение наличия горячих трещин в сварных швах, проплавление образцов производят на сварочных токах различной силы при одинаковых напряжении и скорости сварки с получением сварных швов с разной шириной и кратером в конце швов, при этом определение наличия горячих трещин осуществляют в кратере сварных швов, а за критерий стойкости к образованию горячих трещин принимают ширину сварного шва, в кратере которого отсутствуют горячие трещины, причем чем больше указанная ширина, тем выше стойкость материала к образованию горячих трещин.

Способ реализуется следующим образом.

Изготавливают образцы из исследуемых материалов, при этом возможно использование образцов с размерами (порядка 2,5×5 см) существенно меньшими, чем в упомянутых аналогах. Выполняют проплавление образцов, которое осуществляют при одинаковых напряжении и скорости сварки, последовательно изменяя при этом силу тока (от большей величины к меньшей или наоборот) и фиксируя состояние кратера. В кратере сварочного шва при его остывании после выключения сварочной дуги имеет место жесткое объемное деформационное поле, приводящее к возникновению горячих трещин. В качестве критерия оценки стойкости материала к образованию горячих трещин используют максимальную ширину проплавления, при которой в кратере сварочного шва исчезают горячие трещины, что может быть определено, например, при визуальном осмотре. При этом чем больше ширина проплавления, при которой исчезают трещины (критическая ширина), тем устойчивее материал к образованию горячих трещин.

По данному способу была проведена оценка стойкости к образованию горячих трещин для возможности использования в сварных конструкциях из листа толщиной 0,8 мм следующих сплавов: ЭП 708 - в состоянии после двойного старения, ВЖ 171 - обычный и ВЖ 171 -упрочненный посредством азотирования.

Выполняли проплавление образцов со скоростью сварки 7,0 м/час, последовательно уменьшая силу тока на каждом последующем образце и фиксируя состояние кратера на предмет наличия горячих трещин.

Сплав ЭП 708:

- №1. Ток 50А. В кратере интенсивное растрескивание, трещины разноориентированные.

- №2. Ток 40А. В кратере трещины, в основном продольные, как со стороны проплавления, так и с внешней стороны.

- №3. Ток 35А. В кратере единичные трещины с обеих сторон.

- №4. Ток 30А. В кратере единичные трещины только с внешней стороны.

- №5. Ток 28А. В кратере трещин нет.

Измеренная ширина проплавления в образе №5 (критическая ширина) равна 1,95 мм.

Аналогичным образом (или в обратном направлении, переходя от меньших токов к большим) определяли значение критической ширины для сплава ВЖ 171 в обоих состояниях. Полученные результаты значений критической ширины показаны в таблице:

Марка сплава Критическая ширина проплавления, мм
Сплав ЭП 708 в состоянии после двойного старения 1,95
Сплав ВЖ 171 в обычном состоянии 4,40
Сплав ВЖ 171 в азотированном состоянии 3,0

Таким образом, в отношении стойкости против образования горячих трещин лучшим из рассматриваемых является сплав ВЖ 171 в обычном состоянии, который существенно превосходит по этому показателю сплав ЭП 708.

Использование предлагаемого способа позволяет снизить трудоемкость и затраты на проведение исследований материалов при их выборе для тонколистовых сварных конструкций с обеспечением высокой точности оценки стойкости материалов против образования горячих трещин.

Способ определения стойкости тонколистовых жаропрочных материалов к образованию горячих трещин, включающий изготовление образцов из исследуемых материалов, проплавление упомянутых образцов и определение наличия горячих трещин в сварном шве, отличающийся тем, что проплавление образцов производят на сварочных токах различной силы при одинаковых напряжении и скорости сварки с получением сварных швов с разной шириной и кратером в конце швов, при этом наличие горячих трещин определяют в кратере сварного шва и в качестве критерия стойкости к образованию горячих трещин принимают ширину сварного шва, в кратере которого отсутствуют горячие трещины, причем чем больше указанная ширина, тем устойчивее материал к образованию горячих трещин.



 

Похожие патенты:

Изобретение относится к области сварки и может быть использовано при проведении измерительного контроля качества сварных швов, а также при оценке квалификации сварщиков и при оценке качества сварочных материалов.

Изобретение относится к сварочному производству, к способам контактной стыковой сварки оплавлением изделий различного сечения. Способ включает установку и зажатие в сварочных губках свариваемых изделий, предварительное оплавление и сжатие свариваемых торцов, предварительный подогрев проходящим током, контроль распределения температуры, нагрев изделий и последующие оплавление и осадку.

Изобретение относится к способу изготовления вала для турбины и/или генератора посредством сварного соединения и к валу, изготовленному упомянутым способом. Осуществляют удаление по меньшей мере с одной стороны основной ограничивающей круговой поверхности соответственно одной центральной части соответствующего элемента (5) вала относительно оси вращения (2) для получения соответственно одной открытой полости (11) по меньшей мере в одном цилиндре (3) в пределах оставшегося трубообразного ребра (13).

Изобретение относится к машиностроению, преимущественно к сварке титановых сплавов, и может использоваться при изготовлении сложных конструкций. .

Изобретение относится к области сварки и предназначено для контроля качества плазменной точечной сварки листов из нержавеющих хромоникелевых сталей толщинами 1-2,5 мм.

Изобретение относится к области сварочной техники, а именно к оценке требований к химическому составу углеродистых и низколегированных сталей, обеспечивающих отсутствие склонности к образованию холодных трещин и требуемый комплекс механических характеристик сварного соединения при выполнении сварки на заданных режимах.

Изобретение относится к способу оценки режимов сварки и может быть использовано в авиакосмической промышленности, энергомашиностроении и других отраслях, осуществляющих сварку высокотемпературных сталей и сплавов на железной, никелевой или кобальтовой основе.

Изобретение относится к области металлургии, в частности к способу неразрушающего контроля сварных соединений, выполненных точечной или рельефной или шовной контактной сваркой, и может быть использовано при контроле качества сварных конструкций ответственного назначения из алюминиевых и титановых сплавов.

Изобретение относится к области восстановления изношенных деталей электроконтактной наплавкой проволокой и может быть использовано при выборе технологических режимов электроконтактной наплавки валов.

Изобретение относится к области ремонтного производства и может быть использовано для определения температуры нагрева присадочного металла при восстановлении валов электроконтактной наплавкой.

Изобретение относится к машиностроению и судостроению, а также строительству. Определяют среднюю скорость расплавления электрода путем деления длины расплавившейся части к времени расплавления. Скорость расплавления определяют по формуле V=(2·Lэ/t)-Vo, где Lэ - длина расплавленной покрытой части электрода; t - время расплавления электрода, Vo - начальная расчетная скорость расплавления электрода. Начальную скорость расплавления покрытого электрода определяют расчетным путем по известной начальной скорости расплавления голой проволоки при автоматической сварке под слоем флюса. При этом используют приведенную плотность покрытого электрода, когда масса покрытия считается входящей в массу стержня. Начальную скорость расплавления покрытого электрода Vo определяют по формуле Vo=αро·J/ρэ, где J - плотность тока дуги, А/см2; ρэ - приведенная плотность стержня, с учетом массы покрытия, г/см3. Коэффициент расплавления голого электрода αpo в этом случае измеряется в г/(А·с). Здесь А - ток дуги в амперах, с - время в секундах. Способ позволяет по данным одного опыта по расплавлению электрода определить его скорость расплавления с высокой точностью. 2 ил., 2 табл.
Наверх