Способ моделирования при разработке антенн


 


Владельцы патента RU 2570600:

Открытое акционерное общество "Омский научно-исследовательский институт приборостроения" (ОАО "ОНИИП") (RU)

Использование: для разработки подземных антенн. Сущность изобретения заключается в том, что осуществляют подготовку площадки с подстилающей поверхностью, операции уменьшения антенны в M раз, где M - коэффициент моделирования, увеличения частоты в M раз, при этом выбирают параметры подстилающей поверхности, влияющие на электрические и направленные свойства антенн, диэлектрическую проницаемость ε и удельную проводимость σ, проводят измерения диэлектрической проницаемости ε и удельной проводимости σ различных подстилающих поверхностей, в вычислителе создают базы данных диэлектрической проницаемости ε и удельной проводимости σ, задают нужные значения рабочей частоты антенны, с помощью вычислителя выбирают параметры диэлектрической проницаемости ε и удельной проводимости σ, необходимые для получения нужного значения рабочей частоты антенны и напряженности ее поля. Технический результат: расширение функциональных возможностей и повышение точности моделирования при разработке антенн.

 

Изобретение относится к способам моделирования работы антенн и может быть использовано при разработке подземных антенн.

На характеристики антенн, применяемых в KB диапазоне, существенное влияние оказывают параметры почвы, на которой установлена излучающая система, такие как диэлектрическая проницаемость ε и удельная проводимость σ.

Известны способы измерения диэлектрической проницаемости различных сред. Так известен способ измерения комплексной диэлектрической проницаемости (КДП) [1] жидких и сыпучих тел в широком диапазоне частот в одной ячейке, заполненной исследуемым веществом, используемой в диапазоне частот 100-4000 МГц как отрезок коаксиальной линии, а в диапазоне частот 1 кГц-1 МГц как цилиндрический конденсатор, при этом в диапазоне частот 100-4000 МГц комплексная диэлектрическая проницаемость вычисляется через измеренные значения комплексного коэффициента передачи электромагнитной волны, а в диапазоне частот 100 Гц-1 МГц - через измерение полной проводимости. Новым является то, что предварительно перед измерением КДП пустую ячейку помещают в дополнительный отрезок коаксиальной линии, при этом ячейку включают как цилиндрический конденсатор в разрыв внутреннего проводника дополнительного отрезка коаксиальной линии, закороченной на выходе, и производят его калибровку, для чего определяют параметры эквивалентной электрической схемы дополнительного отрезка коаксиальной линии с расположенной в ней пустой ячейкой, затем заполняют ячейку исследуемым веществом и в диапазоне частот 1 МГц-100 МГц определяют КДП по формулам, связывающим S11 с параметрами эквивалентной схемы. Данный способ измерения КДП обеспечивает ее измерение в одной ячейке с низкой погрешностью во всем частотном диапазоне (1 кГц-6000 МГц).

Также известен способ измерения комплексной диэлектрической проницаемости жидких и сыпучих тел [2] в широком диапазоне частот в одной ячейке, используемой в диапазоне частот выше 100 МГц как отрезок коаксиальной линии, а в диапазоне ниже 1 МГц как цилиндрический конденсатор, при этом в диапазоне частот выше 100 МГц диэлектрическая проницаемость вычисляется через измеренные значения комплексного коэффициента передачи электромагнитной волны (параметра матрицы рассеяния S12), а в диапазоне частот ниже 1 МГц - через измерение полной проводимости. Новым является то, что для измерений в диапазоне частот 0,3-100 МГц используется дополнительный отрезок коаксиальной линии волновым сопротивлением 50 Ом сечения, большего, чем у ячейки, внутренний диаметр внешнего проводника. При этом ячейку включают как цилиндрический конденсатор в разрыв внутреннего проводника дополнительного отрезка коаксиальной линии, имеющего два СВЧ разъема, к центральным проводникам которых подключены с одной стороны центральный проводник ячейки, а с другой стороны - корпус ячейки через согласующий переходник в виде отрезка конической линии волновым сопротивлением 50 Ом, и производят его калибровку, для чего определяют параметры эквивалентной схемы дополнительного отрезка коаксиальной линии с расположенной в ней пустой ячейкой, затем заполняют ячейку исследуемым веществом и в диапазоне частот 0,3-100 МГц измеряют комплексный коэффициент передачи (параметр матрицы рассеяния S12) и по формулам, связывающим КДП с параметром S12, определяют КДП.

Недостатками известных способов-аналогов являются узкая область использования.

Наиболее близким к предлагаемому способу является способ моделирования при разработке новых типов антенн [3], заключающийся в уменьшении размеров антенны в M раз, увеличении магнитной проницаемости в М2 раз.

Недостатком способа-прототипа является невысокая точность получаемых результатов из-за отсутствия учета параметров почвы.

Задача изобретения - расширение функциональных возможностей и повышение точности моделирования при разработке антенн.

Поставленная задача достигается тем, что в способе моделирования при разработке антенн, включающем подготовку площадки с подстилающей поверхностью, операции уменьшения антенны в M раз, где М - коэффициент моделирования, увеличения частоты в M раз, согласно изобретению выбирают параметры подстилающей поверхности, влияющие на электрические и направленные свойства антенн, диэлектрическую проницаемость ε и удельную проводимость σ, проводят измерения диэлектрической проницаемости ε и удельной проводимости σ различных подстилающих поверхностей, в вычислителе создают базы данных диэлектрической проницаемости ε и удельной проводимости σ, задают нужные значения рабочей частоты антенны, с помощью вычислителя выбирают параметры диэлектрической проницаемости ε и удельной проводимости σ, необходимые для получения нужного значения рабочей частоты антенны и напряженности ее поля.

Предлагаемый способ осуществляется следующим образом.

В начале работы способа моделирования осуществляем выбор площадки. Известно [3], что возможно моделирование антенных систем на основе принципа электродинамического подобия. В основе этого метода лежит принцип электродинамического подобия, который для случая размещения антенны в воздухе над идеально проводящей плоскостью имеет следующую формулировку [3]: «Если одновременно и в равной степени уменьшить линейные размеры антенны и рабочую длину волны, то основные электрические характеристики антенны - входное сопротивление и характеристики направленности - останутся неизменными».

Суть использования описанного метода моделирования заключается в возможности снизить затраты на изготовление экспериментальных образцов, уменьшая линейные размеры антенн в случае очень больших линейных размеров (ДВ, СВ, KB диапазон - десятки, сотни метров) или увеличении в K раз в случае маленьких размеров (СВЧ диапазон - сантиметры, миллиметры). При этом моделирование предполагает уменьшение размеров антенны в M раз, где М - коэффициент моделирования, увеличение частоты в M раз. Такое моделирование наземных и подземных антенн для получения адекватных данных предполагает формирование подстилающей поверхности - реальной почвы с необходимыми параметрами. Это становится возможным при получении диэлько-влажностной зависимости реальной почвы и формирования для моделирования подстилающей поверхности с искомыми параметрами. Для моделирования подстилающей поверхности выбирают параметры подстилающей поверхности, влияющие на электрические и направленные свойства антенн: диэлектрическую проницаемость ε и удельную проводимость σ. Далее проводят измерения диэлектрической проницаемости ε и удельной проводимости σ различных подстилающих поверхностей. Одним из вариантов измерения диэлектрической проницаемости ε и удельной проводимости σ является метод измерения с помощью регистрирующего устройства и зонда. Принцип работы зонда основан на определении характеристик колебательного контура, т.е. резонансной частоты f0 и ширины рабочей полосы частот Δf [4]. С помощью регистрирующего устройства фиксируют параметры диэлектрической проницаемости ε и удельной проводимости σ среды, в которой проводят измерения. При этом измерения проводятся в различных точках антенных площадок.

Из собранных параметров в вычислителе создают базы данных диэлектрической проницаемости ε и удельной проводимости σ. Далее проводят подбор параметров диэлектрической проницаемости ε и удельной проводимости σ, необходимых для получения нужного значения рабочей частоты антенны и напряженности ее поля.

Источники информации

1. Патент №2478830, G01R 27/26, опубл. 10.02.2013 г.

2. Патент №2509315, G01R 27/26, опубл. 11.05.2012 г.

3. Г.А. Лавров, А.С.Князев. Приземные и подземные антенны. М., Советское радио, 1965 г., с.442-447.

4. Черняк Г.Я., Мясковский О.М. Радиоволновые методы исследований в гидрогеологии и инженерной геологии. - М.: Недра, 1973 г. - 176 с.

Способ моделирования типа подстилающей поверхности при моделировании антенн, включающий подготовку площадки с подстилающей поверхностью, операции уменьшения антенны в M раз, где M - коэффициент моделирования, увеличения частоты в M раз, отличающийся тем, что выбирают параметры подстилающей поверхности, влияющие на электрические и направленные свойства антенн, диэлектрическую проницаемость ε и удельную проводимость σ, проводят измерения диэлектрической проницаемости ε и удельной проводимости σ различных подстилающих поверхностей, в вычислителе создают базы данных диэлектрической проницаемости ε и удельной проводимости σ, задают нужные значения рабочей частоты антенны, с помощью вычислителя выбирают параметры диэлектрической проницаемости ε и удельной проводимости σ, необходимые для получения нужного значения рабочей частоты антенны и напряженности ее поля.



 

Похожие патенты:

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки.

Изобретение относится к области электротехники, в частности для обработки синусоидального электрического сигнала с целью определения параметров его вектора. Способ включает использование цифрового информационно-измерительного устройства, состоящего из нелинейного преобразователя (НП) и линейного преобразователя (ЛП).

Изобретение относится к области антенных измерений. Измерения параметров антенных систем осуществляют с использованием метода пространственно-временной селекции.

Изобретение относится к радиотехнике и может быть использовано для определения радиотехнических характеристик крупногабаритных антенн для космических аппаратов без их непосредственных измерений.

Использование: антенная техника, в частности в способах измерения характеристик диаграммы направленности активных и пассивных антенных решеток. Сущность: способ измерения характеристик диаграммы направленности активной/пассивной фазированной антенной решетки состоит в том, что осуществляют формирование сигнала на входе либо приемного, либо передающего канала и обработку принятых сигналов.

Изобретение относится к области радиотехники. Характеристики диаграммы направленности АФАР определяются в процессе СВЧ-контроля излучателей и связанных с ними ППМ при работе АФАР на прием дополнительно проводится оценка состояния многоступенчатого управляемого аттенюатора каждого i-го ППМ и оценка характеристик входящего в состав приемного канала каждого i-го ППМ АФАР малошумящего усилителя, а при работе АФАР на передачу проводится оценка состояния многокаскадного управляемого усилителя мощности передающего канала каждого i-го ППМ.

Изобретение относится к антенным измерениям и может быть использовано для определения поляризационных характеристик антенн (коэффициент эллиптичности, угол наклона большой оси эллипса, направление вращения вектора напряженности электрического поля).

Изобретение относится к области радиолокационной техники и может быть использовано для измерения радиолокационных характеристик тяжелых малоотражающих объектов.

Изобретение относится к радиотехнике и может быть использовано при радиотехнических испытаниях систем антенна-обтекатель. .

Изобретение относится к радиотехнике, в частности к средству электромагнитного испытания объекта. Стенд содержит зонды, безэховые электромагнитные поглотители, опорную конструкцию, систему перемещения, привод устройства механического перемещения, компьютер, интерфейс пользователя, датчик угла положения опоры, контур обратной связи, опорные ролики, а также вторую систему углового перемещения. Опорная конструкция имеет вид дуги или кольца и выполнена таким образом, что опирающиеся на неё зонды распределены в трех измерениях. При этом зонд и опора для объекта контроля перемещаются относительно друг друга в соответствии с траекторией, рассчитываемой на основе заданной статистики углового разброса относительно основного направления наведения зонда. Компьютер выполнен с возможностью ввода статистики углового разброса пользователем, вычисления множества угловых контрольных позиций для управления приводом механического перемещения, а также расчета значений интенсивности и фазы электромагнитного излучения. При этом заданная статистика углового разброса является двойным экспоненциальным законом. Технический результат - расширение функциональных возможностей стенда. 2 н. и 25 з.п. ф-лы, 19 ил.

Изобретение относится к технике антенных измерений и может быть использовано для измерения комплексных амплитуд возбуждения каналов фазированной антенной решетки (ФАР), в частности, в составе штатной аппаратуры радиолокационной станции. Способ реализуется с помощью устройства, содержащего неподвижный зонд, включающий генератор 1 контрольного сигнала со вспомогательной антенной 2 и вырабатывающий контрольный сигнал сверхвысокой частоты, который излучают в направлении ФАР 3. Принятый ФАР контрольный сигнал сверхвысокой частоты поступает на приемник 4, включающий в себя смеситель 5 и гетеродин 6, где производят его усиление и преобразование на промежуточную частоту, соответствующую рабочей полосе частот АЦП 7, осуществляющего преобразование принятого аналогового сигнала в цифровой вид. С выхода АЦП 7 цифровой сигнал поступает в ЭВМ 8, осуществляющую обработку данных. Кроме того, ЭВМ 8, управляя ФАР 3, обеспечивает поочередное переключение во все N-состояний фазовращателей каждого из каналов ФАР 3. Технический результат заключается в упрощении аппаратуры, используемой при измерениях с одновременным повышением точности измерений, а также возможность проведения измерений в составе радиолокационной станции с использованием без доработок ее штатной аппаратуры. 4 з.п. ф-лы, 4 ил.

Изобретение относится к технике антенных измерений и может быть использовано для проведения экспериментальной оценки коэффициента усиления антенн, различных радиоэлектронных систем в диапазоне частот. Способ основан на генерировании высокочастотного сигнала на заданной частоте f, измерении его мощности Pэ и излучении с помощью эталонной антенны в направлении исследуемой антенны, расположенной в дальней зоне, приеме исследуемой антенной сигнала, измерении его мощности Pи и вычислении коэффициента усиления антенны по формуле G и = P и 4 π R 2 P э S э ф ф , где R = 12 h 2 f c , h - высота размещения фазовых центров эталонной и исследуемой антенн от подстилающей поверхности, Sэфф - эффективная площадь эталонной антенны. При этом вычисляют соответствующее каждому значению заданной частоты f расстояние между фазовыми центрами эталонной и исследуемой антенн R, измеряют реальное расстояние между фазовыми центрами эталонной и исследуемой антенн Rn, вычисляют разность расстояний R-Rn и перемещают исследуемую антенну вдоль линии, соединяющей фазовые центры эталонной и исследуемой антенн, до тех пор, пока R-Rn=0. Устройство содержит последовательно соединенные генератор сигналов, измеритель мощности и эталонную антенну, а также устройство позиционирования, на котором размещены исследуемая антенна и приемное устройство. При этом в него введены последовательно соединенные устройство измерения дальности, устройство обработки и управления, также формирователь команд управления, выход которого соединен со входом устройства позиционирования, второй выход, второй и третий входы устройства управления соединены со входом генератора сигналов, со вторым выходом измерителя мощности, с выходом приемного устройства через устройство коммутации соответственно, причем устройство измерения дальности размещено на устройстве позиционирования. Технический результат заключается в снижении временных затрат для проведения измерений и повышении точности измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки. Способ измерения коэффициента усиления антенн в натурных условиях, включающий формирование высокочастотного сигнала и измерение его мощности, отведение части мощности высокочастотного сигнала, излучение сигнала с помощью эталонной антенны в направлении исследуемой антенны, прием исследуемой антенной сигнала, его суммирование с отведенным высокочастотным сигналом, перекрытие области пространства, существенной для распространения радиоволн между антеннами, с учетом соблюдении условия дальней зоны от каждой из антенн до места перекрытия, площадь поперечного сечения которого определяется выражением S>πRэ 2Sin2Dэ/2, где Dэ - ширина диаграммы направленности эталонной антенны, Rэ - расстояние от места перекрытия до эталонной антенны, изменение уровня и фазы отведенного высокочастотного сигнала с целью получения нулевого уровня мощности суммарного сигнала, открытие между антеннами в плоскости поперечного сечения области пространства, существенной для распространения радиоволн. Предложенный способ позволяет снизить погрешность результатов измерений коэффициента усиления антенн радиоэлектронных средств в условиях многолучевого распространения радиоволн. 2 ил.

Отражатель электромагнитных волн для калибровки устройства радиолокационных систем образован соединением поверхностей минимум трех проводящих прямых круговых цилиндров с одинаковым радиусом основания и разной длиной образующих, лежащих в одной плоскости. Причем длина и радиус выбираются с учетом минимальной и максимальной длины электромагнитной волны излучателей антенн радиолокационных систем. Технический результат заключается в упрощении процесса калибровки и сокращении времени ее проведения. 6 ил.
Наверх