Система для повышения эффективности эрлифта при откачке из недр пластового флюида

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяных залежей. Технический результат - повышение эффективности эрлифта и обеспечение возможности контроля давления и температур. Система для откачки пластового флюида содержит не менее двух скважин. Каждая из этих скважин оборудована двумя насосно-компрессорными трубами - НКТ, соединенными каналами гидродинамической связи. Нагнетательная скважина предназначена для закачивания по одному ее каналу раствора селитры, а по другому ее каналу - инициатора разложения селитры с возможностью прогрева продуктами экзотермической реакции каналов гидродинамической связи и окисления нефти в пласте. Добывающая скважина предназначена для контроля окисления нефти в пласте по выходу углекислого газа. Кроме того, нагнетательная скважина обеспечена возможностью прекращения экзотермической реакции и прокачки воздуха по каналам гидродинамической связи с обеспечением эрлифта и фонтанирования пластового флюида в добывающей скважине и возможности контроля гидродинамической связи между скважинами, температуры, мощности эрлифта и безопасности работ. Для этого в нагнетательной скважине на внешней НКТ установлен пакер, а по внутренней НКТ проложен кабель, соединяющий датчики давления и температуры, установленные около пакера и ниже него. В добывающей скважине установлены упомянутые датчики на выходе из НКТ и обеспечена возможность контроля состава выходящих газов. 1 ил.

 

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяных залежей. Эрлифт применяют как инструмент для откачки жидкости из скважин методом «отдува». Для этого в скважину опускают двухрядный лифт, состоящий из двух насосно-компрессорных труб НКТ, располагаемых, как правило, соосно. В одну из них закачивают под воздух, «отдувая» уровень жидкости вниз. По другой трубе жидкость поднимается и фонтанирует.

Известно устройство, содержащее несколько труб, одна из которых - основная, причем все трубы связаны между собой, образуя внутри пространство для прокачки горюче-окислительного состава по скважине (RU 2224103, E21B 43/24, 20.02.2004).

Недостатком известного решения является сложность конструкции, в которой реагенты движутся по вертикальным соосным НКТ трубам, а реакция происходит в горизонтальных трубках, что ведет к неполному перемешиванию реагентов и низкому КПД реакции.

Наиболее близким техническим решением является устройство для откачки жидкости с помощью эрлифта, содержащее трубу, которая сообщается с резервуаром и герметичным баком, соединенным с насосами (RU 2440515, F04F 1/20, 20.01.2012).

Однако в устройстве-прототипе нижняя часть имеет управляющее устройство и не обеспечена приборами для контроля и оптимизации режима откачки жидкости. Поэтому откачиваемые жидкости с разными исходными или меняющимися в процессе реакции химическими составами имеют разную вязкость, в результате чего применение прототипа не гарантирует ламинарный режим потока и равномерную откачку без пульсаций и потерь мощности. При этом ценным признаком устройства, работа которого регулируется вручную или с помощью автоматики, является увеличение мощности эрлифта за счет подключения внешнего источника энергии.

Техническим результатом заявленного решения является повышение эффективности эрлифта путем увеличения его мощности за счет тепла, выделившегося при окислении части пластовой нефти кислородом воздуха при прокачке его через нагреваемый участок пласта от нагнетательной к добывающей скважине.

Система включает не менее двух скважин: нагнетательную и добывающую, соединенных гидродинамической (ГД)* связью, далее - «ГД каналом», проходящим по продуктивному пласту. На рисунке представлено внутрискважинное оборудование нагнетательной скважины, где 1 - продуктивный пласт, 2 - обсадная труба, 3 - внешняя насосно-компрессорная труба, НКТ, 4 - внутренняя насосно-компрессорная труба, НКТ; 5 - вход во внутреннюю НКТ; 6 - вход в кольцевой зазор между внутренней и внешней НКТ; 7 - вход в кольцевой зазор между внешней НКТ и обсадной трубой; 8 - пакер; 9 - кабель для передачи сигналов от датчиков температуры и давления в мобильную геофизическую лабораторию (МБЛ); 10 - прибор D=28 мм, датчик Р, Т, установленный около пакера; 11 - датчик температуры, установленный в зоне реакции; 12 - мобильная геофизическая лаборатория, в которой помещены приборы для регистрации и визуализации сигналов на экране компьютера, а также хроматограф для анализа проб жидкости и газа, откачиваемых из скважины, при этом на одном из трех (5-7) выходов устанавливается пробоотборник (не показан). Околоскважинное оборудование нагнетательной скважины включает МБЛ и компрессор, необходимый для прокачки воздуха по скважине и ГД каналу. Околоскважинное оборудование добывающей скважины - МБЛ, необходимая для контроля режима работы эрлифта. Внутрискважинное оборудование добывающей скважины отличается от такового нагнетательной скважины лишь отсутствием пакера.

Система функционирует следующим образом.

1. Контролирует операции приготовления и закачки в нагнетательную скважину водных растворов селитры и инициатора реакции (ИР) ее разложения с целью проведения реакции в скважине и ГД-канале.

2. Контролирует процесс реакции разложения селитры напротив продуктивного пласта и нагрев породы («коллектора») с нефтью до температуры, достаточной для окисления нефти в пласте воздухом (в среднем, до Т=200-250°C). При этом, по мере необходимости, через вход 7 подают воду под давлением с целью предотвратить смещение пакера при повышении давления в зоне реакции.

3. Определяет момент прекращения закачки жидких реагентов в нагнетательную скважину и начала закачки воздуха в ГД канал с целью формирования и повышения мощности эрлифта за счет тепла, выделившегося при окислении кислородом из воздуха нефти в пласте.

4. Контролирует режим работы эрлифта по динамике роста концентрации углекислого газа и по скорости откачки пластового флюида из добывающей скважины.

5. Контролирует температуру на выходе из ГД канала в добывающей скважине с целью ее понижения путем закачки воды в случае нагрева до температур (450-500°C), характерных для фронта устойчивого внутрипластового горения, что необходимо для предотвращения неконтролируемого выгорания нефти.

Система отличается от устройства-прототипа, в котором увеличение мощности эрлифта происходит за счет подключения внешнего источника энергии, не меняющего состав откачиваемой жидкости, тем, что предлагаемая система повышения эффективности эрлифта меняет состав откачиваемой жидкости путем насыщения ее газом, что существенно облегчает выход пластового флюида из пласта в скважину и движение его по стволу скважины на поверхность.

Участки надежной ГД-связи между пластом и скважиной геофизики определяют стандартным методом по понижению температуры в зоне выхода из пласта жидкости и газа (эффект Джоуля - Томпсона). Наличие ГД-связи по продуктивному пласту между двумя скважинами - это наличие измеряемого указанным методом (с некоторой задержкой) отклика изменения скорости потока (массопереноса), выходящего из пласта в одной скважине, на изменение давления в другой скважине.

На фигуре схематически представлена схема компоновки внутрискважинного (подземного) и устьевого оборудования нагнетательной скважины, в которой: 1 - продуктивный пласт, 2 - обсадная труба, 3 - внешняя насосно-компрессорная труба НКТ, 4 - внутренняя насосно-компрессорная труба; 5 - вход во внутреннюю НКТ; 6 - вход в кольцевой зазор между внутренней и внешней НКТ; 7 - вход в кольцевой зазор между внешней НКТ и обсадной трубой; 8 - пакер; 9 - кабель от датчиков температуры и давления к приборам мобильной геофизической лаборатории МГЛ; 10 - датчик температуры и давления около пакера; 11 - датчик температуры в зоне реакции; 12 - геофизическая лаборатория, в которой помещены приборы, в том числе, хроматограф для анализа проб жидкости и газа, откачиваемых из скважины. На входах 5 или 6 устанавливают пробоотборник (не показан). Сигналы от датчиков давления и температуры по кабелю 9, проложенному по НКТ 4, в МГЛ фиксируются на экране компьютера.

Система функционирует следующим образом.

На месторождении выбирают по крайней мере две скважины: нагнетательную и добывающую с гидродинамической связью. В нагнетательной скважине на первой стадии в обрабатываемую зону пласта 1 через вход 5 в НКТ по каналу закачивают раствор селитры, а через вход 6 закачивают инициатор ее разложения, при этом продукты экзотермической реакции прогревают ГД-канал. На второй стадии через вход 5 или 6, прекратив реакцию в нагнетательной скважине, прокачивают воздух по ГД-каналу. В добывающей скважине на любом из входов 5-7 регистрируют появление углекислого газа и газированного пластового флюида в режиме эрлифта и фонтанирования. В добывающей скважине, мощность эрлифта увеличивается за счет энергии, выделившейся в реакции окисления кислородом воздуха части пластовой нефти.

На всех стадиях контролируют давление и температуру датчиками 10 и 11, а в добывающей скважине также состав выходящих газов.

В целях безопасности работ контролируют процесс реакции разложения селитры напротив продуктивного пласта, приводящий к нагреву породы («коллектора») с нефтью до температуры, достаточной для последующего окисления нефти в пласте воздухом (в среднем до Т=200-250°C). При этом, по мере необходимости, через вход 7 в большой затруб закачивают воду под давлением с целью понижения температуры ниже предвзрывной, для применяемых реагентов.

В добывающей скважине контролирует по появлению углекислого газа процесс окисления кислородом воздуха части нефти в пласте, а также - расширение канала ГД-связи и повышение мощности эрлифта, который откачивает жидкость из добывающей скважины. Анализ газов осуществляется в МГЛ12.

В добывающей скважине контролируют также повышение температуры до характерной для фронта пластового горения (450-500°C) и ее понижение при закачке воды в зону реакции (до Т<400°C) с целью предотвращения бесполезного (не контролируемого) выгорания нефти.

Таким образом, заявляемая система позволяет усилить гидродинамические связи с добывающей скважиной (или скважинами), что оптимизирует процесс реакции в нагнетательной скважине, создавая условия для повышения мощности эрлифта в добывающей скважине в сочетании с обеспечением безопасности работ.

Система для откачки пластового флюида, содержащая не менее двух скважин, каждая из которых оборудована двумя насосно-компрессорными трубами - НКТ, соединенных каналами гидродинамической связи, при этом нагнетательная скважина предназначена для закачивания по одному ее каналу раствора селитры, а по другому ее каналу - инициатора разложения селитры с возможностью прогрева продуктами экзотермической реакции каналов гидродинамической связи и окисления нефти в пласте, добывающая скважина предназначена для контроля окисления нефти в пласте по выходу углекислого газа, кроме того, нагнетательная скважина обеспечена возможностью прекращения экзотермической реакции и прокачки воздуха по каналам гидродинамической связи с обеспечением эрлифта и фонтанирования пластового флюида в добывающей скважине и возможности контроля гидродинамической связи между скважинами, температуры, мощности эрлифта и безопасности работ, для чего в нагнетательной скважине на внешней НКТ установлен пакер, а по внутренней НКТ проложен кабель, соединяющий датчики давления и температуры, установленные около пакера и ниже него, а в добывающей скважине установлены упомянутые датчики на выходе из НКТ и обеспечена возможность контроля состава выходящих газов.



 

Похожие патенты:

Изобретение относится к насосостроению, а именно к установкам типа эрлифт, в частности к эрлифтам с малыми заглублениями и низконапорными системами подачи газа с подъемом жидкости и пульпы на большую высоту.

Изобретение относится к атомной промышленности в части переработки радиоактивных отходов, а именно к устройствам для более полного освобождения емкостей-хранилищ от радиоактивных осадков, и может найти применение в химической, нефтехимической и других отраслях.

Группа изобретений относится к нефтедобывающей промышленности. Устройство для теплового воздействия на нефтяной пласт состоит из источника питания, помещенных в скважину электрических нагревателей и трех идентичных напорных труб, причем каждая труба состоит из двух частей.

Эрлифт // 2497026
Изобретение может быть использовано в технологических процессах грануляции металлургического шлака с получением мелкого граншлака в виде песка, который необходимо откачать из глубокого грануляционного бассейна для его последующего обезвоживания.

Изобретение относится к области двигателестроения, а именно к нагнетателям двигателей внутреннего сгорания. Техническим результатом является повышение эффективности вентиляции картера двигателя.

Изобретение относится к атомной промышленности в части переработки радиоактивных отходов, а именно к устройствам для растворения и размыва струями осадка. В пульсационном клапанном погружном насосе, включающем корпус, пульсопровод, впускной шаровой клапан с ограничителем подъема шара, нагнетательный трубопровод с выпускным шаровым клапаном, камеру нижних сопел, внутри которой размещен вал, соединяющий нижние сопла с приводом поворота и систему управления, камера нижних сопел расположена в корпусе за перегородкой, разделяющей корпус на камеру нижних сопел и камеру выдачи.

Изобретение относится к насосостроению, в частности к способам подъема воды из скважин и колодцев, и может быть использовано при проектировании гидротранспортных систем в промышленности и строительстве, изыскательских работах, в сельском хозяйстве, а также в водоснабжении.

Изобретение относится к нефтедобывающей и нефтеперерабатывающей промышленности и может быть использовано при добыче нефти, содержащей большое количество попутного газа.

Эрлифт // 2482340
Изобретение относится к области машиностроения, а именно к насосным установкам типа эрлифт. .

Изобретение относится к способам и устройствам для подъема жидкостей из скважин и может быть использовано для подъема как нефти, так и воды из подземных источников.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке нефтяных и газовых месторождений. Технический результат - повышение эффективности разработки нефтяных месторождений, а также сокращение энергозатрат.

Изобретение относится к нефтегазодобывающей промышленности, а именно к добыче высоковязкой нефти из низкотемпературного пласта, расположенного в зоне повсеместного распространения многолетнемерзлых пород посредством системы нефтяных добывающих и нагнетательных скважин.

Изобретение относится к области добычи трудноизвлекаемой нефти, конкретно - к добыче вязкой нефти, керогеносодержащей нефти из песчаных и глинистых пластов. Скважинный газогенератор содержит корпус, камеру сгорания и сопло.

Группа изобретений относится к области добычи трудноизвлекаемой нефти, конкретно - к добыче вязкой нефти, керогеносодержащей нефти из песчаных и глинистых пластов.

Группа изобретений относится к области добычи нефти и газа, конкретно к добыче вязкой нефти, керогеносодержащей нефти из глинистых пластов. Способ разработки месторождений вязкой нефти включает создание в пласте зоны внутрипластовых окислительных и термодинамических процессов, путем введения в горизонтальную часть обсадной колонны нагнетательной скважины забойного газогенератора и воспламенения в нем компонентов топлива: горючего с окислителем и подмешивание к продуктам сгорания предварительно подогретой воды.

Изобретение относится к нефтедобывающей промышленности. Технический результат - ускорение восстановления фильтрационных свойств призабойных зон нефтегазовых скважин, нарушенных в процессе эксплуатации.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений нефти и/или битума с использованием внутрипластового горения.

Группа изобретений относится к извлечению смеси углеводородов и, в частности, смеси тяжелых углеводородов из подземного пласта путем внутрипластового горения с использованием обогащенного кислородом газа.

Изобретение относится к области горного дела. Технический результат - повышение флюидоотдачи пласта и добычи углеводородных энергоносителей.

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - повышение эффективности прогревания пласта высоковязкой нефти и битума; увеличение охвата пласта тепловым воздействием с его равномерным прогревом; повышение объема отбора разогретой высоковязкой нефти и битума; повышение надежности реализации способа.

Группа изобретений относится к способам и устройствам для нагрева углеводородов в подземном коллекторе. Способ нагревания подземной зоны включает создание полости для размещения подземного нагревательного устройства. При этом указанное подземное нагревательное устройство включает: корпус трубопровода сгорания, ограничивающий трубопровод сгорания; по меньшей мере две камеры сгорания; по меньшей мере один трубопровод для подачи топлива; по меньшей мере один трубопровод для подачи кислорода и выпуск для выпуска газообразного продукта горения. При этом по меньшей мере две камеры сгорания расположены внутри корпуса трубопровода сгорания. Трубопровод для подачи топлива предназначен для подачи горючего топлива по меньшей мере в одну камеру сгорания. Трубопровод для подачи кислорода предназначен для подачи кислорода по меньшей мере в одну камеру сгорания. Причем расстояние между камерами сгорания составляет по меньшей мере 304,8 м (1000 футов) и теплотворная способность составляет по меньшей мере 3,6·106 кДж в час (3,41·106 БТЕ в час). Устанавливают подземное нагревательное устройство внутри полости. Эксплуатируют подземное нагревательное устройство. Техническим результатом является повышение эффективности добычи углеводородов. 3 н. и 7 з.п. ф-лы, 1 ил.
Наверх