Опорный щиток электрической машины, электрическая машина и способ монтажа электрической машины

Изобретение относится к опорному щитку для электрической машины, электрической машине, оборудованной таким опорным щитком, и способу монтажа электрической машины. Технический результат - предотвращение нежелательного эксцентриситета ротора и его вибрации. Опорный щиток для электрической машины содержит гнездо подшипника, предназначенное для установки в нем магнетного шарикоподшипника, выполненного с возможностью вращения ротора электрической машины, и радиально наружный контур периметра, на котором расположено по меньшей мере три опорных элемента. Опорные элементы выступают радиально наружу соответственно на заданную величину выступания (М) по отношению к контуру периметра так, что они определяют дискретный наружный контур периметра опорного щитка. Соответствующие величины выступания (М) опорных элементов имеют такие размеры, что опорный щиток подгоняется при достижении совпадения центра магнетного шарикоподшипника к геометрической продольной оси электрической машины и/или магнитной продольной оси электрической машины. 4 н. и 12 з.п. ф-лы, 10 ил.

 

Изобретение относится к опорному щитку для электрической машины, электрической машине, оборудованной таким опорным щитком, и способу монтажа электрической машины.

Из документа DE 102009001948 A1 известен опорный щиток для электрической машины, который имеет внутреннее кольцо в качестве гнезда подшипника, в которое может устанавливаться подшипник, оборудованный для установки с возможностью вращения ротора электрической машины, и наружное кольцо в виде указывающего радиально наружу присоединяемого корпуса, который может для радиального опирания опорного щитка при предварительном натяге подгоняться к внутреннему периметру корпуса статора электрической машины.

Из документа DE 102009019593 A1 может быть заимствована электрическая машина со статором, имеющим корпус статора, ротором, расположенным во внутреннем периметре корпуса статора, и опорным щитком, в котором в гнезде подшипника установлен подшипник для установки с возможностью вращения ротора. В опорном щитке предусмотрен активный магнетный шарикоподшипник, в котором при подключенном к напряжению магнетном шарикоподшипнике радиально установлен с возможностью вращения вал ротора. Улавливающий подшипник активного магнетного шарикоподшипника имеет внутреннее кольцо, которое охватывает вал ротора и которое имеет внутренний диаметр, который на предопределенную величину больше наружного диаметра вала ротора, так что при подключенном к напряжению магнетном шарикоподшипнике между валом ротора и внутренним кольцом образован кольцевой зазор и при отключенном от напряжения магнетном шарикоподшипнике вал ротора внутри опирается на внутреннее кольцо.

Обмотка электрической машины, как электромотор, создает, соответственно, силы, которые в идеальном случае в основном полностью преобразуются в крутящий момент на роторе, используемый в приводе (например, муфте) электрической машины. В реальном случае, однако, на ротор действуют паразитные силы, которые могут отрицательно сказываться на его оптимальном вращении. Эти паразитные силы могут вызываться, когда отдельные ветви обмотки имеют слегка отличающиеся электрические свойства, шихтовка стальных листов имеет локальные вариации, и/или ротор вращается в статоре с неточной центровкой. Последнее может проявляться в том, что на ротор воздействуют периодические силовые импульсы с кратностью электрической частоте. В специальной литературе этот феномен известен как "Unbalanced Magnetic Pull" (UPM).

Исследования этого феномена опубликованы, например, в "EFFECTS OF CONSTANT UNBALANCEND MAGNETIC PULL TO TEE VIBRATION BEHAVIORS OF TURBOMACHINERY", Zhemin Cai und Ningsheng Feng, ICSV15, 15th International Congress on Sound and Vibration, 6-10 Juli 2008, Daejeon, Korea, а также в "Simulation of the effects of the unbalancend magnetic pull in four-poles slim generators", P. Pennacchi и L. Frosini.

Приведенный выше феномен вызывает нежелательную вибрацию вала ротора (динамику ротора) и таким образом потенциально всей электрической машины. Это может представлять у высокочастотных двигателей с небольшими воздушными зазорами серьезную проблему.

Задачей изобретения является предоставление опорного щитка для электрической машины, электрической машины и способа монтажа электрической машины, так чтобы иметь возможность предотвратить нежелательный эксцентриситет ротора и таким образом вибрацию.

В части первого аспекта изобретения это достигается посредством опорного щитка, охарактеризованного признаками пункта 1, электрической машиной, охарактеризованной признаками пункта 8, соответственно способом, охарактеризованным признаками пункта 11 формулы изобретения.

Выводы, лежащие в основе изобретения, заключаются в том, что, чтобы предотвратить вибрацию, вызванную UPM (числом оборотов в минуту), нужно стремиться к расположению ротора по возможности центрически к статору. При этом определяющим является положение в центре относительно магнитной центральной оси соответственно продольной оси электрической машины и/или геометрической центральной оси соответственно продольной оси электрической машины. Магнитная продольная ось и геометрическая продольная ось могут совпадать, но те же оси при обстоятельствах вынуждены не совпадать.

Так как принципиально нужно считаться с допусками при изготовлении и монтаже, в реальности нельзя предотвратить того, что центр магнетного шарикоподшипника, в котором располагается устанавливаемый в опорном щитке ротор, будет не точно совпадать с магнитной продольной осью обмотки статора. Так как эта магнитная продольная ось обмотки статора в первом приближении согласовывается соответственно совпадает с продольной центральной осью внутреннего периметра соответственно внутреннего диаметра корпуса статора электрической машины и таким образом с геометрической продольной осью электрической машины, таким образом является предпочтительным ориентировать центр магнетного шарикоподшипника в первую очередь во внутреннем периметре корпуса статора соответственно по геометрической продольной оси электрической машины. В идеальном случае все-таки эта ориентировка осуществляется относительно магнитной продольной оси электрической машины.

Поэтому согласно изобретению опорный щиток для электрической машины, которая представлена, в частности, электромотором или электрогенератором, имеет, по меньшей мере, следующие элементы: гнездо подшипника, в котором может устанавливаться оборудованный для установки с возможностью вращения ротора электрической машины магнетный шарикоподшипник, который образован предпочтительно в качестве активного магнетного шарикоподшипника с относящимся с ним улавливающим подшипником; радиально наружу указывающий контур периметра, на котором предусмотрено, по меньшей мере, три опорных элемента - также называемые Shimming Pads, которые соответственно на определенную величину выступания выступают наружу за контур периметра, так что они определяют дискретный наружный контур периметра опорного щитка, причем соответствующие величины выступания опорных элементов имеют такие размеры, что опорный щиток при достижении совпадения центра магнетного шарикоподшипника может подгоняться к геометрической продольной оси электрической машины и/или магнитной продольной оси электрической машины.

С помощью направленного воздействия соответственно подгонки соответствующих величин выступания могут компенсироваться допуски изготовления и монтажа. Благодаря тому что после подгонки наружного контура периметра центр магнетного шарикоподшипника совпадает с геометрической продольной осью и/или магнитной продольной осью статора электрической машины, ротор располагается оптимально центрически по отношению к корпусу статора, вследствие чего могут в значительной степени уменьшаться или устраняться периодические силовые импульсы и таким образом нежелательная вибрация ротора.

Согласно предпочтительной форме осуществления предложенного в соответствие с изобретением опорного щитка опорные элементы смонтированы на контуре периметра соответственно с возможностью радиально регулироваться, так что могут изменяться соответствующие величины выступания опорных элементов, то есть вновь и вновь могут направленно оказывать воздействие соответственно подгоняться. Такое радиальное регулирование может быть реализовано, например, с помощью управляемой резьбой самотормозящей и/или отдельно устанавливаемой направляющей скольжения или сменяемых прокладок соответственно подкладок.

Согласно другой предпочтительной форме осуществления предложенного в соответствие с изобретением опорного щитка каждый опорный элемент имеет радиально находящийся снаружи опорный корпус для прилегания к внутреннему периметру корпуса статора и индивидуальное количество радиально внутрь от опорного корпуса подкладываемых прокладок - предпочтительно в форме тонких пластин, причем каждая прокладка имеет определенный радиальный размер толщины. Под опорный корпус могут быть подложены одна прокладка или также несколько прокладок одинакового или различного радиального размера толщины. Это исполнение изобретения особенно надежно и может реализоваться просто и без больших затрат.

Согласно еще предпочтительной форме осуществления предложенного в соответствие с изобретением опорного щитка опорные элементы расположены в соответствующих выемках, которые соответственно распространяются от контура периметра радиально вниз, а также в полном объеме опорного щитка. В выемках могут размещаться предпочтительно средства крепления - например, головки винтов, так что они не требуют радиально никакого дополнительного места.

Согласно другой форме осуществления предложенного в соответствие с изобретением опорного щитка опорные элементы расположены в двух группах опорных элементов с распределением вокруг контура периметра, причем опорные элементы первой группы этих обеих групп входят в зацепление с внутренним периметром корпуса статора, чтобы подгонять опорный щиток по отношению к корпусу статора, и причем опорные элементы второй группы этих обеих групп входят в зацепление с внутренним периметром присоединяемого корпуса, чтобы подгонять присоединяемый корпус независимо от опорного щитка по отношению к корпусу статора. Преимущественно опорные элементы имеют соответственно радиально находящуюся снаружи опорную поверхность, которая образована ступенчато в осевом направлении к опорному щитку, причем разбивка на ступени первой группы с, по меньшей мере, тремя опорными элементами в первом осевом направлении возрастает радиально до соответствующей величины выступания и разбивка на ступени второй группы с, по меньшей мере, тремя опорными ступенями во втором осевом направлении возрастает радиально до соответствующей величины выступания, и причем внутри каждой из обеих групп опорные элементы расположены с распределением вокруг контура периметра преимущественно симметрично с определенным угловым расстоянием друг от друга. Это исполнение предпочтительно для электрических машин, у которых присоединяемый корпус присоединен фланцами к корпусу статора.

С помощью противоположной разбивки на ступени обеих групп предпочтительно при монтаже опорного щитка могут вступать в контакт с внутренним периметром корпуса статора сначала опорные поверхности одной из обеих групп, так что может проводиться при случае нужная подгонка величин выступания этой группы. Опорные поверхности другой из обеих групп благодаря противоположной разбивке на ступени вступают в контакт с внутренним периметром присоединяемого корпуса только при дальнейшем монтаже присоединяемого корпуса. Когда величины выступания первой группы подогнаны, они обеспечивают желательное центрирование опорного щитка, так что величины выступания второй группы могут использоваться для центрирования присоединяемого корпуса независимо от центрирования опорного щитка.

Согласно аспекту изобретения создана электрическая машина по пункту 8 формулы изобретения, как, в частности, выполненная в виде электромотора или в виде электрогенератора электрическая машина, которая имеет статор, располагающий корпусом статора, ротор, расположенный во внутреннем периметре корпуса статора, и опорный щиток согласно первому аспекту изобретения по пункту 1 формулы изобретения. Подробности, касающиеся опорного щитка, описаны выше согласно первому аспекту изобретения.

Согласно форме осуществления предложенной в соответствие с изобретением электрической машины радиальная установка ротора осуществляется с помощью расположенных по обеим сторонам электрической машины магнетных шарикоподшипников, которые соответственно с помощью предложенного в соответствие с изобретением опорного щитка интегрированы в электрическую машину.

В случае магнетных шарикоподшипников речь может идти о пассивном магнетном шарикоподшипнике и об активном магнетном шарикоподшипнике.

Для случая отключения напряжения в системе магнетных шарикоподшипников с активными магнетными шарикоподшипниками предусмотрены улавливающие подшипники, которые подхватывают ротор.

Магнетный шарикоподшипник и улавливающий подшипник такого магнетного шарикоподшипника представлены, как правило, узлом предварительной сборки.

В качестве улавливающих подшипников применяются преимущественно роликоподшипники. Но в качестве улавливающих подшипников могут применяться и подшипники скольжения.

Улавливающие подшипники, если они выполнены в виде роликоподшипников, при нормальном режиме работы не должны вращаться вхолостую. Отсюда между их внутренним кольцом и быстро вращающимся ротором имеется воздушный зазор в несколько десятых миллиметра. При этом воздушном зазоре речь идет о самом узком зазоре всего вала ротора, так в случае падения ротора должно предотвращаться, что ротор попадет в другие структуры, а не в улавливающие подшипники. Поэтому магнетные шарикоподшипники при нормальном режиме работы удерживают ротор в центре этих улавливающих подшипников.

Согласно предпочтительной форме осуществления предложенной в соответствие с изобретением электрической машины в опорном щитке предусмотрен активный магнетный шарикоподшипник, в котором при подключенном к напряжению магнетном шарикоподшипнике с возможностью вращения радиально установлен вал ротора, причем улавливающий подшипник активного магнетного шарикоподшипника имеет внутреннее кольцо, которое охватывает вал ротора и которое имеет внутренний диаметр, который на предопределенную величину больше наружного диаметра вала ротора, так что при подключенном к напряжению магнетном шарикоподшипнике образован кольцевой зазор между валом ротора и внутренним кольцом улавливающего подшипника и при отключенном от напряжения магнетном шарикоподшипнике опирается внутри на внутреннее кольцо улавливающего подшипника.

Согласно другой предпочтительной форме осуществления предложенной в соответствие с изобретением электрической машины она, кроме того, имеет управляющее устройство для электрической настройки активного магнетного шарикоподшипника, так что при подключенном к напряжению магнетном шарикоподшипнике ось вращения вала ротора совпадает с центром магнетного шарикоподшипника.

Так как, как упомянуто выше, в принципе следует считаться с допусками при изготовлении и монтаже, в реальности нельзя предотвратить, что центр магнетного шарикоподшипника и в случае активного магнетного шарикоподшипника с узлом предварительной сборки из магнетного шарикоподшипника и улавливающего подшипника не будет точно совпадать с магнитной центральной осью соответственно продольной осью обмотки статора. Смещение (отсутствие совпадения с осью) ведет, однако, как описано выше, к нежелательному феномену периодических силовых воздействий, вызванных UPM, на ротор. Предложенный в соответствие с изобретением радиально юстируемый соответственно регулируемый опорный щиток устраняет недостатки, причем юстировка соответственно регулировка реализуется предпочтительно во время процесса монтажа с помощью точных измерений. Центр магнетного шарикоподшипника, а в случае активного магнетного шарикоподшипника и улавливающего подшипника юстируется при этом с центром обмотки статора, что в первом приближении осуществляется с помощью ориентирования по внутреннему периметру соответственно внутреннему диаметру корпуса статора соответственно геометрической продольной оси статора, преимущественно по магнитной продольной оси статора.

Согласно изобретению дальше предоставляется способ монтажа предложенной в соответствие с изобретением электрической машины, причем способ имеет этапы: установка ротора в корпус статора; подгонка наружного контура периметра опорного щитка к внутреннему периметру корпуса статора, так что магнетный шарикоподшипник и внутреннее кольцо радиального подшипника соответственно охватывают вал ротора; приведение в действие электрической машины, так что ее ротор вращается в подключенном к напряжению магнетном шарикоподшипнике; определение вибрационной характеристики ротора; определение корректирующего смещения по вибрационной характеристике, изменение соответствующих величин выступания опорных элементов на основе корректирующего смещения. Изменение соответствующих величин выступания при этом осуществляется таким образом, что оптимизируется вибрационная характеристика электрической машины. Это осуществляется с помощью совпадения между осью вращения вала ротора электрической машины и геометрической продольной осью и/или магнитной продольной осью статора электрической машины.

С помощью предложенного в соответствии с изобретением способа используется, в частности, возможность реализации тонкой юстировки ротора относительно магнитной центральной оси соответственно продольной оси обмотки статора на основе полученной рабочей характеристики соответственно вибрационной характеристики, с чем может корректироваться электрическая асимметрия. Определение корректирующего смещения оси вращения вала ротора по отношению к центральной оси обмотки статора и соответствующее изменение соответствующих величин выступания опорных элементов осуществляется либо с помощью тестов соответственно повторения монтажа и измерений, либо расчетом на основе полученной рабочей характеристики.

Изобретение распространяется определенно также на такие формы осуществления, которые не предоставлены комбинациями признаков из явного возврата к пунктам формулы изобретения, с чем раскрытые признаки изобретения - насколько это технически рационально - могут комбинироваться друг с другом.

Предложенная в соответствии с изобретением электрическая машина согласно второму аспекту изобретения раскрыта в пункте 12 формулы изобретения. Соответственно опорные элементы или используемые прокладки установлены не в опорном щитке, а в корпусе статора и прилегают к опорному щитку.

Изобретение поясняется чертежами, на которых представлено следующее:

фиг. 1 - вид в перспективе статора электрической машины согласно форме осуществления изобретения в части первого аспекта изобретения;

фиг. 2 - вид в перспективе с пространственным разделением машины на фиг. 1;

фиг. 3 - вид в перспективе опорного щитка электрической машины на фиг. 1;

фиг. 4 - вид в осевом направлении опорного щитка на фиг. 3;

фиг. 5 - вид в перспективе опорного элемента опорного щитка на фиг. 3, принадлежащего к одной группе, а также в нижней половине вид разреза части опорного щитка, увиденный вдоль линии Α-A на фиг. 4;

фиг. 6 - вид в перспективе опорного элемента опорного щитка на фиг. 3, принадлежащего ко второй группе, а также в нижней половине вид разреза части опорного щитка, увиденный вдоль линии В-В на фиг. 4;

фиг. 7 - увеличенный вид области С на фиг. 4;

фиг. 8 - альтернативы опорным элементам фиг. 5 и 6;

фиг. 9 - схематизированные, фрагментарные поперечные сечения электрической машины согласно второму аспекту изобретения.

Фиг. 1 и фиг. 2 показывают электрическую машину 1 согласно форме осуществления изобретения. Электрическая машина 1 образована предпочтительно в виде электромотора или в виде электрогенератора.

Электрическая машина 1 снабжена корпусом 11 статора и имеющим пакет 14 активной стали статора статором 10, расположенным во внутреннем периметре 12 корпуса 11 статора ротором 20 с валом ротора 21 и на каждом из двух концов в осевом направлении AR электрической машины 1 соответственно опорным щитком 30, причем на фиг. 2 можно видеть только опорный щиток 30.

Как дополнительно можно видеть на фиг. 3-7, каждый опорный щиток 30 имеет гнездо 40 подшипника, а также указывающий радиально наружу контур 50 периметра.

В гнезде 40 подшипника опорного щитка 30 установлен подшипник в форме магнетного шарикоподшипника 80, оборудованный для установки с возможностью вращения ротора 20. В случае магнетного шарикоподшипника 80 речь может идти о пассивном магнетном шарикоподшипнике и об активном магнетном шарикоподшипнике. Преимущественно применяется активный магнетный шарикоподшипник 80.

Фиг. 10 показывает схематизированное поперечное сечение электрической машины 1 в области активного магнетного шарикоподшипника 80. Магнетный шарикоподшипник 80 располагает наряду с активной, расположенной со стороны статора частью 81 магнетного шарикоподшипника 80, которая взаимодействует с расположенным со стороны ротора пакетом 84 сердечника магнетного шарикоподшипника 80, со стороны статора улавливающим подшипником 82, чтоб в случае прекращения работы магнетного шарикоподшипника принимать ротор 20. Улавливающий подшипник 82 может быть образован в виде роликоподшипника или подшипника скольжения.

Позицией 86 обозначен зазор в области улавливающего подшипника 82, который определяет минимальный радиальный зазор магнетного шарикоподшипника 80.

Активный магнетный шарикоподшипник 80 настраивается электрически с помощью предпочтительно электронного управляющего устройства 90.

На контуре 50 периметра предусмотрено некоторое количество, по меньшей мере, три - в показанной форме осуществления две группы из соответственно четырех опорных элементов 60, 70, которые радиально выступают за контур 50 периметра на определенную величину выступания M (см. фиг. 7), так что они определяют дискретный наружный контур периметра опорного щитка 30. Как видно на фиг. 4, опорные элементы 60, 70 в показанной форме осуществления расположены симметрично с распределением вокруг контура 50 периметра с соответствующим угловым расстоянием 45°.

Соответствующие величины выступания M опорных элементов 60, 70 имеют такие размеры, что образованный ими наружный контур периметра может подгоняться соответственно подогнан для радиального опирания опорного щитка 30 при достижении совпадения центра магнетного шарикоподшипника 80 к геометрической продольной оси А2 статора 10 электрической машины 1 и/или магнитной продольной оси A4 статора 10 электрической машины 1.

Улавливающий подшипник активного магнетного шарикоподшипника 80 имеет внутреннее кольцо, которое охватывает вал 21 ротора и имеет внутренний диаметр, который на заданную величину больше наружного диаметра вала 21 ротора, так что при подключенном к напряжению магнетном шарикоподшипнике 80 между валом 21 ротора и внутренним кольцом образован кольцевой зазор 83 и при не подключенном к напряжению магнетном шарикоподшипнике 80 вал 21 ротора внутри опирается на внутреннее кольцо.

Управляющее устройство 90 настраивает активный магнетный шарикоподшипник 80 так, что при подключенном к напряжению магнетном шарикоподшипнике 80 ось вращения A3 вала 21 ротора совмещена с осью вращения магнетного шарикоподшипника и опосредованно улавливающего подшипника.

Опорные элементы 60, 70 смонтированы на контуре 50 периметра соответственно с возможностью регулирования в радиальном направлении, так что соответствующие величины выступания M опорных элементов 60, 70 могут изменяться для достижения совпадения центра магнетного шарикоподшипника 80 с геометрической продольной осью А2 и/или магнитной продольной осью A4 статора 10 электрической машины 1.

Как видно на фиг. 5 и фиг. 6, для реализации способности регулирования каждый опорный элемент 60, 70 имеет радиально находящийся снаружи опорный корпус 61, 71 для прилегания к внутреннему периметру 12 корпуса 11 статора и индивидуальное количество пластинчатых прокладок, подкладываемых радиально внутрь от опорного корпуса 61, 71, причем опорный корпус 61, 71 и прокладки 62, 72 с помощью винтов 63, 73 с возможностью разъема закреплены на опорном щитке 30.

Опорные элементы 60, 70 расположены в соответствующих выемках 51 в опорном щитке 30, которые простираются соответственно от контура 50 периметра радиально внутрь в полном объеме опорного щитка 30, так что головки винтов 63, 73 не выступают радиально за контур 50 периметра.

Каждая прокладка 62, 72 имеет определенный размер толщины в радиальном направлении RR. В показанной форме осуществления изобретения в качестве номинальной комплектации, например, четыре прокладки 62, 72 с радиальным размером толщины 0,15 мм и семь прокладок 62, 72 с радиальным размером толщины 0,20 мм штабелированы с образованием штабеля с радиальным размером GD общей толщины 2 мм.

Соответственно этому согласно форме осуществления изобретения в начале процесса настройки еще одинаковые величины выступания M составляют соответственно, например, 4 мм.

Для изменения соответствующей величины выступания M (например, по аналогии с приведенными показательными величинами в диапазоне от 2 до 6 мм) опорных элементов 60, 70), так что при смонтированном опорном щитке 30 центр магнетного шарикоподшипника 80 совмещен с геометрической продольной осью А2 и/или магнитной продольной осью статора 10 электрической машины 1, на одном или нескольких этапах настройки должны удаляться, соответственно просто добавляться, только соответственно установленным измеренным величинам одна или несколько прокладок 62, 72. При этом огибающий круг, окружающий опорные элементы 60, 70, смещается геометрически относительно оси вращения соответственно центра установленного в опорном щитке магнетного шарикоподшипника 80, так что у установленного в корпусе 11 статора опорного щитка 30 ось вращения магнетного шарикоподшипника 80 и с ней центр магнетного шарикоподшипника 60 смещается для достижения совмещения относительно геометрической продольной оси А2 и/или магнитной продольной оси A4 статора 10 электрической машины 1.

Опорные элементы 60, 70 расположены двумя группами опорных элементов с распределением вокруг контура 50 периметра. Опорные элементы первой группы этих обеих групп входят в зацепление с внутренним периметром 12 корпуса 11 статора, чтобы подогнать опорный щиток 30 по отношению к корпусу 11 статора. Опорные элементы второй группы этих обеих групп входят в зацепление с внутренним периметром 101 присоединяемого корпуса 100, чтобы подогнать присоединяемый корпус 100 независимо от опорного щитка 30 по отношению к корпусу 11 статора.

В случае присоединяемого корпуса 100 речь может идти о закрывающем корпусе электрической машины 1 или о корпусе статора другой машины.

Соответственно продольная ось присоединяемого корпуса 100 может ориентироваться относительно продольной оси статора 10 электрической машины 1, без того чтобы должно измениться совпадение центра магнетного шарикоподшипника 80 с геометрической продольной осью А2 статора 10 электрической машины 1 и/или магнитной продольной осью A4 статора 10 электрической машины 1.

При предположении, что на фиг. 5 и фиг. 6 корпус 11 статора электрической машины 1 позиционирован справа и присоединяемый корпус 101 позиционирован слева от разделительной плоскости 102 между корпусом 11 статора и присоединяемым корпусом 101, опорные элементы 70 служат для ориентирования опорного щитка 30 для корпуса 11 статора и опорные элементы 60 независимому ориентированию внутреннего периметра присоединяемого корпуса 101 для корпуса 11 статора.

Опорные элементы 60, 70 имеют соответственно радиально находящуюся снаружи опорную поверхность 61а, 71а, которая образована ступенчато по оси к опорному щитку 30, причем разбивка на ступени первой группы с, по меньшей мере, тремя опорными элементами 60 в первом осевом направлении AR1 возрастает радиально до соответствующей величины выступания M и разбивка на ступени второй группы с, по меньшей мере, тремя опорными элементами 70 во втором осевом направлении AR2 возрастает радиально до соответствующей величины выступания М, и причем внутри каждой из обеих групп опорные элементы 60, 70 расположены с определенным угловым расстоянием друг от друга с распределением вокруг контура 50 периметра.

В каждой из обеих групп опорные элементы 60, 70 расположены преимущественно симметрично с распределением вокруг контура 50 периметра опорного щитка 30.

В показанном примере осуществления каждая из обеих групп включает соответственно четыре опорных элемента 60, 70, причем внутри каждой группы, состоящей из четырех опорных элементов, опорные элементы расположены симметрично друг к другу вокруг контура 50 контура периметра с соответствующим угловым расстоянием 90°.

Ниже описываются предложенные в соответствие с изобретением этапы способа для монтажа электрической машины 1.

Сначала при первом предложенном в соответствии с изобретением способе в первом приближении юстируется соответственно осуществляется подгонка совпадения центра соответственно оси вращения A1 каждого магнетного шарикоподшипника и таким образом также центра каждого магнетного шарикоподшипника 80 с помощью центрирования во внутреннем периметре соответственно внутреннем диаметре 12 корпуса 11 статора с магнитной центральной осью A4 обмотки 13 статора 10.

Это согласно форме осуществления изобретения реализуется с помощью следующих осуществляемых друг за другом этапов способа.

Определение положения геометрической продольной оси А2 внутреннего периметра 12 корпуса 11 статора с помощью измерения (например, с помощью 3D-координатомера) внутреннего периметра 12 корпуса 11 статора.

Подгонка наружного контура периметра опорного щитка 30 к внутреннему периметру 12 корпуса 11 статора в смысле грубой юстировки. Для этого: определение положения центра магнетного шарикоподшипника 80 относительно положения геометрической продольной оси А2 внутреннего периметра 12 корпуса 11 статора с помощью измерения гнезда подшипника 40 опорного щитка 30. Последующее определение размера смещения центра магнетного шарикоподшипника 80 по отношению к геометрической продольной оси А2 внутреннего периметра 12 корпуса 11 статора по данным, полученным при измерении. Снятие опорного щитка 30 с корпуса 11 статора и изменение соответствующей величины выступания M опорных элементов 60, 70 на размер смещения.

Дополнительная дальнейшая подгонка наружного контура периметра опорного щитка 30 к внутреннему контуру 12 корпуса статора в смысле тонкой юстировки. Для этого: определение положения центра магнетного шарикоподшипника 80 относительно положения геометрической продольной оси А2 внутреннего периметра 12 корпуса 11 статора с помощью измерения гнезда подшипника 40 опорного щитка 30. Это осуществляется при активном магнетном шарикоподшипнике 80 преимущественно через определение центра внутреннего диаметра улавливающего подшипника 82. Последующее определение актуализированного размера смещения центра магнетного шарикоподшипника 80 по отношению к геометрической продольной оси А2 внутреннего периметра 12 корпуса 11 статора по полученным при измерении данным. Если актуализированный размер смещения будет больше устанавливаемого размера смещения, этапы способа, начиная со снятия опорного щитка 30, следует повторить.

После этого при использовании активных магнетных шарикоподшипников может присоединяться продолжающийся предложенный в соответствие с изобретением способ, с которым дополнительно используется возможность реализации юстировки ротора 20 по отношению к магнитной центральной оси A4 обмотки статора 13 статора 10 на основе полученной рабочей характеристики соответственно вибрационной характеристики, с чем может корректироваться электрическая асимметрия. Это реализуется согласно форме осуществления изобретения, например, с помощью следующих этапов способа:

установка ротора 20 в корпус 11 статора; подгонка наружного контура периметра опорного щитка 30 к внутреннему контуру 12 корпуса 11 статора; причем магнетный шарикоподшипник 80 и внутреннее кольцо улавливающего подшипника 82 охватывают вал 21 ротора; приведение в действие электрической машины 1, так что ее ротор 20 вращается при подключенном к напряжению магнетном шарикоподшипнике 80; определение вибрационной характеристики ротора 20, определение корректирующего смещения по отношению к статору по вибрационной характеристике; снятие опорного щитка 30 с корпуса 11 статора; изменение соответствующих величин выступания M опорных элементов 60, 70 на корректирующее смещение; подгонка наружного контура периметра опорного щитка 30 к внутреннему периметру 12 корпуса 11 статора; приведение в действие электрической машины 1, так что ее ротор 20 вращается при подключенном к напряжению магнетном шарикоподшипнике 80; определение актуализированной вибрационной характеристики ротора. При еще недостаточной вибрационной характеристике определение актуализированного корректирующего смещения по отношению к статору 10 по актуализированной вибрационной характеристике. Если актуализированное корректирующее смещение больше допускаемого корректирующего смещения, то этапы способа, начиная со снятия опорного щитка 30, следует повторить. Определение корректирующего смещения и соответствующих изменений соответствующих величин выступания M опорных элементов 60, 70 на корректирующее смещение осуществляется предпочтительно с помощью тестов, соответственно нескольких повторений в части монтажа и измерений, пока не будет получена желательная вибрационная характеристика. Определение вибрационной характеристики осуществляется, например, с помощью испытательного стенда, имеющего конфигурацию наподобие балансировочного станка с электронным устройством обработки данных и отображения.

Как можно заключить из фиг. 6, опорные элементы 60, 70 в отличие от фиг. 5 и фиг. 6 не должны иметь каких-либо ступенчатых опорных поверхностей 61а, 71а. Достаточно того, что опорные элементы 60, 70 обеих групп выполнены так, что они входят в зацепление с одним из корпусов, то есть корпусом 11 статора или присоединяемым корпусом 100. Также продольная ось присоединяемого корпуса 100 может независимо центрироваться относительно продольной оси статора 10 электрической машины 1 без изменения совпадения центра магнетного шарикоподшипника 80 с геометрической продольной осью А2 статора 10 электрической машины 1 и/или магнитной продольной осью A4 статора 10 электрической машины 1.

На фиг. 1-8 опорные элементы 60, 70 установлены на опорном щитке 30. В отличие от этого фиг. 9 показывает форму осуществления предложенной в соответствие с изобретением электрической машины 1 согласно второму аспекту изобретения, в которой опорные элементы 60, 70 установлены на корпусе 11 статора соответственно на присоединяемом корпусе 100 и прилегают к опорному щитку 30, чтобы подгонять опорный щиток 30 при достижении совпадения центра магнетного шарикоподшипника 80 с геометрической продольной осью А2 электрической машины 1 и/или магнитной продольной осью A4 электрической машины 1. В варианте фиг. 9 на радиально внутреннем контуре периметра корпуса 11 статора электрической машины 1 и присоединяемого корпуса 100 предусмотрено количество, по меньшей мере, три опорных элемента 60, 70, которые на определенную величину выступания M выступают радиально внутрь по отношению соответствующего контура периметра, так что они определяют дискретный внутренний контур периметра корпуса 11 статора и/или присоединяемого контура 100. Соответствующие величины выступания имеют такие размеры, что опорный щиток может подгоняться при достижении совпадения центра магнетного шарикоподшипника 80 к геометрической продольной оси А2 электрической машины 1 и/или магнитной продольной оси A4 электрической машины 1.

Опорные элементы 60, 70 смонтированы на соответствующем контуре периметра соответственно с возможностью радиального регулирования, при этом могут устанавливаться соответствующие величины выступания M опорных элементов 60, 70. Каждый опорный элемент 60, 70 имеет преимущественно радиально находящийся внутри опорный корпус 61, 71 для прилегания к наружному периметру опорного щитка 30 и индивидуальное количество радиально наружу подложенных от опорного корпуса 61, 62 прокладок 62, 72, причем каждая прокладка 62, 72 имеет определенный радиальный размер толщины. Опорные элементы 60, 70 расположены в соответствующих выемках корпуса 11 статора и/или присоединяемого корпуса 100, которые простираются соответственно от каждого контура периметра радиально наружу, а также в полном объеме корпуса 11 статора и/или присоединяемого корпуса 100.

Опорные элементы 60, 70 расположены в двух группах опорных элементов преимущественно с распределением вокруг контура периметра корпуса 11 статора и/или присоединяемого контура 100, причем опорные элементы первой группы этих обеих групп подгоняют опорный щиток 30 по отношению к корпусу 11 статора, и причем опорные элементы второй группы этих обеих групп подгоняют независимо от опорного щитка 30 подсоединяемый корпус 100 по отношению к корпусу 11 статора.

Описанные выше способы могут применяться аналогично в электрической машине фиг. 9. Во избежание не нужных повторений в части способа, а также деталей пассивного или активного магнетного шарикоподшипника рекомендуется обращаться к осуществлению электрической машины фиг. 1-8.

1. Опорный щиток (30) для электрической машины (1), содержащий: гнездо подшипника (40), предназначенное для установки в нем магнетного шарикоподшипника (80), выполненного с возможностью вращения ротора (20) электрической машины (1); радиально наружный контур (50) периметра, на котором расположено множество, по меньшей мере три опорных элемента (60, 70), которые выступают радиально наружу соответственно на заданную величину выступания (М) по отношению к контуру (50) периметра, так что они определяют дискретный наружный контур периметра опорного щитка (30); причем соответствующие величины выступания (М) опорных элементов (60, 70) имеют такие размеры, что опорный щиток (30) подгоняется при достижении совпадения центра магнетного шарикоподшипника (80) к геометрической продольной оси (А2) электрической машины (1) и/или магнитной продольной оси (А4) электрической машины (1).

2. Опорный щиток по п. 1, в котором опорные элементы (60, 70) установлены на контуре (50) периметра с возможностью регулирования радиально для изменения, соответственно регулирования, величин выступания (М) опорных элементов (60, 70).

3. Опорный щиток по п. 1 или 2, в котором каждый опорный элемент (60, 70) имеет расположенный радиально снаружи опорный корпус (61, 71) для прилегания к внутреннему периметру (12) корпуса (11) статора и индивидуальное количество подкладываемых радиально внутрь от опорного корпуса (61, 71) прокладок (62, 72), причем каждая прокладка (62, 72) имеет заданный радиальный размер толщины.

4. Опорный щиток по п. 1 или 2, в котором опорные элементы (60, 70) расположены в соответствующих выемках (51), которые простираются соответственно от контура (50) периметра радиально внутрь, а также в полном объеме опорного щитка (30).

5. Опорный щиток по п. 1 или 2, в котором опорные элементы (60, 70) расположены в двух группах опорных элементов и распределены вокруг контура (50) периметра, причем опорные элементы первой группы этих обеих групп выполнены с возможностью введения в зацепление с внутренним периметром (12) корпуса (11) статора для подгонки опорного щитка (30) по отношению к корпусу (11) статора, причем опорные элементы второй группы этих обеих групп выполнены с возможностью введения в зацепление с внутренним периметром (101) присоединяемого корпуса (100) для подгонки присоединяемого корпуса (100) независимо от опорного щитка (30) по отношению к корпусу (11) статора.

6. Опорный щиток по п. 5, в котором опорные элементы (60, 70) имеют соответственно расположенную радиально снаружи опорную поверхность (61а, 71а), которая образована ступенчато по оси опорного щитка (30), причем разбивка на ступени первой группы с по меньшей мере тремя опорными элементами (60) возрастает в первом осевом направлении (AR1) радиально до соответствующей величины выступания (М) и разбивка на ступени второй группы с по меньшей мере тремя опорными элементами (70) возрастает во втором осевом направлении (AR2) радиально до заданной величины выступания (М), и причем внутри каждой из обеих групп опорные элементы (60, 70) расположены с заданным угловым расстоянием друг от друга с распределением вокруг контура (50) периметра.

7. Опорный щиток по п. 6, в котором внутри каждой из обеих групп опорные элементы (60, 70) расположены симметрично с распределением вокруг контура (50) периметра.

8. Электрическая машина (1) со статором (10), содержащим корпус (11); с ротором (20), расположенным во внутреннем периметре (12) корпуса (11) статора; и с опорным щитком (30) по любому из пп. 1-6, в которой магнетный шарикоподшипник (80) размещен для установки на подшипниках с возможностью вращения ротора (20) в гнезде (40) для подшипника опорного щитка (30), причем для радиального опирания опорного щитка (30) его наружный контур периметра подогнан к внутреннему периметру (12) корпуса (11) статора таким образом, что центр магнетного шарикоподшипника (80) подогнан к геометрической продольной оси (А2) электрической машины (1) и/или к магнитной продольной оси (А4) электрической машины (1).

9. Электрическая машина по п. 8, в которой магнетный шарикоподшипник (80) выполнен в виде активного магнетного шарикоподшипника с улавливающим подшипником, который имеет внутреннее кольцо, которое охватывает вал (21) ротора, и который имеет внутренний диаметр, который на заданную величину больше наружного диаметра вала (21) ротора, причем в подключенном к напряжению магнетном шарикоподшипнике (80) образован кольцевой зазор между валом (21) ротора и внутренним кольцом улавливающего подшипника, а при не подключенном к напряжению магнетном шарикоподшипнике (80) вал (21) ротора опирается внутри на внутреннее кольцо.

10. Электрическая машина по п. 9, содержащая управляющее устройство (90) для электрической настройки магнетного шарикоподшипника (80), причем при подключенном к напряжению магнетном шарикоподшипнике (80) ось вращения вала (21) ротора совмещена с центром (А1) магнетного шарикоподшипника.

11. Способ монтажа электрической машины (1), в котором:
устанавливают ротор (20) в корпус (11) статора;
подгоняют наружный контур периметра опорного щитка (30) к внутреннему диаметру (12) корпуса (11) статора, причем магнетный шарикоподшипник (80) и внутреннее кольцо улавливающего подшипника охватывают вал (21) ротора;
приводят в действие электрическую машину (1), при этом ее ротор (20) выполнен с возможностью вращения в подключенном к напряжению магнетном шарикоподшипнике (80);
определяют вибрационную характеристику ротора (20);
определяют корректирующее смещение на основе вибрационной характеристики;
изменяют величину выступания (М) опорных элементов (60, 70) на основе корректирующего смещения.

12. Электрическая машина (1), содержащая:
статор (10), имеющий корпус (11);
ротор (20), расположенный во внутреннем периметре (12) корпуса (11) статора;
опорный щиток (30) с гнездом (40) подшипника, в котором установлен магнетный шарикоподшипник (80), предназначенный для установки в нем с возможностью вращения ротора (20) электрической машины (1); причем на радиально внутреннем контуре периметра корпуса (11) статора и/или присоединяемого корпуса (100) расположено множество, по меньшей три опорных элемента (60, 70), которые соответственно выступают радиально внутрь на определенную величину (М) выступания по отношению к соответствующему контуру периметра, так что они определяют дискретный контур внутреннего периметра корпуса (11) статора и/или присоединяемого корпуса (100);
причем соответствующие величины выступания (М) опорных элементов имеют такие размеры, что опорный щиток (30) подгоняется при достижении совмещения центра магнетного шарикоподшипника (80) к геометрической продольной оси (А2) электрической машины (1) и/или магнитной продольной оси электрической машины (1).

13. Электрическая машина по п. 12, в котором опорные элементы (60, 70) выполнены с возможностью радиального регулирования на соответствующем контуре периметра, при этом устанавливаются заданные величины выступания (М) опорных элементов (60, 70).

14. Электрическая машина по п. 12 или 13, в которой каждый опорный элемент (60, 70) имеет расположенный радиально внутри опорный корпус (61, 71) для прилегания к наружному периметру опорного щитка (30) и заданное количество радиально наружу подкладываемых от опорного корпуса (61, 71) прокладок (62, 72), причем каждая прокладка (62, 72) имеет заданный размер радиальной толщины.

15. Электрическая машина по п. 12 или 13, в которой опорные элементы (60, 70) расположены в соответствующих выемках, которые простираются от соответствующего контура периметра радиально наружу, а также в полном объеме корпуса (11) статора и/или присоединяемого корпуса (100).

16. Электрическая машина по п. 12 или 13, в которой опорные элементы (60, 70) расположены в двух группах опорных элементов с распределением по контуру периметра корпуса (11) статора и/или присоединяемого корпуса (100), причем опорные элементы первой группы этих обеих групп подгоняют опорный щиток по отношению к корпусу (11) статора, и причем опорные элементы второй группы этих обеих групп подгоняют присоединяемый корпус (100) независимо от опорного щитка (30) по отношению корпусу (11) статора.



 

Похожие патенты:

Изобретение относится к опорному подшипнику качения, предназначенному для использования в любой вращающейся машине, требующей направления во вращении вращающихся частей при помощи опорного подшипника качения.

Изобретение относится к электротехнике, к элементам асинхронного электродвигателя при горизонтальном расположении оси. Технический результат состоит в увеличении эксплуатационного ресурса подшипника, следовательно, и асинхронного электродвигателя.

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается особенностей их выполнения с аксиальным пружинным элементом, который устанавливается между роторной деталью, расположенной на валу ротора, и подшипником качения.

Изобретение относится к области электротехники, а именно к особенностям конструктивного выполнения торцовых электрических машин, которые могут быть использованы в различных областях промышленности.

Изобретение относится к ручным машинам. .

Изобретение относится к области электротехники, а именно к торцовым электрическим асинхронным машинам с одним статором и одним ротором. .

Изобретение относится к электротехнике и электромашиностроению, а именно торцовым электрическим машинам с одним статором и одним ротором, в которых базирование ротора осуществляется на базовом щите статора консольно.

Изобретение относится к машиностроению и может быть использовано в подшипниковых опорах роторных машин, в частности в электрических машинах. .

Изобретение относится к электродвигателю. .

Изобретение относится к детали кожуха статора электрической машины. .

Изобретение относится к области электротехники и электромашиностроения, а именно к конструкции электрических машин, преимущественно вентильных. .

Изобретение относится к области электромашиностроения и может быть использовано при производстве электрических машин, а частности асинхронных электродвигателей малой мощности.

Изобретение относится к электромашиностроению. .

Изобретение относится к злектромашиностроению. .

Изобретение относится к электромашиностроению и направлено на уменьшение габаритов двигателя и повьшение его эксплуатационной надежности . .

Изобретение относится к электротехнике, к быстроходным обратимым вращающимся электрическим машинам, в которых из-за компенсации центробежных ускорений ротора существенно увеличивается его угловая скорость и мощность всей электрической машины, и может быть использовано как электропривод для мощных высокопроизводительных центробежных насосов и вентиляторов, для перекачки жидкостей и газов, на транспорте, особенно водном, и в замкнутых энергосистемах.
Наверх