Система измерения гидрологических параметров на больших глубинах

Изобретение относится к средствам для проведения гидрологических исследований на больших глубинах. Сущность: система включает обрывной океанографический зонд, состоящий из утяжеленной носовой части и хвостовой части. Хвостовая часть содержит средства для стабилизации положения зонда при движении, балласт с гидрохимическим размыкателем, а также катушку с кабелем. Причем кабель имеет выход через отверстие в хвостовой части. В носовой части размещены эталонный измеритель температуры и давления, источник питания, электронные средства преобразования и синхронизации измеряемых сигналов, гидроакустическая антенна. Упомянутый эталонный измеритель температуры и давления выполнен в виде лазерного флюорометра, дополнительной функцией которого является измерение солености. Лазерный флюорометр включает импульсный азотный лазер. На выходе лазерного флюорометра перед входной щелью двойного сканирующего устройства установлен интерференционный фильтр в виде кварцевой кюветы. Упомянутые электронные средства преобразования и синхронизации измеряемых сигналов содержат функционально-логический блок для выработки и автокомпенсации показателя преломления по каждым двум из трех измеряемых гидрофизических параметров. Технический результат: повышение достоверности результатов измерений.

 

Изобретение относится к области исследования гидрологических параметров морской воды, таких как температура, электрическая проводимость, плотность, скорость звука и соленость, в частности к устройствам, запускаемым с плавсредства-носителя, для исследования на больших глубинах.

Задача создания средств и методов оперативного измерения вертикального распределения гидрологических параметров морской воды с плавсредств-носителей до предельных глубин до настоящего времени не имеет оптимального решения и является актуальной.

Одним из основных инструментов, позволяющих определять гидрологические параметры во всей толще морской воды без погружения самого плавсредства на большие глубины, являются системы измерения гидрологических параметров морской воды с использованием обрывных зондов.

Проведенный анализ материалов, касающихся зарубежных аналогов систем измерения гидрологических параметров, показывает, что гидрологические обрывные зонды, размещаемые на иностранных подводных лодках, также являются основными средствами контроля гидрологической обстановки на больших глубинах. Количество гидрологических разрезов, снимаемых за время экспедиций, очень велико. Например, в 1999 году за время похода подводной лодки "Hawkbill" продолжительностью 106 суток было выпущено 153 обрывных гидрологических зонда (Использование подводных лодок ВМС США и ВМС Великобритании подо льдом: Аналитический отчет ЦКБ МТ «Рубин», выпуск 6, сентябрь 2006. - С-Пб: ФГУП «ЦКБ МТ «Рубин», 2006 [1]).

Широкое применение подобных отечественных систем определяется, в первую очередь, их малой стоимостью, точностью измерения гидрологических параметров, простотой аппаратуры и надежностью эксплуатации.

Известна система измерения гидрологических параметров на больших глубинах с использованием обрывных зондов (патент US №5555518, 10.09.1996 [2]), содержащая обрывной развертываемый в морской воде зонд, имеющий один или несколько датчиков параметров морской воды, электрически соединенных с помощью провода малого диаметра с устройством запуска, установленным на судне-носителе зонда, например, таким как портативная (ручная) пусковая установка, смонтированная на палубе, или пусковая установка, установленная внутри корпуса выше ватерлинии. Провод малого диаметра электрически подключен к измерительной аппаратуре сбора данных зонда. Измерительная аппаратура представляет собой систему сбора и анализа данных зонда и может быть, например, устройством, выполненным на основе персонального компьютера.

Недостатком системы является зависимость от погодных условий в момент сброса обрывного зонда и от высоты палубы в месте расположения пускового устройства, что при неблагоприятных условиях, например при шторме или сильном волнении, может приводить к механическим повреждениям обрывного зонда и снижению точности определения глубины его погружения.

Указанные недостатки отсутствуют в системе измерения гидрологических параметров на больших глубинах с помощью обрывных зондов, запускаемых с подводного носителя через кормовой сигнальный эжектор (патент US №5191790, 09.03.1993 [3]), в которой модуль для постановки зонда через кормовой сигнальный эжектор подводного носителя содержит корпус, внутри которого установлены обрывной зонд, катушка, установленная за зондом, несущий элемент, присоединенный к обрывному зонду, несущее тело, имеющее форму, обеспечивающую гидродинамический подъем, грузонесущий кабель для механического соединения несущего тела с подводным носителем, причем несущее тело и грузонесущий кабель сконструированы и расположены таким образом, что несущее тело, когда оно соединено с двигающимся подводным носителем, будет перемещаться в воде на некотором расстоянии над ним, кабель, соединенный с обрывным зондом и, по меньшей мере, частично хранящийся в несущем теле и разматывающийся при движении зонда относительно подводного носителя, и узел разъемного соединения средств для удержания зонда и несущего тела вместе во время их запуска с подводного носителя и последующего отсоединения несущего тела от зонда.

Использование модуля после его размещения в сигнальном эжекторе предусматривает проверочный цикл, во время которого проверяется работоспособность датчика температуры. В конце проверочного цикла система переходит в режим запуска, в течение которого труба эжектора заполняется водой. Модуль запускается из подводного носителя посредством традиционной работы сигнального эжектора.

Данная система измерений предполагает постановку модуля вверх и последующее погружение отделившегося зонда до заданной глубины, что увеличивает время постановки, сокращает диапазон глубин измерения относительно горизонта движения подводного носителя, а также приводит к усложнению конструкции в части постановки обрывного зонда и, как следствие, к высокой стоимости постановочного модуля, полностью теряемого после использования.

Еще один недостаток системы - невысокая точность результатов измерений вследствие невозможности проведения калибровки датчика обрывного зонда непосредственно перед его сбросом, из-за отсутствия в системе высокоточных калибровочных средств.

Известна система измерения гидрологических параметров на больших глубинах (патент RU №2411553 С1, 13.08.2009 [4]), в которой технический результат изобретения заключается в повышении точности измерений, увеличении глубины измерений и упрощении конструкции, теряемой при сбрасывании постановочной части обрывного зонда.

Для достижения указанного результата в системе измерения гидрологических параметров на больших глубинах [4], содержащей установленный на плавсредстве-носителе с возможностью сбрасывания обрывной зонд, средства обработки получаемой информации и канал связи для передачи измеренных данных с обрывного зонда, выполненный с использованием катушки, обеспечивающей его функционирование, сброс обрывного зонда осуществляется через постановочное устройство, содержащее корпус с внутренней цилиндрической поверхностью, герметично установленный в корпусе плавсредства-носителя, в его нижней части, с жестко зафиксированной в нем направляющей гильзой, предназначенной для последовательной постановки в ней обрывного зонда, бортовой катушки канала связи с толкателем и эталонных средств измерения, соединенных каналом связи со средствами обработки получаемой информации, при этом канал связи для передачи измеренных данных с обрывного зонда соединяет его с эталонными средствами измерения или непосредственно со средствами обработки получаемой информации, причем в корпусе постановочного устройства выполнены, по крайней мере, по одному отверстию для подачи забортной воды, обеспечивающей проведение калибровки датчиков зонда, для отвода воздуха из постановочного устройства при его заполнении водой, для подачи воды с целью создания избыточного давления, обеспечивающего обрыв линии связи обрывного зонда и удаление бортовой катушки с толкателем, для подачи воздуха с целью осушения устройства и отверстие для отвода воды при осушении, торцевые отверстия корпуса постановочного устройства закрыты внешней и внутренней герметичными крышками, управляемыми посредством приводов.

Корпус плавсредства-носителя может состоять из легкого и прочного корпусов, при этом герметичность обеспечивается относительно прочного корпуса.

Эталонные средства измерения могут содержать, как минимум, высокоточные датчики температуры, давления и удельной электрической проводимости для получения данных для расчета солености, плотности и скорости звука, с электронными схемами преобразования сигналов, а также средства приема, хранения и передачи информации, поступающей от датчиков эталонных средств измерения и от обрывного зонда на средства обработки информации.

Бортовая катушка может быть установлена с возможностью выхода из постановочного устройства вслед за обрывным зондом.

Средства обработки информации могут быть выполнены на основе электронно-вычислительной машины. Электронно-вычислительная машина может быть снабжена средствами визуализации обрабатываемых данных.

Недостатком известной системы [4] является то, что такие параметры, как плотность и скорость звука, определяются расчетным путем, что влечет за собой необходимость учета многочисленных поправок в зависимости от реальных окружающих условий.

Известен также обрывной океанографический зонд (патент US №3561268, 9.02.1971 [5]), конструкция которого, в значительной степени, определяется содержащимся в нем электромеханическим датчиком давления. В силу своих конструктивных особенностей такие датчики, имеющие предельную точность измерения 2-5%, не позволяют измерять гидростатическое давление (глубину) с требуемой точностью, равной 0,1-0,2%, поэтому в настоящее время в системах измерения гидрологических параметров не используются.

Известен обрывной океанографический зонд (патент RU №2466436 С2, 10.11.2012 [6]), в котором технический результат изобретения заключается в повышении точности измерений гидрологических параметров и надежности работы зонда.

Указанный технический результат достигается тем, что в обрывном океанографическом зонде [6], содержащем утяжеленную носовую часть и хвостовую часть, имеющую средства для стабилизации положения зонда при его движении и содержащую катушку с кабелем, выходящим через отверстие в хвостовой части, а также расположенные в носовой части датчик температуры и датчик давления, контактирующие с морской водой, герметично установленные источник питания и соединенные с ним электронные средства преобразования и синхронизации сигналов датчиков, на входы которых поступают сигналы с датчиков, а выходы соединены с кабелем, при этом датчик давления расположен таким образом, что при погружении зонда чувствительный к давлению элемент датчика контактирует с неподвижной морской водой, а датчик температуры установлен так, что его чувствительный элемент выступает над поверхностью зонда.

Заявляемый технический результат может быть достигнут, в частном случае, тем, что датчик давления установлен в перегородке, герметично закрывающей носовую часть зонда, причем его чувствительный к давлению элемент обращен в сторону хвостовой части зонда. Перегородка, в этом случае, может быть выполнена съемной.

Датчик давления, датчик температуры, источник питания и электронные средства преобразования и синхронизации сигналов датчиков могут быть установлены в герметизирующем материале, заполняющем носовую часть зонда.

Для организации цифровой передачи сигналов обрывной океанографический зонд может дополнительно содержать аналого-цифровой преобразователь, установленный в электронных средствах преобразования и синхронизации сигналов датчиков.

Недостатком известного технического решения является то, что известное устройство [6] представляет собой CTD-комплекс, который регистрирует несколько гидрологических характеристик, в частности электропроводность, температуру и давление. Однако эксплуатация этих приборов с борта дрейфующего судна не обеспечивает заявленной точности измеряемых величин (А.Ю. Лазарюк / Динамическая коррекция CTD-данных // Подводные исследования и робототехника, 2009, №2(8), с. 59). На качество CTD-данных оказывает влияние методические погрешности измерения, определяемые сложными условиями проведения натурных измерений, и инструментальные, обусловленные характеристиками зонда и стратификацией морской среды.

Из инструментальных погрешностей - систематических, случайных и динамических - именно последние подвержены наибольшим изменениям в процессе CTD - зондирования. Их уровень зависит от стратификации слоя морской воды, инерционности датчиков зонда и скорости его движения.

Кроме того, зонд может быть использован только один раз, что при наличии широкомасштабных исследованиях приводит к серьезным материальным затратам.

Задачей заявляемого технического решения является повышение достоверности регистрируемых параметров водной среды.

Поставленная цель достигается за счет того, что в системе измерения гидрологических параметров на больших глубинах, включающей обрывной океанографический зонд, содержащий утяжеленную носовую часть и хвостовую часть, имеющую средства для стабилизации положения зонда при его движении и содержащую катушку с кабелем, выходящим через отверстие в хвостовой части, а также расположенные в носовой части эталонный измеритель температуры и давления, контактирующие с морской водой, герметично установленные источник питания и соединенные с ним электронные средства преобразования и синхронизации измеряемых сигналов, на входы которых поступают измеренные сигналы, а выходы соединены с кабелем, в отличие от прототипа эталонный измеритель температуры и давления выполнен в виде лазерного флюорометра, включающего импульсный азотный лазер, на выходе которого установлен интерференционный фильтр, выполненный в виде кварцевой кюветы, установленной перед входной щелью двойного сканирующего устройства с возможностью измерения солености, электронные средства преобразования и синхронизации измеряемых сигналов содержат функционально-логический блок для выработки и автокомпенсации показателя преломления по каждым двум из трех измеряемых гидрофизических параметров, хвостовая часть обрывного океанографического зонда снабжена балластом с гидрохимическим размыкателем, соединенным с гидроакустическим модемом, соединенным с гидроакустической антенной, установленной в носовой части обрывного океанографического зонда.

Для повышения точности и увеличения возможностей лазерного флюорометра осуществляется возбуждение на двух или нескольких длинах волн (Houston W.R., Stephenson D.G., Measures R.M. LIFES: Laser Induced Fluorescence and Environmental Sensing, NASA Conference on the Use of Lasers for Hydrographic Studies, NASA SP-375, 1973, p. 153-169).

Существует три метода дистанционного измерения подповерхностной температуры воды. Так как вода имеет довольно узкое «окно прозрачности» и, следовательно, все три метода включают одну из форм обратного рассеяния лазерного излучения - рэлеевское, комбинационное или бриллюэновское.

Измерение интенсивности пиков в спектре комбинационного рассеяния, соответствующее длинам двух волн λ1 и λ2, дает возможность определить величину отношения концентраций двух типов молекул воды и затем, зная значение константы равновесия, рассчитать температуру воды.

Для данных измерений применен импульсный азотный лазер, излучающий на длине волны 337 нм, с длительностью импульса 10 нс, с частотой повторения импульсов 500 Гц, мощностью 100 кВт и с расходимостью луча 2 мрад. На выходе лазерной системы установлен интерференционный фильтр, который пропускает излучение лазера на длине волны 337,1 нм и обрезает широкополосное спонтанное излучение. В качестве фильтра, обрезающего обратно рассеянное ультрафиолетовое излучение лазера и эффективно пропускающего сигнал комбинационного рассеяния на длине волны 375 нм, использована кварцевая кювета с водным раствором 2,7-диметил-3,6-диазоциклогепта-1,6-диенперхлората. Данный фильтр установлен перед входной щелью двойного сканирующего спектрометра с фокусным расстоянием 0,25 м и спектральным разрешением 0,5 нм.

Обрывной океанографический зонд, как и в прототипе (фиг. 1, фиг. 2 [6]), содержит утяжеленную носовую часть и хвостовую часть, имеющую средства для стабилизации положения зонда при движении и содержащую катушку с намотанным на нее кабелем, выходящим через отверстие в хвостовой части.

В носовой части расположены лазерный флюорометр и герметично установленные в полости источник питания и электронные средства преобразования и синхронизации сигналов измерения, соединенные с кабелем, обеспечивающим передачу измерительных сигналов к системе сбора и обработки информации, расположенной на носителе.

Электронные средства преобразования и синхронизации сигналов датчиков давления и температуры содержат интерференционный фильтр, который пропускает излучение лазера на длине волны 337,1 нм и обрезает широкополосное спонтанное излучение. В качестве фильтра, обрезающего обратно рассеянное ультрафиолетовое излучение лазера и эффективно пропускающего сигнал комбинационного рассеяния на длине волны 375 нм, использована кварцевая кювета с водным раствором 2,7-диметил-3,6-диазоциклогепта-1,6-диенперхлората. Данный фильтр установлен перед входной щелью двойного сканирующего спектрометра с фокусным расстоянием 0,25 м и спектральным разрешением 0,5 нм.

При спуске зонда сигналы с выходов электронных средств поступают на кабель, выполняющий функцию линии связи с системой сбора и обработки информации.

После обрыва зонда функцию линии связи с системой сбора и обработки информации выполняет гидроакустическая линия связи, состоящая из гидроакустической антенны и гидроакустического модема.

Синхронизация сигналов с выходов преобразователей сигналов выполняется устройством синхронизации, например, по цепи питания.

Сигналы с выходов преобразователей поступают на входы аналого-цифрового преобразователя (АЦП), устанавливаемого в электронных средствах преобразования и синхронизации сигналов. При этом устройством синхронизации может выступать, например, мультиплексор АЦП. Измерительные сигналы с выхода АЦП по кабелю передаются к системе сбора и обработки информации.

Стабилизаторы положения зонда могут быть выполнены в виде продольных ребер на пластмассовом корпусе хвостовой части зонда.

Обрывной океанографический зонд также снабжен балластом с гидрохимическим размыкателем и гидроакустическим модемом.

Гидрохимический размыкатель представляет собой серийный гидроакустический размыкатель с электрохимическим исполнительным устройством типа АГАР-ЭХМ (e-mal:okb@aboe.ru. http://www.eboe.ru) и обеспечивает отсоединение балласта от корпуса зонда.

Балласт размещен по окружности хвостовой части зонда над стабилизаторами и также является элементом стабилизации при спуске зонда.

Гидроакустический модем типа Evologics S2CR40/80 является многофункциональным устройством и предназначен для скоростной передачи зарегистрированных данных (6,5-56 кбод), многопотоковой передачи данных (8,16…асинхронных/параллельных потоков/логических каналов с управляемыми приоритетами), робастной передачи управляющих команд.

Зонд работает следующим образом.

Перед погружением источник питания подключается (например, по команде, получаемой по кабелю) к преобразователям сигналов, запуская процесс измерения.

Хвостовая часть зонда через отверстие однократно самопроизвольно заполняется морской водой. Кабель свободно сматывается с катушки по мере движения зонда. По достижении заданной глубины погружения зонда кабель механически разрывается и зонд под тяжестью балласта продолжает погружение на дно, продолжая при этом регистрировать гидрологические параметры. Достигнув морского дна, зонд продолжает регистрировать гидрологические параметры с учетом ресурса питания и передавать их через гидроакустический модем на судно. 3атем по команде с судна через гидроакустический модем на гидрохимический размыкатель происходит отсоединение балласта и зонд поднимается на поверхность, продолжая регистрировать гидрологические параметры и передавать их на судно. Поиск всплывшего зонда судном осуществляется с использованием гидроакустического канала связи.

Лазерный флюорометр предназначен для прецизионного исследования тонкой структуры гидрофизических полей океана, основанного на принципах оптической nSTD-технологии и макромодульной промышленной элементной базе, обеспечивающих технико-метрологические характеристики отечественных океанологических приборов новою класса на уровне и выше мировых стандартов.

В отличие от традиционных CTD-зондов прецизионные измерения гидрофизических параметров в океане (солености S, температуры Т и давления Р - глубины погружения D) производятся без использования традиционных CTD-датчиков температуры и давления (подверженных различным нестабильностям из-за загрязнения, старения и прочих дестабилизирующих факторов) непосредственно через единый физически высокостабильный термодинамический параметр - показатель преломления морской воды n.

Возможность раздельного измерения гидрофизических параметров по одному параметру - показателю преломления n, связанному с ними сложной нелинейной зависимостью, достигается на основе принципа оптической автокомпенсации показателя преломления по каждым 2-м из 3-х измеряемых гидрофизических параметров, последующего прецизионного измерения скомпенсированных значений показателя преломления DnS, DnT, DnP высокочувствительным помехоустойчивым методом лазерной фотогетеродинной (или ахроматической) интерферометрии и автоматического вычисления в реальном времени гидрофизических величин по прецизионным океанологическим таблицам показателя преломления морской воды.

Высокая абсолютная точность метода измерения показателя преломления (~3×10-7) обусловлена непосредственным дискретным сравнением измеряемой величины (оптической длины пути n×1, где 1 - геометрическая длина измерительной базы интерферометра) с малой периодической образцовой мерой - длиной световой волны 1, известной с высшей метрологической точностью. Практическая реализация столь высокой точности измерения показателя преломления в натурных условиях, то есть помехоустойчивость метода, достигается за счет все того же принципа оптической параметрической автокомпенсации изменения длины измерительной базы 1 под воздействием на конструкцию прибора вибрации кабель-троса, а также температуры и гидравлического давления окружающей среды.

Основные технико-метрологические характеристики

Исходя из простейшего соотношения метода лазерной фотогетеродинной интероферометрии dn×1=da×1, (где dn и da - точности измерения, соответственно, показателя преломления и дробной части сдвига интерференционных полос), при 1=20 мм, 1=0,6328×10-3 мм и da=10-2 (в долях полосы), ожидаемая точность измерения показателя преломления dn=3×10-7, а гидрофизических параметров (при заимствованных из океанологических таблиц значениях dn/ds=2×10-4 (0/00)-1; dn/dT=1×10-4 (°С)-1; dn/dp=1,5×10-6 (дбар)-1) составляет, соответственно, dS=1,5×10-3 0/00, dT=3×10-3 °С и dP=2×10-1 дбар (200 мм вод. ст.) - независимо от глубины погружения прибора. Эти технико-метрологические характеристики (подтвержденные вышеупомянутыми метрологическими лабораторными и натурными испытаниями) находятся на уровне и выше (в частности, по параметру Р и динамическому диапазону) лучших зарубежных образцов высоко прецизионных традиционных CTD-зондов, например, типа "CTD SBE 911 plus" фирмы "Sea Bird", США.

При этом вследствие дискретного характера измерений (сравнение с малой периодической образцовой мерой - длиной световой волны) обеспечивается по сравнению с традиционными CTD-зондами практически неограниченный (без введения поддиапазонов) динамический диапазон прибора.

Кроме того, измерения производятся в одном микрообъеме из-за отсутствия необходимости принудительной прокачки морской воды при измерении солености по показателю преломления, а не электропроводимости, требующей непрерывного притока массы соли.

Метод измерения показателя преломления (и, соответственно, гидрофизических параметров) одновременно обеспечивает первичную самоградуировку шкал прибора без использования образцовых мер, оставляя за стандартной процедурой его калибровки лишь формальную метрологическую привязку измеряемых гидрофизических величин к эталонам для обеспечения единства и правильности океанологических измерений.

Помимо преимуществ оптического nSTD-зонда по сравнению со стандартными CTD-зондами, метрологические характеристики традиционных CTD-зондов находятся на пределе своих технических возможностей, поскольку для достижения столь высоких точностей в них для преобразования гидрофизических величин в измеряемые электрические параметры используются вторичные измерительные преобразователи - автоматически уравновешивающиеся высокоразрядные электронно-цифровые мосты на уровне точности эталонов. В то время как при использовании оптической nSTD-технологии имеется существенный технический запас по чувствительности и точности измерений гидрофизических величин как за счет увеличения длины измерительной базы 1, так и повышения точности фазометрического метода измерения дробной части сдвига интерференционных полос (используемого в фотогетеродинной или ахроматической интерферометрии) выше da=10-2. Точность da=10-2 соответствует точности измерения сдвига фаз всего dj=3,6 угл. град. и, следовательно, легко может быть увеличена (по крайней мере в 3 раза) до современного технического уровня фазовых измерений.

Заявляемая система измерения гидрологических параметров на больших глубинах, включающая обрывной океанографический зонд, может быть изготовлена в условиях серийного производства освоенными технологическими методами с использованием существующих материалов и оборудования.

Источники информации

1. Использование подводных лодок ВМС США и ВМС Великобритании подо льдом: Аналитический отчет ЦКБ МТ «Рубин», выпуск 6, сентябрь 2006. - С-Пб.: ФГУП «ЦКБ МТ «Рубин», 2006.

2. Патент US №5555518, 10.09.1996.

3. Патент US №5191790, 09.03.1993.

4. Патент RU №2411553 С1, 13.08.2009.

5. Патент US №3561268, 9.02.1971.

6. Патент RU №2466436 С2, 10.11.2012.

Система измерения гидрологических параметров на больших глубинах, включающая обрывной океанографический зонд, содержащий утяжеленную носовую часть и хвостовую часть, имеющую средства для стабилизации положения зонда при его движении и содержащую катушку с кабелем, выходящим через отверстие в хвостовой части, в носовой части расположены эталонный измеритель температуры и давления, контактирующий с морской водой, и герметично установленные источник питания и соединенные с ним электронные средства преобразования и синхронизации измеряемых сигналов, на входы которых поступают измеренные сигналы, а выходы соединены с кабелем, отличающаяся тем, что эталонный измеритель температуры и давления выполнен в виде лазерного флюорометра, который также имеет возможность измерения солености, включающего импульсный азотный лазер, на выходе которого установлен интерференционный фильтр, выполненный в виде кварцевой кюветы, установленной перед входной щелью двойного сканирующего устройства, электронные средства преобразования и синхронизации измеряемых сигналов содержат функционально-логический блок для выработки и автокомпенсации показателя преломления по каждым двум из трех измеряемых гидрофизических параметров, хвостовая часть обрывного океанографического зонда снабжена балластом с гидрохимическим размыкателем, соединенным с гидроакустическим модемом, соединенным с гидроакустической антенной, установленной в носовой части обрывного океанографического зонда.



 

Похожие патенты:

Изобретение относится к области океанографии и может быть использовано для определения характеристик морских ветровых волн. Сущность: устройство состоит из цельнометаллического корпуса (3), внутри которого установлены модуль (1) управления с опционным блоком GPS, источник (2) питания, цифровой трехкомпонентный акселерометр (15), трехкомпонентный магнитометр (17).

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. Сущность: осуществляют посылку в неоднородную атмосферу световых импульсов малой длительности.

Изобретение относится к методам исследования физических свойств веществ и, в частности, снежного покрова. Сущность: способ определения пространственно-временной неоднородности снежного покрова в условиях его естественного залегания включает предварительное выполнение шурфа до подстилающей поверхности, определение стратиграфии снежной толщи, введение в толщу покрова в непосредственной близости от стенки шурфа лавинного щупа, регистрацию сигнала акустической эмиссии, возникающего при его перемещении, соотнесение каждому слою снежной толщи характерной формы и модулирующей частоты сигнала акустической эмиссии, последующее введение лавинного щупа в заданной точке снежного покрова и определение стратиграфии в этой точке путем сравнения зарегистрированного в ней сигнала акустической эмиссии с сигналом, полученным для контрольного шурфа.

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. Сущность: осуществляют посылку в неоднородную атмосферу световых импульсов малой длительности.

Изобретение относится к области метеорологии, а более конкретно к способам определения характеристик загрязнения атмосферы, и может быть использовано для измерения прозрачности неоднородной атмосферы лидарными системами при определении аэрозольного загрязнения воздуха.

Изобретение относится к экологическим системам сбора и обработки информации и может быть использовано для прогнозирования распространения загрязнения атмосферного воздуха на территории горнопромышленной агломерации.

Изобретение относится к области метеорологии и касается способа определения общего балла облачности. Для определения общего балла облачности получают цветное полутоновое изображение всего небосвода в видимой области спектра и для всех точек изображения проводят сравнение значений цветовых компонент.

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик слабо рассеивающей атмосферы. Согласно способу осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим по неколлинеарным направлениям.

Изобретение относится к области океанографии и может быть использовано для определения характеристик морских ветровых волн. .

Изобретение относится к области метеорологии и может быть использовано для дистанционного контроля прироста толщины снежного покрова на лавиноопасных склонах. .
Наверх