Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах

Изобретение относится к измерительной технике и может быть использовано в качестве устройства усиления сигналов различных датчиков, в условиях воздействия низких температур и радиации. Технический результат заключается в обеспечении радиационно-стойкого низкотемпературного дифференциального усилителя за счет р-канальных полевых транзисторов биполярно-полевого технологического процесса. Истоки, соответствующие выходам полевых транзисторов, соединены со стоками соответствующих входов транзистора, затвор одних выходов полевых транзисторов соединен с затворами других соответствующих полевых транзисторов и истоки одних входов полевых транзисторов через первый двухполюсник связан с шиной источника питания, а истоки других первых полевых транзисторов через второй двухполюсник соединены с объединяющим затвором вспомогательным затвором вспомогательного транзистора. 6 з.п. ф-лы, 11 ил.

 

Изобретение относится к области электроники и измерительной технике и может быть использовано в качестве устройства усиления сигналов различных датчиков, в структуре аналоговых микросхем различного функционального назначения, работающих в условиях воздействия низких температур и радиации.

Для работы в условиях космического пространства, в экспериментальной физике необходимы радиационно-стойкие усилители сигналов различных сенсоров, допускающие одновременное воздействие на них низких температур, потока нейтронов и т.п. Мировой опыт проектирования устройств данного класса показывает, что решение этих задач возможно с использованием полевых транзисторов, т.к. биполярные полупроводниковые приборы характеризуются резким уменьшением коэффициента усиления по току базы (β) при температурах, меньших -60°C÷-100°C.

Известны дифференциальные усилители (ДУ) на полевых транзисторах с управляющим p-n переходом [1-6], предназначенные для работы при низких температурах.

Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный усилитель по патенту US №6.407.537, fig. 1. Он содержит первый 1 и второй 2 входные полевые транзисторы, затворы которых соединены с соответствующими первым 3 и вторым 4 входами устройства, масштабный резистор 5, включенный между истоками первого 1 и второго 2 входных полевых транзисторов, первый 6 и второй 7 вспомогательные транзисторы, стоки которых соединены с истоками соответствующих первого 1 и второго 2 входных полевых транзисторов, затворы объединены и связаны с первой 8 шиной источника питания через первый 9 вспомогательный двухполюсник, истоки первого 6 и второго 7 вспомогательных транзисторов связаны с первой 8 шиной источника питания, вторую 10 шину источника питания, первый 11, второй 12, третий 13 и четвертый 14 выходные полевые транзисторы, первый 15 выход устройства.

Существенный недостаток известного ДУ состоит в том, что он может быть выполнен в виде однокристальной микросхемы только на основе достаточно редких, как правило, не радиационно-стойких технологических процессов, реализующих одновременно полевые BiFET транзисторы с двумя типами проводимости канала (p, n). Это не позволяет применять известную схему ДУ при построении низкотемпературных радиационно-стойких микросхем на основе хорошо зарекомендовавшего себя радиационно-стойкого биполярно-полевого технологического процесса [7], который обеспечивает формирование только р-канальных полевых транзисторов с радиационной стойкостью до 1 Мрад и потоком нейтронов до 1013 н/см2, а также незначительные изменения их параметров до -190°C.

Основная задача предлагаемого изобретения состоит в создании радиационно-стойкого низкотемпературного ДУ, реализуемого только на р-канальных полевых транзисторах биполярно-полевого технологического процесса (НПО «Интеграл» (г. Минск)) [7].

Поставленная задача достигается тем, что в дифференциальном усилителе фиг. 1, содержащем первый 1 и второй 2 входные полевые транзисторы, затворы которых соединены с соответствующими первым 3 и вторым 4 входами устройства, масштабный резистор 5, включенный между истоками первого 1 и второго 2 входных полевых транзисторов, первый 6 и второй 7 вспомогательные транзисторы, стоки которых соединены с истоками соответствующих первого 1 и второго 2 входных полевых транзисторов, затворы объединены и связаны с первой 8 шиной источника питания через первый 9 вспомогательный двухполюсник, истоки первого 6 и второго 7 вспомогательных транзисторов связаны с первой 8 шиной источника питания, вторую 10 шину источника питания, первый 11, второй 12, третий 13 и четвертый 14 выходные полевые транзисторы, первый 15 выход устройства, предусмотрены новые элементы и связи - исток первого 11 выходного полевого транзистора соединен со стоком первого 1 входного полевого транзистора и затвором третьего 13 выходного полевого транзистора через первый 16 дополнительный резистор, причем затвор первого 11 выходного полевого транзистора соединен с затвором третьего 13 выходного полевого транзистора, а сток первого 11 выходного полевого транзистора связан со второй 10 шиной источника питания, исток второго 12 выходного полевого транзистора соединен со стоком второго 2 входного полевого транзистора и затвором четвертого 14 выходного полевого транзистора через второй 17 дополнительный резистор, причем затвор второго 12 выходного полевого транзистора соединен с затвором четвертого 14 выходного полевого транзистора, а сток второго 12 выходного полевого транзистора связан со второй 10 шиной источника питания, исток третьего 13 выходного полевого транзистора соединен со вторым 18 выходом устройства и через первый 19 вспомогательный двухполюсник подключен к объединенным затворам первого 6 и второго 7 вспомогательных транзисторов, исток четвертого 14 выходного полевого транзистора соединен с первым 15 выходом устройства и через второй 20 вспомогательный двухполюсник подключен к объединенным затворам первого 6 и второго 7 вспомогательных транзисторов, причем стоки третьего 13 и четвертого 14 выходных полевых транзисторов связаны со второй 10 шиной источника питания.

На чертеже фиг. 1 показана схема ДУ-прототипа, а на чертеже фиг. 2 - схема заявляемого устройства в соответствии с пп. 1 и 2 формулы изобретения.

На чертеже фиг. 3 представлена схема заявляемого устройства в соответствии с п. 4 формулы изобретения, а на чертеже фиг. 4 - в соответствии с п. 4 формулы изобретения.

На чертеже фиг. 5 представлена схема заявляемого устройства в соответствии с п. 5, а на чертеже фиг. 6 - в соответствии с п. 6 формулы изобретения.

На чертеже фиг. 7 приведена схема первого 1 и второго 2 входных полевых транзисторов, реализуемых в соответствии с п. 7 формулы изобретения в виде составных активных элементов. Такое решение повышает коэффициент усиления по напряжению ДУ в связи с увеличением выходных сопротивлений таких составных активных элементов (1 и 2).

На чертеже фиг. 8 приведена схема заявляемого дифференциального усилителя фиг. 2 в среде PSpice на моделях интегральных транзисторов АБМК [7].

На чертеже фиг. 9 показана частотная зависимость коэффициента усиления для дифференциального выхода усилителя фиг. 8.

На чертеже фиг. 10 представлена схема заявляемого дифференциального усилителя фиг. 2 в среде PSpice на моделях транзисторов АБМК (при включении диодов Q13 и Q14 в истоке полевых транзисторов 6, 7 и R12=R13=6.5 кОм, R9=100 Ом, R2=R3=70 кОм, R4=R5=5 кОм).

На чертеже фиг. 11 приведена частотная зависимость коэффициента усиления по напряжению ДУ фиг. 10.

Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах фиг. 2 содержит первый 1 и второй 2 входные полевые транзисторы, затворы которых соединены с соответствующими первым 3 и вторым 4 входами устройства, масштабный резистор 5, включенный между истоками первого 1 и второго 2 входных полевых транзисторов, первый 6 и второй 7 вспомогательные транзисторы, стоки которых соединены с истоками соответствующих первого 1 и второго 2 входных полевых транзисторов, затворы объединены и связаны с первой 8 шиной источника питания через первый 9 вспомогательный двухполюсник, истоки первого 6 и второго 7 вспомогательных транзисторов связаны с первой 8 шиной источника питания, вторую 10 шину источника питания, первый 11, второй 12, третий 13 и четвертый 14 выходные полевые транзисторы, первый 15 выход устройства. Исток первого 11 выходного полевого транзистора соединен со стоком первого 1 входного полевого транзистора и затвором третьего 13 выходного полевого транзистора через первый 16 дополнительный резистор, причем затвор первого 11 выходного полевого транзистора соединен с затвором третьего 13 выходного полевого транзистора, а сток первого 11 выходного полевого транзистора связан со второй 10 шиной источника питания, исток второго 12 выходного полевого транзистора соединен со стоком второго 2 входного полевого транзистора и затвором четвертого 14 выходного полевого транзистора через второй 17 дополнительный резистор, причем затвор второго 12 выходного полевого транзистора соединен с затвором четвертого 14 выходного полевого транзистора, а сток второго 12 выходного полевого транзистора связан со второй 10 шиной источника питания, исток третьего 13 выходного полевого транзистора соединен со вторым 18 выходом устройства и через первый 19 вспомогательный двухполюсник подключен к объединенным затворам первого 6 и второго 7 вспомогательных транзисторов, исток четвертого 14 выходного полевого транзистора соединен с первым 15 выходом устройства и через второй 20 вспомогательный двухполюсник подключен к объединенным затворам первого 6 и второго 7 вспомогательных транзисторов, причем стоки третьего 13 и четвертого 14 выходных полевых транзисторов связаны со второй 10 шиной источника питания.

На чертеже фиг. 2, в соответствии с п. 2 формулы изобретения, истоки первого 6 и второго 7 вспомогательных транзисторов связаны с первой 8 шиной источника питания через соответствующие первый 21 и второй 22 согласующие резисторы (двухполюсники).

На чертеже фиг. 3, в соответствии с п. 3 формулы изобретения, сток первого 11 выходного полевого транзистора связан со второй 10 шиной источника питания через первый 23 управляемый повторитель тока, а сток второго 12 выходного полевого транзистора связан со второй 10 шиной источника питания через второй 24 управляемый повторитель тока. Первый 23 управляемый повторитель тока имеет токовый вход 25 и выход 26, а также узел установления статического режима 27. Второй 24 управляемый повторитель тока имеет токовый вход 28, выход 29, а также узел установления статического режима 30.

На чертеже фиг. 4, в соответствии с п. 4 формулы изобретения, первый 23 управляемый повторитель тока содержит первый 31 согласующий полевой транзистор, исток которого соединен со входом 25 первого 23 управляемого повторителя тока, сток подключен к выходу 26 первого 23 управляемого повторителя тока, а затвор связан со стоком первого 1 входного полевого транзистора, второй 24 управляемый повторитель тока содержит второй 32 согласующий полевой транзистор, исток которого соединен со входом 28 второго 24 управляемого повторителя тока, сток подключен к выходу 29 второго 24 управляемого повторителя тока, а затвор связан со стоком второго 2 входного полевого транзистора.

На чертеже фиг. 5, в соответствии с п. 5 формулы изобретения, первый 23 управляемый повторитель тока содержит третий 33 согласующий полевой транзистор, исток которого соединен со входом 25 первого 23 управляемого повторителя тока, сток подключен к выходу 26 первого 23 управляемого повторителя тока, а затвор связан с истоком первого 11 выходного полевого транзистора, второй 24 управляемый повторитель тока содержит четвертый 34 согласующий полевой транзистор, исток которого соединен со входом 28 второго 24 управляемого повторителя тока, сток подключен к выходу 29 второго 24 управляемого повторителя тока, а затвор связан с истоком второго 12 выходного полевого транзистора.

На чертеже фиг. 6, в соответствии с п. 6 формулы изобретения, первый 23 управляемый повторитель тока содержит пятый 35 согласующий полевой транзистор, исток которого соединен со входом 25 первого 23 управляемого повторителя тока, сток подключен к выходу 26 первого 23 управляемого повторителя тока, а затвор связан со вторым 18 выходом устройства, второй 24 управляемый повторитель тока содержит шестой 36 согласующий полевой транзистор, исток которого соединен со входом 28 второго 24 управляемого повторителя тока, сток подключен к выходу 29 второго 24 управляемого повторителя тока, а затвор связан с первым 15 выходом устройства.

На чертеже фиг. 7, в соответствии с п. 7 формулы изобретения, каждый первый 1 и второй 2 входные полевые транзисторы выполнены как составные транзисторы, содержащие первый 37 и второй 38 дополнительные транзисторы, причем затвор первого 37 дополнительного транзистора является затвором первого 1 (второго 2) входного полевого транзистора, исток первого 37 дополнительного транзистора является истоком первого 1 (второго 2) входного полевого транзистора, исток второго 38 дополнительного полевого транзистора соединен со стоком первого 37 дополнительного транзистора, затвор второго 38 дополнительного транзистора связан с истоком первого 37 дополнительного транзистора, а сток второго 38 дополнительного транзистора является стоком первого 1 (второго 2) входного полевого транзистора.

Рассмотрим работу заявляемого ДУ фиг. 2.

Напряжение затвор - исток Uзи полевых транзисторов (1, 2, 11, 12) связано с током стока (истока) следующей приближенной формулы

где Ic.max - максимальный ток стока при Uзи=0;

Uотс - напряжение отсечки полевого транзистора при Ic≈0.

Причем напряжения затвор-исток Uзи.11=Ic11R16, Uзи.12=Ic12R17 и, следовательно, с учетом (1) можно найти, что токи стока транзисторов

Таким образом, статические токи стока входных полевых транзисторов 1 и 2 устанавливаются соответственно первым 16 и вторым 17 дополнительными резисторами и зависят от крутизны стоко-затворной характеристики первого 11 и второго 12 выходных полевых транзисторов, т.е. от их геометрии.

Коэффициент усиления по напряжению ДУ фиг. 2 (например, для второго 18 выхода) определяется уравнением

где - эквивалентное сопротивление в узле А1,

S1(S2) - крутизна стоко-затворной характеристики первого 1 (второго 2) входного полевого транзистора.

Причем эквивалентная проводимость уэкв.А1 имеет три составляющие:

где у11 - эквивалентная проводимость двухполюсника на первом 11 выходном полевом транзисторе;

увх.13 - входная проводимость третьего 13 выходного полевого транзистора;

увых.1 - выходная проводимость первого 1 входного полевого транзистора:

µ1=10-2÷10-3 - коэффициент внутренней обратной связи первого 1 входного полевого транзистора, характеризующий влияние напряжения сток-затвор на его стоко-затворную характеристику.

Уравнение для проводимости у11 в схеме фиг. 2 можно представить в виде

где µ11=10-2÷10-3 - коэффициент внутренней обратной связи первого 11 выходного полевого транзистора, характеризующий влияние напряжения сток-затвор на его стоко-затворную характеристику.

Если считать, что увых.1≈0, увх.13≈0, , то уравнение для коэффициента усиления (4) принимает вид

Таким образом, для повышения Ку необходимо использовать первый 11 и второй 12 выходные полевые транзисторы с как можно меньшей глубиной внутренней обратной связи (µ11≈10-2÷10-3).

Схема фиг. 3, соответствующая п. 3 формулы изобретения, обеспечивает более высокие значения коэффициента усиления по напряжению за счет повышения эквивалентного сопротивления в узлах А1 и А2. Для этой цели применяются усилители тока 23 и 24, практическая реализация которых возможна по схемам фиг. 4, фиг. 5, фиг. 6. Данные схемотехнические решения существенно уменьшают проводимость у11, и следовательно эквивалентную проводимость в узле А1, которая, однако, будет ограничена выходной проводимостью входных транзисторов 1 и 2 (увых.1, увых.2).

Так, в схемах фиг. 4 и фиг. 5 эквивалентные проводимости у11, у12 существенно уменьшаются:

где µij - коэффициент внутренней обратной связи соответствующих (ij) полевых транзисторов, характеризующих влияние напряжения сток-затвор на их стоко-затворную характеристику.

Для минимизации составляющих увых.1вых.2) в эквивалентных проводимостях узлов Α1, А2 входные транзисторы 1 и 2 реализуются в соответствии с п. 7 формулы изобретения на основе составных транзисторов (чертеж фиг. 7). Применение составных активных элементов в качестве входных транзисторов 1 и 2 (фиг. 7), в соответствии с п. 7 формулы изобретения, уменьшает их эквивалентные выходные проводимости увых.1, увых.2

В конечном итоге это также повышает Ку.

Рассмотренный выше комплекс схемотехнических мер позволяет обеспечить повышенные значения одного из основных динамических параметров ДУ - коэффициента усиления по напряжению.

Экспериментальные исследования р-канальных полевых транзисторов биполярно-полевого технологического процесса [7] подтверждают их работоспособность до температуры -190°С, накопленной дозы радиации до 1 Мрад и потоке нейтронов до 10+3 н/см2.

Таким образом, заявляемое устройство имеет существенные преимущества в сравнении с прототипом.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 4.667.165 fig. 3

2. Патент US 3.851.270 fig. 1

3. Патент US 6.433.638.

4. Патент US 4.709.216 fig. 1

5. Патентная заявка US 2010/0117735 fig. 2.

6. Патент US 5.563.598 fig. 6.

7. Элементная база радиационно-стойких информационно-измерительных систем: монография / Н.Н. Прокопенко, О.В. Дворников, С.Г. Крутчинский; под. общ. ред. д.т.н. проф. Н.Н. Прокопенко; ФГБОУ ВПО «Южно-Рос. гос. ун-т. экономики и сервиса». - Шахты: ФГБОУ ВПО ЮРГУЭС, 2011. - 208 с.

1. Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах, содержащий первый (1) и второй (2) входные полевые транзисторы, затворы которых соединены с соответствующими первым (3) и вторым (4) входами устройства, масштабный резистор (5), включенный между истоками первого (1) и второго (2) входных полевых транзисторов, первый (6) и второй (7) вспомогательные транзисторы, стоки которых соединены с истоками соответствующих первого (1) и второго (2) входных полевых транзисторов, затворы объединены и связаны с первой (8) шиной источника питания через первый (9) вспомогательный двухполюсник, истоки первого (6) и второго (7) вспомогательных транзисторов связаны с первой (8) шиной источника питания, вторую (10) шину источника питания, первый (11), второй (12), третий (13) и четвертый (14) выходные полевые транзисторы, первый (15) выход устройства, отличающийся тем, что исток первого (11) выходного полевого транзистора соединен со стоком первого (1) входного полевого транзистора и затвором третьего (13) выходного полевого транзистора через первый (16) дополнительный резистор, причем затвор первого (11) выходного полевого транзистора соединен с затвором третьего (13) выходного полевого транзистора, а сток первого (11) выходного полевого транзистора связан со второй (10) шиной источника питания, исток второго (12) выходного полевого транзистора соединен со стоком второго (2) входного полевого транзистора и затвором четвертого (14) выходного полевого транзистора через второй (17) дополнительный резистор, причем затвор второго (12) выходного полевого транзистора соединен с затвором четвертого (14) выходного полевого транзистора, а сток второго (12) выходного полевого транзистора связан со второй (10) шиной источника питания, исток третьего (13) выходного полевого транзистора соединен со вторым (18) выходом устройства и через первый (19) вспомогательный двухполюсник подключен к объединенным затворам первого (6) и второго (7) вспомогательных транзисторов, исток четвертого (14) выходного полевого транзистора соединен с первым (15) выходом устройства и через второй (20) вспомогательный двухполюсник подключен к объединенным затворам первого (6) и второго (7) вспомогательных транзисторов, причем стоки третьего (13) и четвертого (14) выходных полевых транзисторов связаны со второй (10) шиной источника питания.

2. Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах по п. 1, отличающийся тем, что истоки первого (6) и второго (7) вспомогательных транзисторов связаны с первой (8) шиной источника питания через соответствующие первый (21) и второй (22) согласующие резисторы.

3. Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах по п. 1, отличающийся тем, что сток первого (11) выходного полевого транзистора связан со второй (10) шиной источника питания через первый (23) управляемый повторитель тока, а сток второго (12) выходного полевого транзистора связан со второй (10) шиной источника питания через второй (24) управляемый повторитель тока.

4. Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах по п. 3, отличающийся тем, что первый (23) управляемый повторитель тока содержит первый (31) согласующий полевой транзистор, исток которого соединен со входом (25) первого (23) управляемого повторителя тока, сток подключен к выходу (26) первого (23) управляемого повторителя тока, а затвор связан со стоком первого (1) входного полевого транзистора, второй (24) управляемый повторитель тока содержит второй (32) согласующий полевой транзистор, исток которого соединен со входом (28) второго (24) управляемого повторителя тока, сток подключен к выходу (29) второго (24) управляемого повторителя тока, а затвор связан со стоком второго (2) входного полевого транзистора.

5. Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах по п. 3, отличающийся тем, что первый (23) управляемый повторитель тока содержит третий (33) согласующий полевой транзистор, исток которого соединен со входом (25) первого (23) управляемого повторителя тока, сток подключен к выходу (26) первого (23) управляемого повторителя тока, а затвор связан с истоком первого (11) выходного полевого транзистора, второй (24) управляемый повторитель тока содержит четвертый (34) согласующий полевой транзистор, исток которого соединен со входом (28) второго (24) управляемого повторителя тока, сток подключен к выходу (29) второго (24) управляемого повторителя тока, а затвор связан с истоком второго (12) выходного полевого транзистора.

6. Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах по п. 3, отличающийся тем, что первый (23) управляемый повторитель тока содержит пятый (35) согласующий полевой транзистор, исток которого соединен со входом (25) первого (23) управляемого повторителя тока, сток подключен к выходу (26) первого (23) управляемого повторителя тока, а затвор связан со вторым (18) выходом устройства, второй (24) управляемый повторитель тока содержит шестой (36) согласующий полевой транзистор, исток которого соединен со входом (28) второго (24) управляемого повторителя тока, сток подключен к выходу (29) второго (24) управляемого повторителя тока, а затвор связан с первым (15) выходом устройства.

7. Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах по п. 3, отличающийся тем, что каждый первый (1) и второй (2) входные полевые транзисторы выполнены как составные транзисторы, содержащие первый (37) и второй (38) дополнительные транзисторы, причем затвор первого (37) дополнительного транзистора является затвором первого (1) (второго (2)) входного полевого транзистора, исток первого (37) дополнительного транзистора является истоком первого (1) (второго (2)) входного полевого транзистора, исток второго (38) дополнительного полевого транзистора соединен со стоком первого (37) дополнительного транзистора, затвор второго (38) дополнительного транзистора связан с истоком первого (37) дополнительного транзистора, а сток второго (38) дополнительного транзистора является стоком первого (1) (второго (2)) входного полевого транзистора.



 

Похожие патенты:

Изобретение относится к области усилителей аналоговых сигналов. Техническим результатом является повышение значения верхней граничной частоты без ухудшения коэффициента усиления по напряжению в диапазоне средних частот.

Изобретение относится к устройствам усиления аналоговых сигналов в структуре аналоговых микросхем различного функционального назначения (например, широкополосных и избирательных усилителях ВЧ и СВЧ диапазонов).

Изобретение относится к генераторам управляемым напряжением. Технический результат заключается в расширении диапазона перестройки частоты при сохранении нижнего предела диапазона частот и возможности создания генератора в монолитном исполнении.

Изобретение относится к микросхемам СВЧ-фильтрации радиосигналов систем сотовой связи, спутникового телевидения, радиолокации. Технический результат заключается в повышении добротности резонансной амплитудно-частотной характеристики избирательного усилителя при использовании низкодобротных планарных индуктивностей.

Изобретение относится к радиоэлектронике и может быть использовано в широкополосных радиопередатчиках. Технический результат заключается в преобразовании энергии высших гармоник в энергию постоянного тока и возвращении этой энергии источнику питания.

Изобретение относится к области электрорадиотехники, а именно к ключевым усилителям высокой частоты, и может быть использовано в радиопередатчиках. Технический результат изобретения заключается в улучшении линейности усиления ключевых усилителей мощности за счет существенного снижения уровня гармоник четных порядков в спектре усиливаемого сигнала.

Изобретение относится к технике связи и может использоваться в передающих и ретранслирующих устройствах для линейного усиления сигнала с амплитудной и фазовой модуляцией.

Изобретение относится к технике связи и может использоваться в передающих и ретранслирующих устройствах для линейного усиления сигнала с амплитудной и фазовой модуляцией с использованием нелинейных усилителей.

Изобретение относится к области радиотехники и связи. Технический результат заключается в повышении быстродействия драйвера при работе на емкостную нагрузку, расширении диапазона его рабочих частот.

Изобретение относится к области радиотехники и связи. Техническим результатом является уменьшение уровня нелинейных искажений и шумов различного происхождения в цепи нагрузки ШНУ с неинвертирующим выходным каскадом.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения (например, широкополосных и избирательных усилителях ВЧ и СВЧ диапазонов, реализуемых по новым и перспективным технологиям). Технический результат заключается в расширении диапазона рабочих частот КУ без ухудшения коэффициента усиления по напряжению в диапазоне средних частот. Технический результат достигается за счет каскодного усилителя с расширенным частотным диапазоном, который содержит входной преобразователь напряжение-ток (1), токовый выход которого подключен к эмиттеру выходного транзистора (2), неинвертирующий повторитель тока (3), токовый вход которого соединен с базой выходного транзистора (2), а токовый выход связан с эмиттером выходного транзистора (2), выход устройства (4), соединенный с коллектором выходного транзистора (2), резистор коллекторной нагрузки (5), включенный между шиной источника питания (6) и коллектором выходного транзистора (2). В схему введен дополнительный повторитель напряжения (7), вход которого соединен с выходом устройства (4), а выход связан с базой выходного транзистора (2) через дополнительный корректирующий конденсатор (8). 4 ил.

Изобретение относится к области радиотехники. Технический результат заключается в повышении коэффициента ослабления входного синфазного сигнала. Прецизионный операционный усилитель содержит: входной параллельно-балансный каскад, первый и второй противофазные токовые выходы которого соединены с первой шиной источника питания через соответствующие первый и второй токостабилизирующие двухполюсники, первый и второй вспомогательные транзисторы, коллекторы которых объединены и соединены со второй шиной источника питания через третий токостабилизирующий двухполюсник и связаны с общей истоковой цепью входного параллельно-балансного каскада, база первого вспомогательного транзистора соединена с первым токовым выходом входного параллельно-балансного каскада, база транзистора соединена со вторым токовым выходом входного параллельно-балансного каскада, первый выходной транзистор, база которого соединена с первым токовым выходом входного параллельно-балансного каскада, а коллектор связан со входом токового зеркала, согласованным со второй шиной источника питания. 1 з.п ф-лы, 14 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения. Техническим результатом является расширение диапазона рабочих частот без ухудшения коэффициента усиления по напряжению в диапазоне средних частот. Двойной каскодный усилитель содержит: входной транзистор, исток которого связан с первой шиной источника питания, а затвор через разделительный конденсатор соединен со входом устройства и через вспомогательный двухполюсник связан с первым источником напряжения смещения, первый выходной транзистор, сток которого соединен с выходом устройства и через двухполюсник нагрузки подключен ко второй шине источника питания, а затвор через вспомогательный резистор связан со вторым источником напряжения смещения, второй выходной транзистор, сток которого соединен с истоком первого выходного транзистора, исток подключен к стоку входного транзистора, а затвор связан с третьим источником напряжения смещения, причем между затвором первого выходного транзистора и стоком входного транзистора включен корректирующий конденсатор. 6 ил.

Изобретение относится к применению симметричных активных нагрузок, обеспечивающих преобразование выходных токов симметричных дифференциальных каскадов и их согласование с промежуточными выходными каскадами. Технический результат заключается в создании радиационно-стойкой и низкотемпературной симметричной активной нагрузки с использованием в структуре полевых транзисторов биполярно-полевого технологического процесса, что позволяет применять их при более низких напряжениях питания или увеличить диапазон изменения выходных напряжений при включении в структуру аналоговых микросхем, например, операционных усилителей. В составе симметричной активной нагрузки в качестве первого (5) и второго (6) выходных транзисторов используются полевые транзисторы с управляющим p-n переходом, причем сток первого (5) выходного полевого транзистора с управляющим p-n переходом соединен с эмиттером первого (13) дополнительного транзистора и через первый (14) дополнительный резистор соединен с первой (9) шиной источника питания, сток второго (6) выходного полевого транзистора с управляющим p-n переходом соединен с эмиттером второго (15) дополнительного транзистора и через второй (16) дополнительный резистор соединен с первой (9) шиной источника питания, причем второй вывод токостабилизирующего двухполюсника (7) подключен ко второй (17) шине источника питания, согласованной с первым (11) и вторым (12) токовыми выходами устройства, коллектор первого (13) дополнительного транзистора соединен с первым (11) токовым выходом устройства, коллектор второго (15) дополнительного транзистора соединен со вторым (12) токовым выходом устройства, а базы первого (13) и второго (14) дополнительных транзисторов связаны с базами первого (2) и второго (4) входных транзисторов. 6 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых ВЧ и СВЧ сигналов, в структуре аналоговых микросхем различного функционального назначения. Технический результат заключается в расширении диапазона рабочих частот без ухудшения коэффициента усиления по напряжению. Транзисторный усилитель с расширенным частотным диапазоном содержит входной преобразователь напряжение - ток (1), вход которого подключен к источнику сигнала (2), а токовый выход соединен с шиной источника питания (3) через резистор коллекторной нагрузки (4), неинвертирующий усилитель напряжения (5), вход которого соединен с токовым выходом входного преобразователя напряжение - ток (1) и выходом устройства (6). Между выходом устройства (6) и выходом неинвертирующего усилителя напряжения (5) включен корректирующий конденсатор (7). 1 з.п. ф-лы, 4 ил.

Изобретение относится к радиоэлектронике и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в повышении стабильности статического режима операционного усилителя. Биполярно-полевой операционный усилитель содержит входной дифференциальный каскад (1), первый (6) токовый выход входного дифференциального каскада связан с истоком первого (7) выходного полевого транзистора и первым входом (8) выходного дифференциального каскада (9), второй (10) токовый выход входного дифференциального каскада (1) связан с истоком второго (11) выходного полевого транзистора и вторым (12) входом выходного дифференциального каскада (9). Общая эмиттерная цепь (14) выходного дифференциального каскада (9) подключена ко входу дополнительного инвертирующего усилителя (21), выход которого (22) соединен с объединенными затворами первого (7) и второго (11) выходных полевых транзисторов. 2 з.п. ф-лы, 8 ил.

Изобретение относится к системе (SA) для усиления сигналов, генерируемых блоком (UGS) для генерации сигналов спутника, содержащей первый тракт (V1), содержащий первый полосовой цифровой фильтр (F1) с конечной импульсной характеристикой и первый цифро-аналоговый преобразователь (CNA1), средство (MTF) транспонирования частоты и усилительное устройство (DA). При этом система дополнительно содержит второй тракт (V2), содержащий второй полосовой цифровой фильтр (F2) с конечной импульсной характеристикой, средство (G) усиления, расположенное на выходе упомянутого второго цифрового фильтра (F2), ведомый генератор (NCO) с числовым управлением с коррекцией фазы, второй цифроаналоговый преобразователь (CNA2) и устройство (S) повторного объединения для суммирования сигналов упомянутых первого и второго трактов (V1, V2). 2 н. и 4 з.п. ф-лы, 2 ил.

Изобретение относится к области радиоэлектроники в качестве быстродействующего устройства усиления сигналов. Технический результат заключается в обеспечении более высоких уровней выходного тока «перегнутого каскода», это повышает быстродействие ОУ в режиме большого сигнала, уменьшает время установления переходного процесса. Усилитель содержит входные полевые транзисторы, токостабилизирующий двухполюсник, выходной транзистор, которые подключены к входному полевому транзистору, причем первый выходной транзистор через токостабилизирующий двухполюсник связан со второй шиной источника питания, второй выходной транзистор соединен с первым входным полевым транзистором и через третий токостабилизирующий двухполюсник связан со второй шиной источника питания, цепь динамической нагрузки, согласованную с первой шиной источника питания. В схему введены дополнительные полевые транзисторы, дополнительные биполярные транзисторы. 4 ил.

Изобретение относится к электронной технике СВЧ и может быть использовано преимущественно в качестве многокаскадных передатчиков повышенной мощности. Технический результат заключается в повышении КПД, выходной мощности, надежности и устойчивости в работе, а также снижении энергопотребления. Импульсный трехкаскадный усилитель мощности СВЧ, содержащий первый, второй и выходной каскады усилителя мощности, устройства электропитания первого, второго и выходного каскадов, отличающийся тем, что первый каскад усилителя мощности конструктивно выполнен в виде широкополосного твердотельного (транзисторного) усилителя мощности СВЧ, а второй и выходной каскады усилителя мощности конструктивно выполнены в виде импульсного двухкаскадного моноблочного усилителя мощности СВЧ на амплитронах. Принципиальное отличие от прототипа заключается в том, что первый каскад усилителя мощности конструктивно выполнен в виде широкополосного твердотельного (транзисторного) усилителя мощности СВЧ, а второй и выходной каскады усилителя мощности конструктивно выполнены в виде импульсного двухкаскадного моноблочного усилителя мощности СВЧ на амплитронах. 1 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат заключается в повышении прецизионности операционного усилителя в условиях дестабилизирующих факторов. Операционный усилитель содержит первый и второй входные биполярные транзисторы, базы которых связаны с соответствующими первым и вторым входами операционного усилителя, токовое зеркало согласовано с первой шиной источника питания, выход которого связан с токовым выходом операционного усилителя и коллектором первого выходного транзистора. Коллектор второго вспомогательного транзистора соединен с базой первого выходного транзистора, эмиттеры первого и второго вспомогательных транзисторов связаны со второй шиной источника питания, первый и второй дополнительные полевые транзисторы с управляющим pn-переходом, а коллекторы первого и второго входных биполярных транзисторов связаны с первой шиной источника питания. 9 з.п. ф-лы, 17 ил.
Наверх