Способ экстракции ионов меди (ii) из аммиачных растворов

Изобретение может быть использовано в области гидрометаллургии цветных металлов и в химической промышленности. Способ экстракции ионов меди (II) из аммиачных растворов с использованием экстрагента, состоящего из смеси 1-фенил-3-гептил-1,3-пропандиона и 2-этилгексановой кислоты в количестве от 5 до 10 моль % от содержания 1-фенил-3-гептил-1,3-пропандиона в органическом растворителе, несмешивающемся с водой. Изобретение позволяет снизить время реэкстракции ионов меди (II). 3 табл., 2 пр.

 

Изобретение относится к способу экстракции ионов меди (II) из аммиачных растворов с использованием экстрагента, состоящего из смеси 1-фенил-3-гептил-1,3-пропандиона и 2-этилгексановой кислоты в количестве от 5 до 10 моль % от содержания 1-фенил-3-гептил-1,3-пропандиона в органическом растворителе, несмешивающемся с водой, и может быть использовано в гидрометаллургии цветных металлов, например для переработки растворов аммиачного выщелачивания лома цветных металлов, концентратов руд, отходов цветной металлургии.

Существует способ экстракции ионов меди (II) из аммиачных растворов β-дикетоном, в частности экстрагентом LIX 54 (основное действующее вещество 1-фенил-3-гептил-1,3-пропандион). Этот реагент характеризуется высокой емкостью органической фазы, до 30-35 г/л по ионам меди (II) и высокой скоростью экстракции [F.J. Alguacil, М. Alonso. Recovery of copper from ammoniacal / ammonium sulfate medium by LIX 54 // Journal of Chemical Technology and Biotechnology 1999. - Vol. 74 - P. 1171-1175].

Недостатком данного способа является низкая скорость процесса реэкстракции, а также то, что при длительном применении экстрагента LIX 54 наблюдается затрудненный переход меди из органической фазы в водную при реэкстракции. Исследователи связывают это явление с тем, что между кетогруппой экстрагента и аммиаком происходит реакция с образованием кетимина [Zhu Т. Extraction and ion exchange // Beijing: Metallurgical Industry Press, Chinese - 2005 - p. 280-281, Kordosky G.A., Virnig M.J., Mattison P. β-Diketone copper extractants: structure and stability // Int. Solv. Extr. Conf., Cape Town, South Africa - 2002. - p. 360-365].

Известен способ извлечения ионов меди (II) экстракцией из аммиачных растворов оксимами, в частности LIX 860, активным веществом которого является 5-додецилсалицилальдоксим. Этот реагент сочетает в себе высокую кинетику и экстракционную способность со стабильностью и хорошими физическими характеристиками [Kordosky G.A. Copper recovery using leach/solvent extraction / electrowinning technology: forty years of innovation, 2.2 million tones of copper annually // Int. Solv. Extr. Conf. ISEC Cape Town, - 2002. - p. 853-862].

Недостатком способа является перенос аммиака при экстракции ионов меди (II) оксимами [J. Hu, Q. Chen, Н. Hu, X. Chen, Q. Ma, Z. Yin. Extraction behavior and mechanism of Cu (II) in ammoniacal sulfate solution with β-diketone // Hydrometallurgy - 2012. - Vol. 127-128 - P. 54-61.].

Ближайшим аналогом является способ модификации β-дикетона 1-фенил-3-гептил-1,3-пропандиона путем добавления к нему оксима в количестве 0,5-5 моль % от общего содержания β-дикетона, что приводит к улучшению реэкстракционных характеристик системы [Пат. US 5908605 А, США, МПК С22В 15/00, С01В 31/00. Copper recovery process / Патентообладатели Henkel Corporation, Gulph Mills, Pa. заявл. 03.09.1996; опубл. 01.06.1999]. В качестве оксима авторы предлагают использовать, в частности, додецилсалицилальдоксим или 5,8-диэтил-7-гидроксидодекан-6-оксим.

Из представленных в патенте примеров видно, что недостатком способа является низкая скорость реэкстракции меди, поскольку за 30 секунд реэкстрагируется только 85% ионов меди (II), а относительно полная реэкстракция возможна только при контакте фаз в течение 180 секунд, что влечет за собой необходимость увеличения ступеней реэкстракции и соответственно единиц оборудования для осуществления процесса.

Задачей изобретения является уточнение состава экстрагента для извлечения ионов меди (II) из аммиачного раствора и повышение эффективности их реэкстракции в раствор минеральной кислоты.

Технический результат, который может быть достигнут при осуществлении изобретения, заключается в уменьшении времени протекания процессов реэкстракции.

Этот технический результат достигается за счет применения органического экстрагента, состоящего из смеси 1-фенил-3-гептил-1,3-пропандиона и 2-этилгексановой кислоты в количестве от 5 до 10 моль % от содержания 1-фенил-3-гептил-1,3-пропандиона в органическом растворителе, несмешивающемся с водой.

Скорость реэкстракции увеличивается благодаря тому, что ускоряется процесс переноса протона из водного раствора минеральной кислоты в водоотталкивающую фазу, содержащую медноорганический комплекс, за счет использования катализатора-переносчика протона в виде 2-этилгексановой кислоты.

Растворителем для смеси 1-фенил-3-гептил-1,3-пропандиона и 2-этилгексановой кислоты может служить любой органический растворитель, несмешивающийся с водой.

Экстракцию ионов меди (II) из аммиачного раствора осуществляют при соотношении объемов органической и водной фаз 1:1.

Для реэкстракции ионов меди (II) из органической фазы используют раствор серной кислоты с концентрацией 60-200 г/л. Реэкстракцию осуществляют при соотношении объемов органической и водной фаз 1:1.

Изобретение может быть проиллюстрировано следующими примерами.

Пример 1

Для исследований был взят раствор травления печатных плат следующего состава: медь двухлористая 40 г/л; аммоний хлористый 90 г/л; аммоний углекислый 10 г/л; гидроксид аммония (25%-ный раствор) 10 г/л, pH 9,1.

1-Фенил-3-гептил-1,3-пропандион был синтезирован при взаимодействии этилового эфира октановой кислоты и метилфенилкетона по методу перегруппировки Кляйзена, целевой продукт выделен методом вакуумной перегонки, и его строение определено методом хромато-массспектрометрии, 2-этилгексановая кислота соответствовала ГОСТ 26624-85.

В приведенном эксперименте используют 1-фенил-3-гептил-1,3-пропандион с концентрацией 20 об. % в органическом растворителе, несмешивающемся с водой. В качестве растворителей используют парафин, керосин, 2-этилгексанол, гептилфенол, Shellsol D90, трибутилфосфат.

Для приготовления одного литра данного раствора экстрагента 200,0 мл 1-фенил-3-гептил-1,3-пропандиона смешивают с органическим растворителем.

Для реэкстракции применяют водный реэкстрагирующий раствор, содержащий 180 г/л серной кислоты.

Для приготовления органического экстрагента, насыщенного по ионам меди (II), водный аммиачный медьсодержащий раствор и органическую фазу в равных объемах перемешивают механическим перемешивающим устройством со скоростью 1650 об/мин в течение 300 секунд.

После прекращения перемешивания полученную эмульсию помещают в делительную воронку, отстаивают и отделяют от органического раствора. Водный раствор отфильтровывают и анализируют на содержание ионов меди (II).

Концентрацию ионов меди (II) определяют комплексонометрическим титрованием по методике, описанной в литературе [Пискарева С.К., Барашков К.М., Ольшанова К.М. Аналитическая химия. - М.: Высш. Шк., 1994. - 384 с.]. Концентрацию ионов меди (II) в органической фазе определяют по разнице концентраций их в исходном растворе и после экстракции.

Далее насыщенную по меди органическую фазу приводят во взаимодействие с реэкстрагирующим раствором при соотношении объемов фаз 1:1 и перемешивают со скоростью 1650 об/мин.

Через заданные промежутки времени (30, 60, 120, 180 и 210 секунд после начала перемешивания) из объема раствора отбирают пробы полученной эмульсии. Отобранные пробы помещают в делительные воронки для отстаивания, после чего насыщенный медью водный раствор отделяют от органической фазы и анализируют на содержание ионов меди (II). Остаточную концентрацию ионов меди (II) в органической фазе определяют по разнице их концентраций в органической фазе после экстракции и перехода их в водный сернокислый раствор после реэкстракциии.

Все эксперименты проводят при температуре окружающей среды 25°C.

Полученные результаты приведены в таблице 1.

Из представленных данных видно, что тип применяемого растворителя не влияет на время протекания реэкстракции.

Таким образом, для экстракционного извлечения ионов меди (II) из аммиачных растворов можно применять любой тип органического растворителя, несмешивающегося с водой.

Пример 2

В приведенном эксперименте в качестве экстрагента используют смесь 1-фенил-3-гептил-1,3-пропандиона с концентрацией 20 об. % с 2-этилгексановой кислотой в количестве от 1,0 до 12,5 моль % от содержания 1-фенил-3-гептил-1,3-пропандиона в органическом растворителе, несмешивающемся с водой.

Для приготовления одного литра экстрагента, состоящего из смеси 1-фенил-3-гептил-1,3-пропандиона с концентрацией 20 об. % и 2-этилгексановой кислоты в количестве 2,5 моль % от содержания 1-фенил-3-гептил-1,3-пропандиона, берут 200,0 мл 1-фенил-3-гептил-1,3-пропандиона, смешивают с 2,1 мл 2-этилгексановой кислоты, после чего объем раствора доводят до одного литра органическим растворителем, несмешивающимся с водой.

Для реэкстракции применяют водный реэкстрагирующий раствор, содержащий 180 г/л серной кислоты.

Эксперименты по экстракции и реэкстракции проводят аналогично описанному в примере 1.

Условия проведения экспериментов и полученные результаты приведены в таблице 2.

Из представленных данных видно, что добавление 5,0 и более моль % 2-этилгексановой кислоты от содержания 1-фенил-3-гептил-1,3-пропандиона приводит к уменьшению времени реэкстракции. Видно, что повышение содержания 2-этилгексановой кислоты выше 10 моль % от общего содержания 1-фенил-3-гептил-1,3-пропандиона в растворе не сопровождается дальнейшим уменьшением времени реэкстракции.

Таким образом, для экстракционного извлечения ионов меди (II) из аммиачных растворов предлагается использовать смесь 1-фенил-3-гептил-1,3-пропандиона с концентрацией 20 об. % и 2-этилгексановую кислоту в количестве от 5,0 до 10 моль % от общего содержания 1-фенил-3-гептил-1,3-пропандиона в растворе органического растворителя, несмешивающегося с водой.

Сравнительные результаты известного и предлагаемого способа представлены в таблице 3. Как видно из таблицы 3, время реэкстракции уменьшается в три раза от 180 до 60 секунд по сравнению с существующим прототипом.

Способ экстракции ионов меди (II) из аммиачных растворов с использованием экстрагента, состоящего из смеси 1-фенил-3-гептил-1,3-пропандиона и 2-этилгексановой кислоты в количестве от 5 до 10 моль % от содержания 1-фенил-3-гептил-1,3-пропандиона в органическом растворителе, несмешивающемся с водой.



 

Похожие патенты:

Изобретение относится к способу извлечения и концентрирования золота из растворов гидрохлорирования золотосодержащих руд и концентратов. Золото извлекают в анионной форме из хлорсодержащих растворов экстракцией стабильной эмульсией водного раствора водорастворимого сульфита в сернистой нефти.

Изобретение относится к способу извлечения тербия (III) из бедного или техногенного сырья с помощью метода флотоэкстракции. В процессе флотоэкстракции катионов тербия (III) используют в качестве органической фазы изооктиловый спирт, а в качестве собирателя ПАВ анионного типа - додецилсульфат натрия в концентрации, соответствующей стехиометрии реакции: Tb+3+3NaDS=Tb(DS)3+3Na+, где Tb+3 - катион тербия (III), DS- - додецилсульфат-ион.

Изобретение относится к гидрометаллургии, в частности к технологии переработки рудных концентратов ниобия и тантала. Способ получения оксидов ниобия и тантала из колумбитового (танталитового) концентрата включает его вскрытие фторидами аммония и серной кислотой, последующее выделение, очистку и разделение солей ниобия и тантала экстракцией.
Изобретение относится к экстракционной технологии аффинажа природного урана. Способ экстракционного аффинажа урана включает предварительную очистку азотнокислого раствора нитрата уранила путем контактирования его с ТБФ в разбавителе.

Изобретение относится к применению дигликольамида в кислой водной фазе, содержащей америций, кюрий и/или лантаниды, в качестве повышающего коэффициент их разделения комплексообразователя при экстракции.
Изобретение относится к способу экстракционного аффинажа урана и может быть использовано в технологии переработки регенерированного из облученного ядерного топлива урана (регенерированного урана) и химических концентратов природного урана (ХКПУ).

Изобретение относится к извлечению молибдена из растворов. Раствор, содержащий молибден, подкисляют до кислого pH путем добавления неорганической кислоты, затем добавляют по меньшей мере один органический растворитель и непрерывно перемешивают для образования водно-органической эмульсии.

Изобретение относится к способу извлечения самария (III) из бедного или техногенного сырья, в частности флотоэкстракцией из водных фаз. В процессе флотоэкстракции самария (III) в качестве органической фазы используют изооктиловый спирт, а в качестве собирателя - ПАВ анионного типа додецилсульфат натрия в концентрации, соответствующей стехиометрии реакции: Sm+3+3NaDS=Sm(DS)3+3Na+,где Sm+3 - катион самария (III), DS- - додецилсульфат-ион.

Изобретение относится к способу извлечения катионов европия (III) из бедного или техногенного сырья с помощью жидкостной экстракции. Способ извлечения катионов европия (III) включает жидкостную экстракцию из водно-солевых растворов с использованием в качестве экстрагента изооктилового спирта.

Изобретение относится к способу, с помощью которого можно очищать уран из природного уранового концентрата. Этот способ включает экстракцию урана, присутствующего в виде нитрата уранила в водной фазе А1, полученной в результате растворения природного уранового концентрата в азотной кислоте, с помощью органической фазы, которая содержит экстрагирующее средство в органическом растворителе.
Изобретение относится к области металлургии цветных металлов и может быть наиболее эффективно использовано при переработке вскрытием шлаков, содержащих тяжелые цветные металлы, железо, кремний и серу.

Способ извлечения меди (+2) из отработанных растворов относится к промышленной экологии и к химической технологии органических веществ. Способ может быть использован для утилизации жидких отходов производства, в частности отработанных растворов анодного оксидирования алюминия и его сплавов, отработанных растворов гальванического меднения, отработанных растворов травления меди и ее сплавов, отработанных растворов травления печатных плат.

Изобретение относится к области гидрометаллургии и может быть использовано для извлечения меди из окисленных высококарбонатных медных руд. Способ выщелачивания высококарбонатных медных руд включает орошение руды раствором выщелачивающего агента, в качестве которого используют раствор карбоната щелочного металла концентрацией 10-100 г/дм3.

Изобретение относится к способу, c помощью которого ценные металлы и возможные благородные металлы извлекают из смешанного штейна, полученного в плавильной печи. Ценные металлы в материале, полученном в плавильной печи, выщелачивают кислым раствором, содержащим сульфат и хлорид, из которого каждый металл выделяют с помощью экстракции растворителем.
Изобретение может быть использовано для растворения меди при переработке медьсодержащих материалов, преимущественно для производства сульфата меди пятиводного.

Изобретение относится к способу извлечения ценных компонентов из сульфидного сырья. Способ включает промывку сырья водой с получением твердого осадка, получение сульфатного раствора, из которого извлекают железо, медь и цинк путем перевода железа в осадок в виде гидроксида железа Fe(OH)3, осаждения меди из фильтрата железным скрапом, осаждения цинка из фильтрата сероводородом.

Изобретение относится к переработке медесодержащих осадков, полученных в результате цементации медесодержащих шахтных и подотвальных вод, в черновую медь. Цементные медесодержащие осадки нейтрализации шахтных и подотвальных вод предварительно просушивают в барабанном сушиле при температуре 100-200°C до полного удаления механической влаги, полученный огарок в количестве 70-75 мас.% смешивают с восстановителем в виде дробленого медного штейна фракции -1 мм, взятым в количестве 25-30 мас.%, полученную смесь плавят в электродуговой печи, скачивают шлак, затем расплав перегревают до температуры 1200°C и сливают черновую медь.

Изобретение относится к области металлургии цветных и благородных металлов, в частности к переработке шламов электролитического рафинирования меди. Способ переработки медеэлектролитного шлама включает обезмеживание, обогащение и выщелачивание селена из обезмеженного шлама или продуктов его обогащения в щелочном растворе.

Изобретение относится к области цветной металлургии и может быть применено для обеднения медных шлаков. Способ обеднения медных шлаков включает обработку шлака оксидом кальция в присутствии восстановителя при повышенной температуре.

Изобретение относится к способу флотационного обогащения сульфидных медно-никелевых руд, содержащих металлы платиновой группы, и может быть использовано при коллективной флотации сульфидов из вкрапленных медно-никелевых руд.

Изобретение относится к перерабатывающей промышленности. Замораживают коллагенсодержащее сырье до температуры не выше -10°C и не ниже -18°C.
Наверх