Экстракция ионов цинка (ii) из водных растворов трибутилфосфатом



Экстракция ионов цинка (ii) из водных растворов трибутилфосфатом
Экстракция ионов цинка (ii) из водных растворов трибутилфосфатом
Экстракция ионов цинка (ii) из водных растворов трибутилфосфатом
Экстракция ионов цинка (ii) из водных растворов трибутилфосфатом

 


Владельцы патента RU 2571743:

Воропанова Лидия Алексеевна (RU)

Изобретение может быть использовано в металлургии и при очистке промышленных и бытовых стоков. Способ экстракции цинка из водного раствора трибутилфосфатом (ТБФ) включает контактирование экстрагента и раствора, перемешивание смеси, отстаивание и разделение фаз. Экстракцию осуществляют из водного раствора с концентрацией 3 н. HCl, 240 г/дм3 NaCl. Трибутилфосфат вводят порционно при температуре 20°C. Изобретение позволяет повысить эффективность извлечения цинка из водных растворов, сократить расход экстрагента. 2 ил., 6 табл., 3 пр.

 

Способ экстракции цинка из водных растворов относится к области извлечения веществ органическими экстрагентами из водных растворов и может быть использован в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.

Известен способ извлечения ионов цинка(II) гидролитическим осаждением из водных растворов [Вольдман Г.М., Зеликман А.Н. Теория гидрометаллургических процессов. - М., Металлургия, 1993, с. 303-307].

Недостатком способа является то, что осадки гидроксосолей цинка(II) гидрофильны и плохо фильтруются.

Наиболее близким техническим решением является способ экстракции, наряду с другими металлами, ионов цинка из солянокислых водных растворов трибутилфосфатом (ТБФ) при переработке природного и техногенного сырья [Резник И.Д., Соболь С.И., Худяков В.М. Кобальт, том 2, М., Машиностроение, 1995. С. 91-93].

Недостатком способа является то, что отсутствуют данные о влиянии на экстракцию ионов цинка исходной концентрации цинка в водном растворе, температуры, концентрации соляной кислоты и поваренной соли, соотношения органической O и водной B фаз O:B.

Задачей изобретения является использование экономичного и эффективного способа для извлечения цинка из водных растворов.

Технический результат, который может быть получен при использовании изобретения, заключается в экономичности и эффективности извлечения цинка из водных растворов.

Этот технический результат достигается тем, что в известном способе экстракции цинка из водного раствора трибутилфосфатом (ТБФ), включающем контактирование экстрагента и раствора, перемешивание смеси, отстаивание и разделение фаз, экстракцию осуществляют из водного раствора с концентрацией 3 н. HCl, 240 г/дм3 NaCl порционным введением ТБФ при температуре t=20°C.

Сущность способа поясняется данными табл. 1-6 и фиг. 1-2, в которых указаны концентрация цинка в исходных растворах, время экстракции, концентрация цинка в осветленной водной фазе и экстракте, коэффициент распределения D, рассчитываемый как отношение равновесных концентраций цинка в органической и водной фазах, извлечением ε, % масс. от исходного.

Экстракцию осуществляли из растворов объемом Vраст=0,1 дм3 с концентрациями поваренной соли CNaCl=240 г/дм3 и соляной кислоты CHCl=2 и 3 н., температурами 20 и 60°C и различном соотношении объемов органической O и водной B фаз O:B. Исходные растворы готовили растворением в дистиллированной воде хлорида цинка. В качестве экстрагента использовали трибутиловый эфир фосфорной кислоты (C4H9O)3PO (х.ч.). Экстракцию проводили при постоянном перемешивании. Реэкстракцию осуществляли промывкой дистиллированной водой.

Примеры практического применения

Пример 1 (табл. 1-2)

В табл. 1 даны результаты экстракции при использовании ТБФ объемом VТБФ=0,04 дм3 при t=20°C, CHCl=3 н., CNaCl=240 г/дм3, O:B = 2:5, время экстракции 10 мин.

В табл. 2 даны результаты экстракции при порционном, постадийном использовании ТБФ при t=20°C, CHCl=3 н., CNaCl=240 г/дм3. Экстракцию осуществляли в 5 стадий, на каждой стадии использовали ТБФ объемом VТБФ=0,02 дм3, O:B=1:5, суммарное использование объема ТБФ составило VТБФ=0,1 дм, ∑O:B = 1:1, время экстракции на каждой стадии 5 или 10 мин. Извлечение цинка при большем времени экстракции на каждой стадии немного возрастает.

Сравнение экстракций в 1 стадию в течение 10 мин с использованием 0,04 дм (табл. 1) и в 2 стадии (табл. 2) по 5 мин (в сумме 10 мин) и по 10 мин (в сумме 20 мин) с использованием ТБФ VТБФ=0,04 дм3 позволяет сделать следующие выводы:

1. Порционное введение экстрагента по 5 мин увеличивает извлечение цинка с 44,85 до 47,28% масс., а по 10 мин до 48,20% масс. соответственно, молярное соотношение в экстракте ТБФ:Zn = 6:1.

2. Увеличение времени экстракции на каждой стадии от 5 до 10 мин повышает извлечение цинка с 47,28 до 48,20% масс.

Пример 2 (табл. 3-4)

В табл. 3-4 даны результаты порционного введения экстрагента при t=20 и 60°C и времени экстракции на каждой стадии 10 мин из растворов с концентрацией CHCl=2 н., CNaCl=240 г/дм3 и Cисх, г/дм3 = 31,40 Zn (табл. 3) и из растворов с концентрацией CHCl=3 н., CNaCl=240 г/дм3 и Cисх, г/дм3 = 30,50 Zn (табл. 4), на каждой стадии O:B = 1:5, всего ∑O:B = 1:1.

Из данных табл. 3-4 можно сделать следующие выводы:

1. Худшие результаты извлечения получены из растворов с концентрацией CHCl=2 н., 240 г/дм3 NaCl и температуре t=60°C, лучшие - из растворов с концентрацией CHCl=3 н., CNaCl=240 г/дм3 и температуре t=20°C.

2. Извлечение цинка 85,73% осуществляется из растворов с концентрацией CHCl=2 н.., CNaCl=240 г/дм3 и температуре t=20°C с исходной концентрацией 31,40 г/дм3 Zn на пятой стадии: ∑O:B = 1:1, ТБФ:Zn = 6:1.

3. Извлечение цинка 90,92% осуществляется из растворов с концентрацией 3 н. HCl, 240 г/дм3 NaCl и температуре t=20°C с исходной концентрацией 30,50 г/дм3 Zn на пятой стадии: ∑O:B = 1:1, ТБФ:Zn = 6:1.

4. Расчеты показывают, что извлечение цинка 96,96% может быть получено из растворов с концентрацией CHCl=3 н., CNaCl=240 г/дм3 и температуре t=20°C с исходной концентрацией 30,50 г/дм3 Zn на шестой стадии: ∑O:B = 1,2:1.

5. Кинетический порядок реакции равен единице, а энергия активации E=14-16 кДж/моль.

Пример 3 (табл. 5-6)

В табл. 5-6 даны результаты разовой экстракции при t=20 и 60°C из растворов с концентрацией CHCl=2 н., CNaCl=240 г/дм3 и Cисх, г/дм3 = 31,40 Zn (табл. 5) и из растворов с концентрацией CHCl=3 н., CNaCl=240 г/дм3 и Cисх, г/дм3 = 30,50 Zn (табл. 6), O:B = 1:1.

Из данных табл. 5-6 можно сделать следующие выводы:

1. При разовом введении экстрагента экстракция завершается за 10 мин.

2. Худшие результаты извлечения получены из растворов с концентрацией CHCl=2 н., CNaCl=240 г/дм3 и температуре t=60°C, лучшие - из растворов с концентрацией CHCl=3 н., CNaCl=240 г/дм3 и температуре t=20°C.

3. Извлечение цинка 74,36% осуществляется из растворов с концентрацией CHCl=2 н., CNaCl=240 г/дм3 и температуре t=20°C с исходной концентрацией 31,40 г/дм3 Zn за 50 мин и O:B = 1:1, ТБФ:Zn = 10:1.

4. Извлечение цинка 78,66% осуществляется из растворов с концентрацией CHCl=3 н., CNaCl=240 г/дм3 и температуре t=20°C с исходной концентрацией 30,50 г/дм3 Zn за 50 мин и O:B = 1:1, ТБФ:Zn = 10:1.

Пример 4 (фиг. 1)

На фиг. 1 по данным табл. 3-6 показано сравнение результатов экстракции при разовом и порционном введении экстрагента для растворов с концентрациями Cисх=30,5-31,4 Zn, CHCl=2-3 н., CNaCl=240 г/дм3 и температурами 20 и 60°C:

а - зависимость остаточной концентрации от этапов экстракции,

б - зависимость извлечения от этапов экстракции.

Каждый этап осуществляется в течение 10 мин.

Из данных фиг. 1 можно сделать следующие выводы:

1. Порционное введение экстрагента повышает извлечение цинка в 1,15-1,24 раза.

2. Порционное введение экстрагента сокращает расход экстрагента: для получения одинакового результата экстракции при порционном введении экстрагента за время 40 мин требуется O:B = 4:5, а при разовом введении экстрагента за время 10 мин O:B = 1:1.

При регенерации каждой порции экстрагента можно сократить расход экстрагента в 5 раз.

3. Лучшие результаты экстракции получены при порционном введении экстрагента из растворов с концентрацией CHCl=3 н., CNaCl=240 г/дм3 и температурой t=20°C.

На фиг. 2 дана принципиальная технологическая схема извлечения ионов цинка из водных растворов их солей.

Способ экстракции цинка из водного раствора трибутилфосфатом (ТБФ), включающий контактирование экстрагента и раствора, перемешивание смеси, отстаивание и разделение фаз, отличающийся тем, что экстракцию осуществляют из водного раствора с концентрацией 3 н. HCl, 240 г/дм3 NaCl порционным введением ТБФ при температуре t=20°C.



 

Похожие патенты:

Изобретение относится к способу извлечения молибдена, присутствующего в водных кислотных растворах. Способ включает экстракцию молибдена растворителями молибдена из водного кислотного раствора посредством приведения его в контакт с раствором органической фазы, содержащим фосфиновую кислоту.

Изобретение относится к способу извлечения и восстановления ванадия из руд. Способ включает стадию (i) кислотного выщелачивания руды, содержащей ванадий, титан и железо, с экстракцией ванадия и железа в раствор.

Изобретение относится к области гидрометаллургии благородных металлов, в частности к аффинажному производству металлов платиновой группы (МПГ). Способ заключается в переводе хлоридных комплексов иридия (III) в хорошо экстрагируемое трибутилфосфатом комплексное соединение иридия (IV) путем смешивания хлоридного раствора МПГ с раствором хлорноватистой кислоты в трибутилфосфате при температуре 5-50°С.

Изобретение относится к экстракционной очистке нитратных растворов, содержащих редкоземельные металлы (РЗМ), от примесей, в частности от Fe, Al, Ca, Mg и радиоактивных примесей, в том числе от тория.

Изобретение относится к способу переработки кремнийсодержащего химического концентрата природного урана с повышенным содержанием кремния. Способ включает выщелачивание концентрата водным раствором азотной кислоты при повышенной температуре с получением пульпы, состоящей из твердой и водной фаз, отделение фильтрацией водной фазы в виде азотнокислого раствора нитрата уранила от твердой фазы, экстракционный аффинаж урана с применением трибутилфосфата в углеводородном разбавителе.

Изобретение относится к переработке урансодержащего сырья, а именно к способу подготовки сырья к экстракционной переработке. Способ включает выщелачивание урана азотной кислотой и отделение водной фазы от нерастворенного остатка.

Изобретение относится к способам переработки химических концентратов природного урана (ХКПУ), имеющих повышенное содержание примесей серы и железа, а также, возможно, фосфора.
Изобретение относится к технологии редких металлов, в частности к гидрометаллургии циркония и гафния. Способ разделения циркония и гафния включает получение гидроксидов циркония и гафния при температуре, не превышающей 30-35°С, обезвоживание полученных гидроксидов циркония и гафния, растворение их в азотной кислоте и последующее извлечение циркония экстракцией трибутилфосфатом из полученного раствора в противотоке, причем из ячейки в середине каскада выводят водную фазу, добавляют в нее азотную кислоту и полученный раствор вводят в следующую ступень по движению водной фазы.
Изобретение относится к технологии переработки химических концентратов природного урана (ХКПУ), включающей выщелачивание (растворение) концентрата и экстракцию урана с использованием трибутилфосфата (ТБФ) в углеводородном разбавителе.
Изобретение относится к способам переработки химических концентратов природного урана (ХКПУ) и может быть использовано в технологии переработки ХКПУ с повышенным содержанием кремния.

Изобретение относится к технологии получения карбоксилатов цинка и может быть использовано в различных областях химической практики, при проведении научных исследований и в аналитическом контроле.

Изобретение относится к новым солям цинка или меди (II) общей формулы, приведенной ниже, в которой М - Zn или Cu, R1 - Н или СН3, R2 - С2-С25алкил, либо группа R2-CO-O- означает кротонат, сорбат, линолеат, за исключением следующих соединений: CH2=C(CH3)-COO-Zn-O-CO-C2H5, CH2=CH-COO-Zn-O-CO-C2H5, СН2=СН-СОО-Cu-O-СО-С2Н5, СН2=С(СН3)-СОО-Zn-O-СО-(СН2)4-СН3, CH2=CH-COO-Zn-O-CO-(CH2)4-CH3, СН2=СН-СОО-Zn-O-СО-(СН2)6-СН3, CH2=C(CH3)-COO-Zn-O-CO-(CH2)6-CH3, СН2=СН-СОО-Cu-O-СО-(СН2)6-СН3, CH2=CH-COO-Zn-O-CO-(CH2)14-CH3, CH2=C(CH3)-COO-Zn-O-CO-(CH2)16-CH3, CH2=C(CH3)-COO-Zn-O-CO-iso-C17H35, CH2=CH-COO-Zn-O-CO-iso-C17H35, CH2=C(CH3)-COO-Zn-O-CO-(CH2)17-CH3.

Изобретение относится к применяемой в качестве биоцида соли цинка или меди общей формулы (II), в которой М - Zn или Cu, R1 выбран из группы, включающей водород и метил, R2 - замещенный С1-С5 алкил, m=0-5, n=0-2, m+n=1-5.

Изобретение относится к повышающим теплопроводность или электропроводность частицам оксида цинка. Частицы представлены следующей формулой (1): ZnMn+ xO1+nx/2 · aH2O (1) где Mn+ означает трехвалентный или четырехвалентный металл, x и a удовлетворяют соотношению 0,002<x<0,05 и 0≤a<0,5, соответственно, n означает валентность металла.

Изобретение может быть использовано в производстве поливинилхлоридных смол (ПВХ) при переработке пластических масс, в производстве искусственных кож и линолеума, витаминных таблеток, лекарственных препаратов, в парфюмерно-косметической промышленности.

Изобретение относится к технологии получения основных углекислых солей цинка, которые могут быть использованы в качестве сырья и промежуточных продуктов в фармацевтике, микроэлектронике, химической, шинной, лакокрасочной и нефтеперерабатывающей промышленности.

Изобретение относится к технологии получения твердых растворов со структурой шпинели на основе ферритов и хромитов переходных элементов и может найти применение в химической промышленности в процессах органического синтеза для производства бутадиена и углеводородов из синтез-газа в качестве катализатора.
Изобретение относится к технологии получения солей карбоновых кислот, в частности уксусной, и касается разработки способа получения высокочистого безводного ацетата цинка.

Изобретение относится к химической технологии. .
Изобретение относится к области химии платиновых металлов, в частности синтезу соединений палладия, а именно синтезу гетероядерных ацетатов палладия с цветными металлами.

Изобретение относится к области процессов разделения веществ методами жидкостной экстракции и хроматографии и может быть использовано в гидрометаллургии, а также в химической, микробиологической, фармацевтической и других отраслях промышленности для извлечения, разделения, очистки и концентрирования веществ.
Наверх