Способ получения сферического пороха

Изобретение относится к области производства гранулированных материалов по водно-дисперсионной технологии, в частности сферических порохов (СФП). Способ получения сферического пороха включает получение порохового лака в реакторе, диспергирование его на сферические частицы, обезвоживание и отгонку этилацетата (ЭА) из сферического пороха с последующей промывкой, сортировкой и сушкой. Водная суспензия сформированного пороха из напорной емкости подается в верхнюю часть пульсационной колонны с насадками КРИМЗ. В нижнюю часть колонны подается вода со скоростью потока (5,0-7,5)·10-2 м/с, пульсация потока создается за счет подачи сжатого воздуха с частотой пульсации 36-38 колебаний в минуту. После отделения мелкой фракции целевая и крупная фракции повторно разделяются при скорости потока 8,0·10-2-1,0·10-1 м/с при той же частоте пульсации. 1 ил., 4 табл.

 

Изобретение относится к области производства гранулированных материалов по водно-дисперсионной технологии, в частности сферических порохов (СФП).

Способ получения СФП включает фазы формирования гранул по водно-дисперсионному методу, промывки, сортировки, флегматизации, сушки.

Водно-дисперсионный способ формирования гранулированных материалов предполагает получение гранул в широком диапазоне геометрических размеров (D=0,1-3,0 мм). Поэтому необходимый фракционный состав материала достигается последующей сортировкой влажных гранул после фазы формирования и промывки.

Для этих целей широко используется ситовой метод классификации [1]. Сортировка на ситах позволяет выделить узкие по размерам фракции материала. Как один из вариантов сортировки на заводах применяется двухкаскадная сортировка, принцип работы которой основан на отделении целевой фракции от мелких и крупных зерен в процессе вращения сетчатых барабанов и перемещении шнеком мокрого полуфабриката, представляющего собой высококонцентрированную суспензию.

Наиболее близким техническим решением (прототипом) [2] является способ получения сферического пороха, включающий получение порохового лака в реакторе, диспергирование его на сферические частицы, обезвоживание и отгонку этилацетата (ЭА) из сферического пороха с последующей промывкой, сортировкой и сушкой, при этом водно-пороховую суспензию из напорной емкости секторным питателем подают на мокрую двухкаскадную сортировку во внутреннюю шнековую часть вращающегося барабана, установленного под углом 1-5° относительно горизонтальной оси движения пороха. На поверхности шнековой части барабана устанавливают сетки с размером №010, 015, 020, 040, 056, 063 и 070, которые обеспечивают получение заданного фракционного состава пороха в зависимости от его назначения. Сверху барабан орошают водой под давлением 1-2 кгс/см2 через центробежные форсунки.

Недостатками метода являются:

- необходимость замены сеток при изменении фракционного состава продукта;

- образование в процессе сортировки структур элементов с коагуляционным и фазовым типами контакта в результате высокой концентрации дисперсной фазы и сильно развитой межфазной поверхности (сплошная пространственная структура). Вследствие этого для высокопористых и пористых материалов в возвратно технологических отходах может находиться до 20-25% годной фракции. Продукт часто возвращается на повторную сортировку;

- влияние формы элемента на эффективность сортировки.

Поскольку плотный слой гранул является препятствием для встречи их с отверстиями сетки, пути повышения эффективности сортировки связаны с увеличением свободного движения в поле гравитации отдельных частиц.

Целью изобретения является повышение эффективности сортировки пороховых гранул любой плотности за счет перевода плотного слоя пороха во взвешенное состояние, которое реализуется при гидравлической классификации в восходящем гидродинамическом потоке. Наиболее перспективны для этих целей аппараты колонного типа, в частности пульсационные колонны с насадками КРИМЗ.

Поставленная цель достигается способом получения сферического пороха, включающим получение порохового лака в реакторе, диспергирование его на сферические частицы, обезвоживание и отгонку этилацетата (ЭА) из сферического пороха с последующей промывкой, сортировкой и сушкой, отличающимся тем, что водная суспензия сформированного пороха из напорной емкости подается в верхнюю часть пульсационной колонны с насадками КРИМЗ, в нижнюю часть колонны подается вода со скоростью потока (5,0-7,5)·10-2 м/с, пульсация потока создается за счет подачи сжатого воздуха с частотой пульсации 36-38 колебаний в минуту, после отделения мелкой фракция целевая и крупная фракции повторно разделяются при скорости потока 8,0·10-2-1,0·10-1 м/с при той же частоте пульсации.

На чертеже приведена схема технологической установки.

В нижнюю часть колонны (4) из напорной емкости (1) восходящим потоком подается вода, расход которой контролируется ротаметром (2). По мере прохождения пороха сверху вниз по колонне мелкая фракция мелкая фракция отделяется и уносится восходящим потоком воды через верхнюю часть аппарата в сборник возвратно-технологических отходов (ВТО) (6). Целевая и крупная фракции, достигнув в процессе осаждения нижней части аппарата, непрерывно извлекаются эрлифтом (5) в сцежу (3). Сжатый воздух через рессивер (прибор, сглаживающий перепады давления) (8) поступает в пульсатор (7).

Пульсационная колонна представляет собой вертикальный цилиндрический аппарат, внутри которого установлены распределительные насадки КРИМЗ, которые смонтированы на центральном стержне с заданным шагом. Верхняя зона колонны имеет патрубок для подачи исходного продукта. В нижнюю зону непрерывным восходящим потоком подается вода, которая, достигнув противотоком верхней части колонны, выводится из аппарата через штуцер. Для непрерывного удаления пороха из нижней части колонны применяется эрлифт.

Пульсация гидродинамического потока в колонне осуществляется посредством сжатого воздуха за счет периодического изменения его давления в пульсационной камере, которая соединена с колонной. Наличие пульсации сплошной фазы относительно неподвижно установленной насадки позволяет резко снизить коэффициент продольного перемешивания и организовать структуру потоков, близкую к продольному вытеснению (Re=50).

Исследования проведены в пульсационной колонне диаметром 0,1 м и высотой рабочей зоны 1,7 м. В рабочей зоне установлены 34 насадки КРИМЗ, представляющие собой пробивные сита с П-образными прорезями и отогнутыми лепестками, расположенными наклонно над образовавшимися отверстиями. Расстояние между насадками 0,05 м. Для визуального наблюдения за распределением двухфазного потока в рабочей части имеется прозрачное цилиндрическое окно. Пульсация восходящего потока воды создается посредством сжатого воздуха, подводимого через пульсатор.

Непрерывная загрузка продукта осуществляется в патрубок верхней отстойной зоны колонны.

Примеры выполнения сортировки продукта в пределах граничных условий, за их пределами, а также по известному способу приведены в таблице 1.

Чем меньше геометрические размеры и выше пористость гранул, тем меньше должна быть скорость потока. Для каждой фракции пороха подбираются свои оптимальные режимы, обеспечивающие наибольшую эффективность разделения гранул. Оптимизация режимов сортировки показана на примере продукта с целевой фракцией 0,8-1,0 мм при частоте пульсации 37 колебаний в минуту. Определение фракционного состава продукта проводилось ситовым анализом. Эффективность разделения оценивалась как разница между коэффициентами разделения граничной крупности в отсортированных порохах.

С увеличением скорости потока от 5,7·10-2 до 7,3·10-2 м/с содержание мелкой фракции уменьшается с 16,5 до 1,6 мас. %. При этом наблюдается рост целевой фракции в мелочи, удаленной потоком воды, оптимальный уровень разделения достигается при скорости потока равной 6,7·10-2 м/с. При этой скорости унос целевой фракции с мелочью минимален и составляет 0,5%. Содержание мелкой фракции (0,8 мм и менее) в отсортированном продукте также минимально и составляет 2,1%. Суммарная эффективность выделения мелкой фракции при скорости 6,7·10-2 м/с по граничной крупности 0,8 мм составляет 94,9% (таблица 2).

Отделение от продукта фракции более 1 мм осуществлялось при повторном прохождении отсортированного от мелочи (менее 0,8 мм) продукта через колонну. В нижнюю часть колонны из напорной емкости через ротаметр подавалась вода. Скорость потока устанавливали таким образом, чтобы крупная фракция (более 1 мм) осаждалась в нижней части колонны, а целевая (0,8-1,0 мм) - выносилась на сцежу (3). Оптимальное разделение продукта при граничной крупности 1,0 мм осуществляется при скорости гидродинамического потока равной 9,7·10-2 м/с. При этой скорости проскок целевой фракции в крупную минимален и составляет 1% при минимальном содержании крупноты в годной фракции (2,6%). Эффективность разделения составляет 93,6%. При увеличении или уменьшении скорости потока эффективность разделения резко падает (таблица 3).

Таким образом, исследования показали эффективность процесса сортировки продукта в пульсационной колонне при оптимальной скорости гидродинамического потока (таблица 4). Так, содержание требуемой целевой фракции 0,8-1,0 мм в готовом продукте составляет 95,8%. Унос в ВТО целевой фракции равен 4%. Эффективность разделения продукта по фракции 0,8-1,0 мм составляет 94,5%.

Изготовление пороха за пределами граничных условии приводит к ухудшению эффективности разделения. В отличие от прототипа форма гранул не оказывает влияния на качество разделения продукта по фракциям.

При этом необходимо отметить еще один положительный момент проведения сортировки в пульсационной колонне. Такое оформление технологического процесса дает возможность совместить в одном аппарате две операции: сортировки и промывки пороха от эмульгатора, которая при штатном оформлении процесса осуществляется в разных аппаратах (барабанной сортировке и емкости с перемешивающим устройством).

При высоте колонны 5,28 м расход воды на промывку пороха сокращается в 4,5 раза по сравнению с существующей технологией и составляет 2 т на 1 т продукта, остаточное содержание клея 0,01% при производительности операции сортировки 2,5 тыс. т продукта/год.

Источники информации

1. В.И. Гиндич. Технология пироксилиновых порохов. Т. 2. Казань, 1995. - С. 339-341.

2. Патент РФ №2 497786 (2013), МКИ7 C06B 21/00. Способ получения сферического пороха для стрелкового оружия (прототип).

Способ получения сферического пороха, включающий получение порохового лака в реакторе, диспергирование его на сферические частицы, обезвоживание и отгонку этилацетата (ЭА) из сферического пороха с последующей промывкой, сортировкой и сушкой, отличающийся тем, что водная суспензия сформированного пороха из напорной емкости подается в верхнюю часть пульсационной колонны с насадками КРИМЗ, в нижнюю часть колонны подается вода со скоростью потока (5,0-7,5)·10-2 м/с, пульсация потока создается за счет подачи сжатого воздуха с частотой пульсации 36-38 колебаний в минуту, после отделения мелкой фракции целевая и крупная фракции повторно разделяются при скорости потока 8,0·10-2-1,0·10-1 м/с при той же частоте пульсации.



 

Похожие патенты:

Изобретение относится к заряду для легкогазового оружия. Заряд представляет собой смесь азотосодержащих веществ: динитрамид аммония, нитрат аммония, нитрат бора или бериллия, пятиокись азота или шестиокись азота и тетраборана или боргидрида и гидрида металлов - бериллия, лития, алюминия, лития-алюминия или кремния.

Изобретение относится к области получения сферических порохов для стрелкового оружия. Способ получения одноосновного сферического пороха включает получение порохового лака в реакторе, диспергирование его на сферические частицы, обезвоживание, отгонку этилацетата из пороховых элементов, последующую промывку, сортировку и сушку, при этом проводят трехкратную горячую промывку 1 мас.

Изобретение относится к азотсодержащим порохам, выделяющим газы с малым средним молекулярным весом, преимущественно водород и воду. Порох содержит связанный азот и мелкодисперсный бор или мелкодисперсные горючие соединения бора при определенном соотношении компонентов.
Изобретение относится к технологии изготовления мелко- и среднезерненых пироксилиновых порохов, а именно к вытеснению легколетучего (спиртоэфирного) растворителя из пороховых элементов.

Изобретение относится к области производства одно- и двухосновных сферических порохов, а также порохов пластинчатой формы, в частности изготовления пластинчатых порохов из некондиционной части производимых сферических порохов, которые могут быть использованы для снаряжения патронов к стрелковому вооружению.

Изобретение относится к области получения сферических порохов для стрелкового оружия, в том числе гладкоствольного спортивно-охотничьего оружия 12, 16 и 20 калибров.

Изобретение относится к области получения сферических порохов для стрелкового оружия. Способ получения сферического пороха включает получение порохового лака в реакторе, диспергирование его на сферические частицы, обезвоживание и отгонку этилацетата из пороховых элементов с последующей промывкой, сортировкой пороха по фракциям и сушкой, при этом из напорной емкости водно-пороховую суспензию с концентрацией пороха 25-30 мас.% с помощью эрлифта или секторного питателя подают на плоский качающийся грохот, установленный под водой на глубине 200-300 мм от верхнего зеркала воды, состоящий из переменного набора сеток, установленных с наклоном от 3 до 10° относительно горизонтальной плоскости, совершающий возвратно-поступательное движение 40-60 колебаний в минуту.

Изобретение относится к области получения сферических порохов для стрелкового оружия. Способ получения сферического пороха включает промывку, сортировку, отжим от воды и сушку, в котором отжим пороха от воды проводят на карусельном вакуум-фильтре, состоящем из 8 вращающихся воронок, в нижней части которых установлены верхняя и нижняя сетки 01 и 07, соответственно, на боковых частях воронок установлены вибраторы, водно-пороховую суспензию с концентрацией пороха 25-30 мас.% подают во вращающиеся воронки, заполняют их на 2/3 объема порохом, вводят графитовую суспензию и проводят под разрежением 8-12 кПа удаление воды до остаточного содержания 18-22 мас.%, затем порох выгружают в приемный бункер шнек-питателя и пневмотранспортом подают на сушку.
Изобретение относится к области получения сферических порохов для стрелкового оружия, в том числе для гладкоствольного спортивно-охотничьего оружия 12, 16 и 20 калибров.
Изобретение относится к области производства боеприпасов для спортивного и служебного оружия, в частности пороховых зарядов к пулевым, пистолетным, спортивным патронам «9mm Luger» (9×19 мм) для спортивных и служебных пистолетов.

Изобретение относится к области получения сферических порохов для стрелкового оружия. Способ получения одноосновного сферического пороха включает получение порохового лака в реакторе, диспергирование его на сферические частицы, обезвоживание, отгонку этилацетата из пороховых элементов, последующую промывку, сортировку и сушку, при этом проводят трехкратную горячую промывку 1 мас.

Изобретение относится к области производства промышленных взрывчатых веществ. Способ включает подготовку исходных компонентов в необходимых соотношениях, загрузку в смеситель, смешение компонентов, выгрузку и упаковку готового продукта.

Изобретение относится к ракетной технике, а именно к технологии изготовления бронечехла для бронирования вкладного заряда из смесевого твердого топлива (СТТ) к маршевому ракетному двигателю (РД) переносных зенитных ракетных комплексов (ПЗРК), а также к теплозащитному материалу для изготовления бронечехла.

Изобретение относится к технологии дымного черного пороха и может быть использовано для регенерации калиевой селитры из сметок производства порохов с истекшим сроком хранения.

Изобретение относится к химической технологии, в частности к способам получения гранулированных материалов из расплавов и растворов, и может найти применение в химической и других отраслях промышленности.

Изобретение относится к способам расснаряжения подлежащих утилизации боеприпасов. Способ расснаряжения подлежащих утилизации боеприпасов с использованием в качестве рабочего инструмента для измельчения заряда взрывчатого вещества потока гранул замороженного хладоагента включает подачу на поверхность взрывчатого вещества аэрозольного потока жидкости и потока гранул углекислоты.
Изобретение относится к технологии изготовления мелко- и среднезерненых пироксилиновых порохов, а именно к вытеснению легколетучего (спиртоэфирного) растворителя из пороховых элементов.

Изобретение относится к пиротехнике, а именно к технологии изготовления функциональных штучных пироэлементов для насыпного снаряжения различных пиротехнических изделий, фейерверочных, сигнальных, дымообразующих, воспламенительных и др.

Роторная дробилка предназначена для дробления полимерных материалов естественного и искусственного происхождения трубчатой формы, а также в целлюлозно-бумажной промышленности и в производстве бездымных порохов, в частности, при утилизации морально устаревших, списанных или снятых с вооружения трубчатых порохов.

Изобретение относится к патронированию взрывчатых веществ (ВВ) для горнодобывающей промышленности. Способ патронирования порошкообразных ВВ включает формирование вертикально ориентированной оболочки патрона из термопластичной пленки на формообразующей трубе, патронирование с использованием вращающегося нагнетающего шнека, расположенного внутри формообразующей трубы, путем периодического наполнения непрерывно протягиваемой оболочки ВВ и запечатывания торцов патронов герметизирующими клипсами, обжим оболочки в жгут, наложение клипс и разрезание жгута при отключенном нагнетающем шнеке.

Изобретение относится к сферическим порохам для стрелкового оружия. Сферический пироксилиновый порох для 5,6-мм спортивно-охотничьего патрона кольцевого воспламенения в качестве исходного сырья содержит пироксилин с содержанием оксида азота 213,0-214,0 мл NO/г и до 30 мас.% возвратно-технологических отходов от предшествующих операций, дифениламин, технический углерод, этилацетат и влагу. Пороховые элементы с размером 0,2-0,4 мм и с насыпной плотностью 0,62-0,72 кг/дм3 флегматизируют с поверхности дибутилфталатом на глубину 10-20 мкм и графитуют с поверхности графитом. Изобретение обеспечивает получение сферического пороха для 5,6 мм спортивно-охотничьего патрона кольцевого воспламенения со скоростью полета пули 485-500 м/с без повышения давления пороховых газов в канале ствола оружия и пламенности при выстреле. 1 табл., 5 пр.
Наверх