Высокотемпературный реактор с мелкодисперсным распылом воды

Изобретение относится к области химического машиностроения, а именно к установкам для получения синтез-газа из углеводородсодержащего сырья, и может быть использовано в химической, нефтехимической, энергетической и других смежных отраслях промышленности для переработки углеводородного сырья с получением синтез-газа, используемого для энергетических и технологических целей. В высокотемпературном реакторе с мелкодисперсным распылом воды корпус снабжен блоком подачи воды. Блок подачи воды имеет в своем составе расположенные по периметру и направленные внутрь корпуса центробежные форсунки. Блок подачи воды разделяет внутреннюю полость корпуса на верхнюю и нижнюю полости. Нижняя полость связана с полостью блока подачи воды. Верхняя полость снабжена дополнительным кольцевым коллектором. Техническим результатом изобретения является повышение надежности реактора при производстве переменного количества синтез-газа и устранение непроизводительных потерь по утилизации тепла и воды, подаваемой для защиты стенок реактора. 2 ил.

 

Изобретение относится к области химического машиностроения, а именно к установкам для получения синтез-газа из углеводородного сырья. Изобретение может быть использовано в химической, нефтехимической, энергетической и других смежных отраслях промышленности для переработки углеводородного сырья с получением синтез-газа, используемого для энергетических и технологических целей.

Известен газификатор вертикального типа для получения синтез-газа по патенту РФ №2052492, кл. C10J 3/00, 3/54, включающий корпус, горелку для ввода топлива и кислорода или парокислородной смеси, расположенную в верхней части корпуса, патрубки для отвода шлака и газа в нижней части корпуса, а также корпус дополнительно снабжен тангенциально расположенными соплами, установленными в 3-10 ярусов по высоте реактора на расстоянии между ярусами 0,5-5 диаметров аппарата.

В указанном реакторе применен корпус без футеровки с двухслойными водоохлаждаемыми металлическими стенками, причем часть воды подается на охлаждение стенок, а другая часть воды независимо подается через сопла на внутреннюю поверхность стенок реактора, образуя пленочную завесу.

Недостатком вышеназванного устройства являются непроизводительные расходы по утилизации тепла и воды, подаваемой для образования пленочной завесы, защищающей стенки реактора.

Наиболее близким к предлагаемому изобретению, принятому за прототип, является реактор для получения синтез-газа по патенту РФ №2392297, кл. C10J 3/34, включающий корпус с водяной магистралью и с двухслойными металлическими водоохлаждаемыми стенками и внутренней полостью, горелку для ввода топлива и кислорода или парокислородной смеси, расположенную в верхней части корпуса, патрубок для отвода газа, расположенный в нижней части корпуса. В корпусе выполнены кольцевые коллекторы, один из которых расположен в верхней части корпуса и присоединен к водяной магистрали, а другой расположен в нижней части корпуса и присоединен трубопроводом к горелке. Корпус дополнительно снабжен, например, одним поясом завесы, выполненным в виде кольцевого щелеобразного канала с реданами, и соединен с внутренней полостью, расположенной между двухслойными металлическими водоохлаждаемыми стенками.

Недостатком вышеназванного устройства является низкая надежность при производстве переменного количества синтез-газа для работы в составе воздухонезависимой энергетической установки переменной мощности.

Это поясняется тем, что в вышеназванном реакторе для заданного количества топлива и кислорода или парокислородной смеси подается определенное количество воды, используемой одновременно для охлаждения стенок корпуса, создания пленочной завесы для защиты стенок корпуса, а также для получения пара. При изменении количества подаваемых компонентов топлива, с целью изменения количества получаемого синтез-газа, необходимо изменить и количество подаваемой воды, что сложно обеспечить без риска прогара корпуса реактора при меньшем, чем необходимо, или остановке реактора при большем, чем необходимо, количестве подаваемой воды.

Оснащение воздухонезависимой установки переменной мощности несколькими реакторами с заранее настроенными параметрами значительно усложнит ее эксплуатацию, а сброс избыточного количества синтез-газа приведет к непроизводительным затратам горючего и кислорода и ухудшению экологической обстановки вокруг реактора.

Задачей предлагаемого изобретения является повышение надежности реактора для получения переменного количества синтез-газа и устранение непроизводительных затрат по утилизации тепла и воды, подаваемой для защиты стенок реактора.

Поставленная задача достигается тем, что корпус снабжен блоком подачи воды, имеющим в своем составе расположенные по периметру и направленные внутрь корпуса центробежные форсунки, и разделяющим внутреннюю полость на верхнюю и нижнюю полости, причем нижняя полость связана с полостью блока подачи воды, а верхняя полость снабжена дополнительным кольцевым коллектором.

На фиг. 1 приведено схематическое изображение высокотемпературного реактора с мелкодисперсным распылом воды.

На фиг. 2 приведено схематическое изображение блока подачи воды.

Высокотемпературный реактор с мелкодисперсным распылом воды (далее реактор) содержит корпус 1 с водяной магистралью и двухслойными металлическими водоохлаждаемыми стенками 2 с внутренней полостью. Корпус 1 снабжен кольцевыми коллекторами 3 и 4, распложенными в верхней и нижней частях корпуса. Горелка 5 для ввода горючего и кислорода или парокислородной смеси расположена в верхней части корпуса 1. В нижней части корпуса 1 установлен патрубок 6 для отвода синтез-газа. Блок подачи воды 7 установлен таким образом, что делит внутреннюю полость между двухслойными металлическими водоохлаждаемыми стенками 2 на верхнюю полость 8 и нижнюю полость 9. Причем полость 10 блока подачи воды 7 связана с нижней полостью 9, а верхняя полость 8 снабжена дополнительным кольцевым коллектором 11. Блок подачи воды 7 снабжен центробежными форсунками 12, расположенными по его периметру и направленными внутрь корпуса 1.

Высокотемпературный реактор с мелкодисперсным распылом воды работает следующим образом.

Горючее и кислород, или парокислородная смесь, поступают по трубопроводам в горелку 5. Трубопроводы на чертеже условно не показаны. После воспламенения парогазовой смеси идет высокотемпературный процесс образования синтез-газа. Температура внутри реактора достигает 3000 К.

Из водяной магистрали (не показана) вода для охлаждения двухслойных металлических стенок 2 подается в дополнительный кольцевой коллектор 11, проходит через верхнюю полость 8, где нагревается, и выходит из кольцевого коллектора 4.

Нагретая вода может быть использована для подогрева компонентов топлива.

Из водяной магистрали (не показана) вода подается в кольцевой коллектор 3, проходит нижнюю полость 9, полость 10 блока подачи воды 7 и посредством центробежных форсунок 12 поступает в виде мелкодисперсного распыла внутрь корпуса 1.

При попадании мелкодисперсного распыла воды в поток синтез-газа происходит мгновенное испарение и интенсивное перемешивание пара с потоком синтез-газа, при этом температура парогазовой смеси уменьшается ориентировочно до 500-900 К.

При уменьшении количества компонентов топлива может быть уменьшена подача воды в верхнюю полость 8 для охлаждения двухслойных металлических стенок 2 и уменьшена подача воды в нижнюю полость 9 для охлаждения синтез-газа.

При увеличении подачи компонентов топлива будет соответственно увеличена подача воды в верхнюю 8 и нижнюю 9 полости.

Предложенным изобретением будет достигнуто повышение надежности реактора при производстве переменного количества синтез-газа и будут устранены непроизводительные потери по утилизации тепла и воды, подаваемой для защиты стенок реактора.

Высокотемпературный реактор с мелкодисперсным распылом воды, включающий корпус с водяной магистралью и с двухслойными металлическими водоохлаждаемыми стенками и внутренней полостью, кольцевые коллекторы, расположенные в верхней и нижней частях корпуса и связанные с водяной магистралью, горелку для ввода горючего и кислорода или парокислородной смеси, расположенную в верхней части корпуса, патрубок для отвода синтез-газа, расположенный в нижней части корпуса, отличающийся тем, что корпус снабжен блоком подачи воды, имеющим в своем составе расположенные по периметру и направленные внутрь корпуса центробежные форсунки и разделяющим внутреннюю полость на верхнюю и нижнюю полости, причем нижняя полость связана с полостью блока подачи воды, а верхняя полость снабжена дополнительным кольцевым коллектором.



 

Похожие патенты:

Настоящее изобретение относится к способу газификации углеродсодержащих материалов с образованием синтез-газа. Способ газификации углеродсодержащих материалов в газогенераторе включает загрузку углеродсодержащих материалов в газогенератор, подачу газа, содержащего молекулярный кислород, подачу метансодержащего газа и необязательно воды; причем общее количество подаваемого кислорода составляет от 0.75 до 3.0 фунт на фунт общего количества углерода, загруженного в газогенератор; при этом в газогенераторе получают золу, содержащую углерод в золе, где указанная зола содержит менее 5% углерода в золе; и образуется газ, содержащий монооксид углерода, диоксид углерода, водород и деготь; который затем обрабатывают при температуре от 954°С до 1927°С в присутствии молекулярного кислорода с образованием сингаза-сырца, содержащего моноокисд углерода, водород и углерод в сингазе.

Настоящее изобретение относится к способу газификации углеродсодержащих материалов с образованием синтез-газа. Способ газификации углеродсодержащих материалов в газогенераторе включает загрузку углеродсодержащих материалов в газогенератор, подачу газа, содержащего молекулярный кислород, подачу газообразного диоксида углерода и необязательно воды; причем общее количество подаваемого кислорода составляет от 0.75 до 3.0 фунт на фунт общего количества углерода, загруженного в газогенератор; при этом в газогенераторе получают золу содержащую углерод в золе, где указанная зола содержит менее 10% углерода в золе; и образуется газ, содержащий монооксид углерода, водород и деготь; который затем обрабатывают при температуре от 954°С до 1927°С в присутствии молекулярного кислорода с образованием сингаза-сырца, содержащего моноокисд углерода, водород и углерод в сингазе.

Изобретение относится к способу переработки углеводородного материала, заключающемуся в загрузке материала в бункер, подаче материала в корпус шнека, регулировке подачи материала приводом шнека, прогреве выходной камеры и поданного материала внутри корпуса шнека, выборе режима газификации поданного материала, регулировке мощности плазматронов и нагревателя, плавлении шлака и переводе его в остеклованную форму, отводе и очистке получаемой газовой смеси.

Изобретение относится к способам газификации твердого топлива и может найти применение в газификаторах прямого дутья путем пиролитического разложения твердых углеродосодержащих топлив.

Изобретение может быть использовано для производства электроэнергии из сырьевого материала, содержащего углерод, более конкретно из угля и/или сухой биомассы. Способ получения электроэнергии из сырьевого материала, содержащего углерод, включает стадии газификации сухого сырьевого материала в газификационном реакторе газовым потоком, содержащим главным образом СО2, при высокой температуре с созданием первого газового потока, включающего главным образом молекулы монооксида углерода; окисления в окислительном реакторе носителями кислорода в окисленном состоянии (МеО) при высокой температуре с созданием второго газового потока, содержащего СО2, и носители кислорода в восстановленном состоянии (Ме); активации в активационном реакторе носителей кислорода в восстановленном состоянии газовым потоком активации, включающим элементы кислорода, с созданием обедненного кислородом газового потока активации; и преобразования части тепловой энергии потока активации в электроэнергию.
Изобретение относится к металлургической газификации твердого топлива и может быть использовано в энергетике, металлургии, переработке промышленных и твердых бытовых отходов.

Изобретение может быть использовано в химической промышленности и энергетике для получения энергии. В реакторе гидрогазификации одновременно нагревают углеродсодержащий материал, водород и воду при температуре и давлении, достаточных для создания потока газообразного продукта, обогащенного метаном и монооксидом углерода.

Изобретение относится к области газохимии, а именно к установке для получения синтез-газа для производства углеводородов. Установка включает магистраль подачи углеводородного сырья, магистраль подачи остаточного газа с установки синтеза углеводородов из синтез-газа, соединенные с блоком адиабатического предриформинга, трубопровод для подачи кислородосодержащего газа, соединенный с блоком автотермического риформинга, связанного с блоком адиабатического предриформинга, и трубопровод для выхода полученной парогазовой смеси, соединенный с выходом блока автотермического риформинга.

Изобретение относится к химической промышленности. Система газификации содержит газификатор (16), состоящий из реакционной камеры (62) и камеры охлаждения (64), скруббер (20), линию перекачки синтетического газа (86), проходящую от камеры охлаждения (64) к скрубберу (20), первого возвратного водопровода (76), проходящего от поддона (90) скруббера (20) к охлаждающему кольцу (72) камеры охлаждения (64), и второго возвратного водопровода (100), проходящего от поддона (90) скруббера (20) к поддону (80) камеры охлаждения (64).
Изобретение относится к способу эксплуатации коксовой печи. Согласно способу возникающий в процессе коксования коксовый газ в виде полезного газа подается на материальную переработку, при этом от коксового газа отделяют водород, а для создания части необходимой для процесса коксования тепловой энергии в качестве горючего газа подается синтез-газ, который получают из ископаемого топлива посредством процесса газификации, при этом в качестве горючего газа используют первую долю полученного синтез-газа, при этом дополнительную долю полученного синтез-газа используют для дальнейшего синтеза с отделенным от коксового газа водородом.

Изобретение относится к способу и системе для образования и обработки синтез-газа с помощью плазменной газификации отходов, включающих муниципальные твердые отходы. Способ образования потока сингаза включает подачу отходов, их плазменную газификацию в условиях горения при подаче кислорода для образования потока сингаза, содержащего в пересчете на сухое вещество примерно до 50000 мг/Нм3 твердых частиц; 5-39 об.% Н2; 5-39 об.% CO; 15-50 об.% CO2; 8-30 об.% N2; 0-2 об.% аргона и 15-50 об.% влаги на сырое вещество. Поток имеет соотношение H2/CO примерно 0,3-2, и по меньшей мере 15 мас.% твердых частиц имеет аэродинамический диаметр частицы не более 1 мкм. Изобретение позволяет получить высококачественный синтез-газ, образованный из плазменно-газифицированных отходов, пригодный для эффективной очистки и производства энергии. 2 н. и 30 з.п. ф-лы, 2 ил., 7 табл., 2 пр.

Изобретение относится к газификатору биомассы с газификацией в перемещающемся потоке и способу газификации с использованием газификатора для получения синтез-газа из биотоплива в присутствии СВЧ-возбужденной плазмы. Газификатор содержит корпус печи, расположенный вертикально и содержащий впуск для топлива, в виде форсунок, выпуск для синтез-газа и выпуск для шлака, систему предварительной обработки топлива, расположенную снаружи корпуса печи и содержащую устройство дробления топлива, отсеивающее устройство, первый топливный контейнер для приема частиц топлива пригодного размера, второй топливный контейнер для приема частиц топлива непригодного размера и питающий бункер, нижняя часть которого соединена с корпусом печи посредством форсунок, и блок мониторинга. Слои микроволновых генераторов плазмы расположены параллельно у зоны газификации корпуса печи, и каждый слой микроволновых генераторов плазмы содержит от 2 до 4 впусков для рабочего газа. Изобретение обеспечивает высокоинтенсивную газификацию биомассы и экономическую эффективность. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к области переработки углеводородного сырья, а конкретно к окислительной конверсии углеводородных газов в синтез-газ. Способ получения синтез-газа путем автотермической парокислородуглекислотной каталитической конверсии углеводородного сырья включает подогрев исходных сырьевых компонентов, очистку углеводородного сырья от серосодержащих соединений, смешение исходных сырьевых компонентов с образованием реакционного газового потока, осевую подачу реакционного потока внутрь трубчатого открытопористого каталитического блока радиальной фильтрации. Реакционный поток подают к первому трубчатому каталитическому элементу блока, выполненному из материала для осуществления процесса парциального окисления, с последующим прохождением частично реформированного потока через коаксиальный трубчатый зазор. Второй трубчатый каталитический элемент блока выполнен из материала для осуществления процесса пароуглекислотной конверсии. При этом на внутренней цилиндрической стенке первого каталитического элемента поддерживают температуру в интервале от 500 до 700°C, а на внутренней - в интервале от 1100 до 1600°C. Также описано устройство для получения синтез-газа. Результатом является повышение селективности и производительности по синтез-газу при прочих равных условиях сравнения по входному сырью. 2 н. и 4 з.п. ф-лы, 1 ил., 5 табл.

Изобретение относится к устройствам для газификации твердых органических топлив и может быть использовано для производства горючего генераторного газа. Техническим результатом является интенсификация процесса газификации при обеспечении высокой теплоты сгорания получаемого генераторного газа и повышение надежности газогенератора. Газогенератор твердого топлива содержит оболочку, внутри которой размещены корпус, патрубки для сбора газа, подачи в газификационную камеру сырья и газифицирующего агента и бункер. В стенке оболочки установлен патрубок для подачи газифицирующего агента в полость оболочки. В корпусе установлена горизонтальная центробежная газификационная камера с последовательно размещенными от центра к периферии зонами сушки, пиролиза, горения, восстановления твердого топлива. Боковая перфорированная стенка газификационной камеры расположена в зоне восстановления твердого топлива. Полость корпуса сообщена с патрубком для сбора газа. В торце газификационной камеры установлены патрубки для подачи в газификационную камеру сырья и газифицирующего агента. Бункер соединен с патрубком для подачи сырья в газификационную камеру. 1 ил.

Изобретение относится к способу и устройству для обработки потока исходного продукта (сырого синтез-газа/сингаза), получаемого в процессе подземной газификации угля (ПГУ). Устройство содержит сепаратор для отделения жидкостей и твердых частиц от сырого сингаза, получаемого в процессе ПГУ, содержащий сосуд, содержащий верхнюю секцию и нижнюю секции; входной канал для подачи газа; выходной канал для газа, расположенный над входным каналом для подачи газа; выходной канал для жидкостей, расположенный под входным каналом для подачи газа; и корзиночный фильтр, размещенный в нижней секции сосуда, при этом нижняя секция сосуда вмещает отделяемые жидкости и твердые частицы; и выводную систему для направления сырого сингаза, содержащего высокую концентрацию кислорода, в атмосферу, при этом выводная система содержит вертикально расположенный сосуд; выходной канал для газа в верхней части сосуда; жидкостное уплотнение в нижней части сосуда; и входной канал для газа для подачи поступающего сингаза в жидкостное уплотнение. Изобретение позволяет сделать поток обработанного продукта ПГУ пригодным для последующего применения, например, для выработки энергии или в химическом производстве. Изобретение можно также использовать для изоляции, обработки и манипуляций с потоком исходного продукта ПГУ, который образуется при поджиге или выводе из эксплуатации подземного газогенератора. 3 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к газификатору биомассы с неподвижным слоем на основе микроволновой плазмы и способу газификации биомассы и твердых отходов в синтез-газ высокого качества. Газификатор содержит вертикально расположенный корпус, блок мониторинга и устройство генерации микроволновой плазмы. На корпусе газификатора обеспечены впуск для материала и топлива, выпуск для полученного газа, впуск для кислорода/пара и выпуск для шлака в нижней его части. Корпус газификатора содержит свободную зону в своей верхней части и зону неподвижного слоя в своей нижней части. Блок мониторинга расположен вблизи выпуска для синтез-газа. Устройство генерации микроволновой плазмы расположено на корпусе газификатора. При осуществлении способа газификации подают биомассу в газификатор через питающее устройство, газифицируют ее в зоне с неподвижным слоем, давая высокотемпературный топочный газ, позволяют топочному газу течь вверх для теплообмена с новоподаваемой биомассой в зоне подачи газификатора и реагировать с паром, распыляемым из нижней форсунки кислорода/пара и с плазменным окислителем, генерируемым первым микроволновым генератором плазмы, с получением синтез-газа, позволяют синтез-газу течь вверх в свободную зону, где смолу в синтез-газе крекируют, а углеводороды в синтез-газе превращают в присутствии плазмы, генерируемой вторым микроволновым генератором плазмы, позволяют коксовым остаткам падать вниз в зону неподвижного слоя и выделять тепловую энергию для поддержания температуры зоны неподвижного слоя, а также выпускают шлаки из выпуска для шлаков и осуществляют мониторинг температуры и компонентов синтез-газа, чтобы поддерживать параметры процесса в заданном интервале. Изобретение обеспечивает газификацию с высокой эффективностью и экономичностью. 2 н. и 7 з.п. ф-лы, 2 ил.

Изобретение относится к области переработки низкокалорийного топлива, утилизации твердых бытовых и промышленных отходов. Низкокалорийное топливо газифицируют в пиролизном реакторе 1. Окружающий воздух предварительно активируют электрическим разрядом с приведенной напряженностью электрического поля в диапазоне E/N=2·10-16-4·10-16 B·см2 в разрядной ячейке 2. Температура активированного воздуха на выходе из разряда не превышает 550-650 K. Газообразные продукты пиролиза 8 подвергают кислородно-паровому реформингу в реформере 4. При проведении реформинга устанавливают отношение кислорода к газообразным продуктам пиролиза равным 0,25-0,33 по объему. Образовавшийся в процессе реформинга синтез-газ сжигают в камере 5 для получения полезного тепла. Часть выделяемого тепла 13 отбирают для подогрева пиролизного реактора 1 и парогенератора 3. Изобретение позволяет увеличить степень извлечения тепла из топлива, уменьшить эмиссию экологически опасных соединений, 1 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики. Биоотходы подают в узел сортировки 10, где их разделяют в зависимости от возможности анаэробного разложения. Подготавливаемый органический субстрат направляют в установку анаэробного сбраживания 6, где происходит генерация горючего биогаза и сопутствующих продуктов, направляемых к потребителям в виде органического удобрения. Отходы, не поддающиеся анаэробному разложению, подвергают обезвоживанию и (или) сушке и гранулированию. Полученные пеллеты подают на склад 13, откуда направляют в газогенератор 8, в котором вырабатывают синтез-газ. Очищенные биогаз и синтез-газ подают в узел топливозамещения 2 для питания когенерационных установок 1, вырабатывающих из них тепловую и электрическую энергии для потребителей. Также для выработки синтез-газа непосредственно в газогенератор 8 подают сухие отходы, не требующие предварительной подготовки. В период пикового увеличения потребления тепловой энергии включают пиковый твердотопливный котел 3, в котором сжигают запасы пеллет. Изобретение позволяет повысить надежность энергообеспечения предприятий агропромышленного комплекса за счет использования автономных энергетических комплексов. 1 ил.

Изобретение относится к способу переработки биомассы в газообразные продукты, в частности к переработке гидролизного лигнина или целлюлозы в синтез-газ, и может быть использовано при утилизации отходов возобновляемого сырья растительного происхождения, в том числе деревообрабатывающей промышленности. Способ переработки биомассы в синтез-газ заключается в том, что биомассу механически смешивают с катализатором, представляющим собой смешанный оксид эмпирической формулы Mo1.0V0.37Te0.2Nb0.12O3 либо каталитическую систему на основе высокодисперсного металла, выбранного из группы, включающей Pt, Pd, Ni, Fe, нанесенного на оксидный носитель, например TiO2 или Fe3O4, способным нагреваться до высоких температур под воздействием СВЧ-излучения, при массовом соотношении биомасса : катализатор в диапазоне 1-10:1 с последующим нагреванием полученной реакционной смеси до температуры 300-340°C под воздействием СВЧ-излучения мощностью до 10 Вт в токе воздуха или кислорода при объемной скорости подачи, равной 500-2500 ч-1. В качестве биомассы используют гидролизный лигнин либо целлюлозу. Технический результат - упрощение способа за счет существенного снижения температуры и проведения процесса без использования добавок инертных СВЧ-поглощающих материалов при низкой мощности СВЧ, высокая конверсия биомассы при высоком выходе качественного синтез-газа с соотношением H2/CO в диапазоне 1,35-1,57. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к устройствам для выработки тепловой и электрической энергии по месту их генерации путем преобразования твердых углеводородных топлив в газообразное топливо за счет осуществления внутрипластовой подземной огневой газификации. Установка содержит газовую турбину, электрогенератор, воздушный компрессор с линией всасывания атмосферного воздуха и линией подачи воздуха, парогенератор с линией питательной воды, газоочиститель с линией подачи газа потребителю, газоотводящие и дутьевые трубы, закрепленные в скважинах. При этом газовая турбина соединена с электрогенератором, воздушным компрессором, парогенератором и при помощи линии отвода газа с газоотводящими трубами. Причем парогенератор соединен с газоочистителем и при помощи линии подачи пара с дутьевыми трубами, а на линии отвода газа и линии подачи пара установлены электроприводные задвижки. При этом установка дополнительно содержит газовый ресивер, линию подачи топливного газа, байпасную трубу, наклонно-горизонтальные трубы, расположенные вне границы зоны сдвижения пород топлива, гибкие трубы, расположенные внутри наклонно-горизонтальных труб, и газовые горелки вторичного розжига газифицируемого топлива. Причем каждая гибкая труба соединена одним концом с газовой горелкой вторичного розжига газифицируемого топлива, установленной с возможностью перемещения, а другим концом с линией подачи топливного газа. При этом внутритрубное пространство наклонно-горизонтальных труб соединено при помощи линии подачи воздуха с выходом нагнетательной стороны воздушного компрессора. Газовый ресивер соединен при помощи байпасной трубы с линией подачи газа потребителю и линией подачи топливного газа, которая соединена с внешней газовой магистралью с электроприводной задвижкой. Электрогенератор выполнен с возможностью осуществления функции стартер-генератора, а на байпасной трубе установлены электроприводные задвижки. Технический результат заключается в повышении эффективности подземной газификации топлива и уменьшении его потерь при аварийном выведении из строя скважин. 1 ил.
Наверх