Способ восстановления проходимости открытого горизонтального ствола скважины

Изобретение относится к ремонту горизонтальных скважин и может быть использовано для восстановления проходимости открытого горизонтального ствола скважины после обвала породы. На устье скважины с горизонтальным стволом собирают компоновку низа бурильной колонны, состоящую снизу вверх из долота, правого патрубка, калибратора, обратного клапана, пропускающего снизу вверх, спускают в скважину компоновку низа на конце колонны бурильных труб до начала интервала открытого горизонтального ствола, создают циркуляцию промывочной жидкости обратной промывкой с расходом 8 л/с и одновременным перемещением колонны бурильных труб со скоростью не более 0,2 м/с относительно ствола скважины с выходом промывочной жидкости по колонне бурильных труб на устье скважины. Перед наращиванием каждой бурильной трубы производят промывку в полуторакратном объеме колонны бурильных труб с расхаживанием компоновки на длину бурильной трубы. В процессе обратной промывки обратный клапан открывается, и шлам из ствола скважины перетекает внутрь колонны бурильных труб выше обратного клапана. При прекращении выхода промывочной жидкости по колонне бурильных труб на устье скважины поднимают колонну труб из скважины, при этом обратный клапан закрывается. По мере подъема колонны труб из скважины производят их очистку от шлама в желобную емкость. Повторяют вышеописанные операции, начиная со сборки компоновки низа бурильной колонны и заканчивая очисткой труб бурильной колонны от шлама, необходимое количество раз до достижения заданного забоя скважины. Повышается надежность и эффективность восстановления проходимости ствола скважины. 3 ил.

 

Изобретение относится к ремонту горизонтальных скважин, в частности может быть использовано для восстановления проходимости открытого горизонтального ствола скважины после обвала породы.

Известен способ промывки буровой скважины (патент RU №1783109, МПК Е21В 21/00, опубл. 23.12.1992), включающий спуск в скважину бурильной колонны с элементом большого диаметра, установленным над долотом, и осуществление промывки скважины. Спуск бурильной колонны производят до подошвы каверны, затем осуществляют подачу жидкости в скважину, проводят промежуточную промывку, создают удар встречных потоков в кольцевом пространстве скважины на уровне расположения каверны периодическими подъемами и спусками бурильной колонны, после чего удаляют шлам из кольцевого пространства скважины промывкой.

Недостатками данного способа являются:

- во-первых, низкая эффективность восстановления проходимости ствола скважины;

- во-вторых, продолжительность и трудоемкость способа, связанные с периодическими подъемами и спусками бурильной колонны;

- в-третьих, требовательность к точности реализации, так как необходимо соблюдать гидравлические условия (расход, давление) для создания удара встречных потоков в кольцевом пространстве скважины.

Также известен способ очистки ствола скважины от породы (Я.М. Расизаде, А.И. Курдачев, А.В. Летицкий, Н.М. Шерстнев. Опыт применения вязкоупругого разделителя для очистки ствола скважины при ее бурении и креплении // РНТС. Бурение. - 1975. - №12. - С. 33), заключающийся в том, что собирают компоновку низа бурильной колонны, состоящую из долота, утяжеленной бурильной трубы (УБТ), расширителя и бурильных труб. Компоновку спускают в скважину, ведут проработку и включают насосы на интенсивную промывку.

Недостатками данного способа являются:

- во-первых, низкая эффективность восстановления проходимости ствола скважины после обвала породы, так как при интенсивной промывке крупные куски (20-50 мм и более) уносятся с забоя и, накапливаясь выше долота, по стволу поступают в зазор между трубами и стенкой скважины, возникают заклинки, затяжки инструмента, заканчивающиеся при обвале породы прихватом и поломкой труб;

- низкая надежность реализации способа, так как при каждом выключении промывки компоновка заклинивается осевшей породой, поднятой интенсивной промывкой выше долота;

- высокая продолжительность реализации способа, так как наличие расширителя в составе компоновки низа бурильной колонны снижает проходку при восстановлении проходимости ствола.

Наиболее близким по технической сущности и достигаемому результату является способ восстановления проходимости ствола скважины после обвала породы (патент RU №2171352, МПК Е21В 21/00, опубл. 27.07.2001), включающий сборку на устье скважины компоновки низа бурильной колонны, состоящей из долота и УБТ, спуск в скважину компоновки на конце колонны бурильных труб, вращение колонны бурильных труб и вымывание шлама (породы) из горизонтального ствола скважины. Спуск компоновки с промывкой ведут до зоны накопления породы и получения посадки, затем отрывают долото от накопленной породы, сообщают вращение и уменьшают количество закачиваемой промывочной жидкости, долотом с “навеса” разрушают крупные куски породы, при возникновении заклинок долото приподнимают над зоной обвала и повторяют процесс разрушения, после прохождения долотом части или всей зоны обвала, не прекращая вращения, включают промывку на максимально возможный расход и, расхаживая компоновку в пределах пройденной зоны, вымывают разрушенный долотом мелкий шлам из скважины при максимальной промывке, процесс ведут до нормального без затяжек посадок прохождения по стволу компоновки.

Недостатки данного способа:

- во-первых, низкая надежность реализации способа, связанная с тем, что при восстановлении проходимости ствола скважины существует высокая вероятность прихвата колонны бурильных труб с долотом из-за наличия в составе компоновки низа бурильной колонны (КНБК) УБТ, «лежащей» на нижней поверхности открытого горизонтального ствола скважины, ввиду того, что УБТ имеет больший наружный диаметр и меньший внутренний диаметр, в связи с чем в скважине в интервале УБТ уменьшается кольцевое сечение и создается высокое гидравлическое сопротивление с последующим шламообразованием и прихватом, а также существует возможность отклонения («ухода в сторону») долота из восстанавливаемого ствола горизонтальной скважины из-за отсутствия жесткости КНБК;

- во-вторых, низкая эффективность восстановления открытого ствола горизонтальной скважины после обвала породы. Это обусловлено тем, что процесс восстановления проходимости ствола скважины проходкой долотом совмещен с промывкой, что эффективно в вертикальной скважине, но имеет низкую эффективность при восстановлении проходимости открытого ствола горизонтальной скважины, так как обрушенную породу (шлам), находящуюся в открытом горизонтальном стволе скважины, практически невозможно вымыть промывкой (прямой, обратной, комбинированной), что объясняется эффектом Бойкотта, т.е. увеличением скорости осаждения шлама в наклонных участках ствола (при кривизне ствола с величинами зенитных углов от 35 до 55°), при этом происходит наиболее интенсивное скольжение шлама, поднятого в горизонтальной части скважины, который, поднимаясь по наклонной части при указанных углах наклона скважины, постепенно оседает на нижней стенке, либо скважины (при прямой промывке), либо колонны труб (при обратной промывке) и при достижении критической массы опускается обратно, образуя при этом пробку и создавая угрозу прихвата;

- в-третьих, нет возможности контроля восстановления проходимости ствола скважины, т.е. технологической операции по шаблонированию ствола скважины, так как при необходимости спуска в скважину после восстановления проходного сечения дополнительной колонны труб, например, нецементируемого перфорированного хвостовика, необходимо произвести шаблонирование ствола скважины под спускаемый в нее хвостовик.

Технической задачей изобретения является повышение надежности и эффективности восстановления проходимости скважины после обвала породы в открытом горизонтальном стволе скважины с возможностью шаблонирования восстановленного проходного сечения горизонтального ствола скважины.

Поставленная техническая задача решается способом восстановления проходимости открытого горизонтального ствола скважины, включающим сборку компоновки низа бурильной колонны - КНБК, состоящей из долота, спуск в скважину компоновки на конце колонны бурильных труб, вращение колонны бурильных труб и вымывание шлама из горизонтального ствола скважины, восстановление проходимости открытого горизонтального ствола скважины с расхаживанием компоновки до нормального без затяжек и посадок прохождения компоновки по стволу скважины.

Новым является то, что на устье скважины с открытым горизонтальным стволом собирают КНБК, состоящую снизу вверх из долота, правого патрубка, калибратора, обратного клапана, пропускающего снизу вверх, затем в скважину спускают КНБК на конце колонны бурильных труб до начала интервала открытого горизонтального ствола, создают циркуляцию промывочной жидкости обратной промывкой с расходом 8 л/с и одновременным перемещением колонны бурильных труб со скоростью не более 0,2 м/с относительно открытого горизонтального ствола скважины с выходом промывочной жидкости по колонне бурильных труб на устье скважины, причем перед наращиванием каждой бурильной трубы производят промывку в полуторакратном объеме колонны бурильных труб с расхаживанием компоновки на длину бурильной трубы, при этом в процессе обратной промывки обратный клапан открывается и шлам из горизонтального ствола скважины перетекает внутрь колонны бурильных труб выше обратного клапана, при прекращении выхода промывочной жидкости по колонне бурильных труб на устье скважины поднимают колонну бурильных труб из скважины, при этом обратный клапан закрывается, по мере подъема колонны бурильных труб из скважины производят очистку труб бурильной колонны от шлама в желобную емкость, аналогично повторяют вышеописанные операции, начиная со сборки компоновки низа бурильной колонны и заканчивая очисткой труб бурильной колонны от шлама, необходимое количество раз до достижения заданного забоя скважины.

На фиг. 1, 2 и 3 показаны схемы реализации предлагаемого способа.

Предлагаемый способ реализуют следующим образом.

На устье скважины с открытым горизонтальным стволом 1 (см. фиг. 1), например, диаметром 142,9 мм собирают компоновку низа бурильной колонны КНБК 2, состоящую снизу вверх из долота 3, правого патрубка 4, например, длиной 5 м, калибратора 5 и обратного клапана 6, пропускающего снизу вверх.

В качестве долота 3, например, применяют шарошечное долото типоразмера 142,9 М-ГАУ R558 с наружным диаметром 142,9 мм, равным диаметру восстанавливаемого открытого горизонтального ствола 1.

В качестве правого патрубка 4 длиной 5 м применяют правый патрубок бурильной трубы ТБЛВ - 73×9,19.

В качестве калибратора 5, например, применяют калибратор КС - 142,9-Т с наружным диаметром 142,9 мм, равным диаметру восстанавливаемого открытого горизонтального ствола 1. Калибратор спиральный (КС) со вставками из твердого сплава предназначен для калибрования ствола скважины и сохранения его диаметра в средних и твердых породах.

В качестве обратного клапана 6, пропускающего снизу вверх, применяют любую известную конструкцию обратного клапана (например, патент RU №43613, МПК F16K 15/03 «Клапан тарельчатый поворотный» опубл. 27.01.2005 в бюл. №3).

Спускают в скважину компоновку низа бурильной колонны 2 на конце колонны бурильных труб 7 до начала интервала открытого горизонтального ствола 1, например, 1350 м, диаметром 142,9 мм с забоем скважины в интервале 1590 м, т.е. открытый горизонтальный ствол 1 скважины завален шламом в интервале 1350-1590 м.

В качестве колонны бурильных труб 7 применяют бурильную колонну труб марки ТБПН 73×9,19.

Создают циркуляцию промывочной жидкости, например, сточной воды плотностью 1100 кг/м3 обратной промывкой, т.е. подачей в кольцевое пространство с расходом 8 л/с, при этом производят одновременное перемещение колонны бурильных труб со скоростью не более 0,2 м/с относительно открытого горизонтального ствола 1 скважины с выходом промывочной жидкости по колонне бурильных труб 7 на устье скважины.

В процессе обратной промывки обратный клапан 6 открывается, под действием напора промывочной жидкости снизу вверх тарелка 8, сжимая пружину (на фиг. 1 и 2 показана условно), отходит от седла обратного клапана 6 и шлам 9 (см. фиг. 1) из кольцевого пространства открытого горизонтального ствола 1 скважины перетекает внутрь колонны бурильных труб 7 (см. фиг. 2) выше обратного клапана 6.

Перед каждым наращиванием колонны бурильных труб 7 производят промывку открытого горизонтального ствола 1 скважины в полуторакратном объеме колонны бурильных труб 7 с трехкратной проработкой в местах затяжек и посадок с расхаживанием компоновки на длину наращиваемой бурильной трубы, т.е. на длину 10 м.

Например, от начала восстановления открытого горизонтального ствола в интервале 1350 м и до прекращения циркуляции промывочной жидкости на устье скважины по колонне бурильных труб 7, например, в интервале 1420 м, т.е. на протяжении 70 м для наращивания колонны бурильных труб 7 применяют бурильные трубы в количестве 7 штук длиной по 10 м каждая.

Определяют объем внутреннего пространства колонны бурильных труб ТБПН 73×9,19, начиная с длины L=1350 м, по формуле

Подставляя значения в формулу (1), получаем:

V1=1,5·[3,14·(0,073-(0,00919 м·2))2/4]·1350 м = 4,75 м3.

Таким образом, перед каждым наращиванием колонны бурильных труб 7 производят промывку в полуторакратном объеме колонны бурильных труб 7, начиная с объема V1=4,75 м3 (в интервале 1350 м), и далее с каждым наращиванием бурильной колонны труб на 10 м доводят объем промывки в одном цикле до объема V1=5,0 м3 (в интервале 1420 м).

После прекращения выхода промывочной жидкости по колонне бурильных труб 7 на устье скважины, например, при достижении долотом 3, как отмечено выше, интервала 1420 м поднимают колонну бурильных труб 7 из скважины, при этом обратный клапан 6 в колонне бурильных труб 7 закрывается (прекращается действие напора промывочной жидкости на тарелку 8, которая под действием возвратной силы пружины садится на седло обратного клапана 6). По мере подъема колонны бурильных труб 7 из скважины производят очистку труб бурильной колонны от шлама 9 в желобную емкость (на фиг. 1 и 2 не показана).

Таким образом, производят первый цикл восстановления открытого горизонтального ствола скважины в интервале 1350-1420 м при забое 1590 м. Повторяют вышеописанные операции, начиная со сборки КНБК 2 и заканчивая очисткой труб бурильной колонны 7 от шлама 9, необходимое количество раз до достижения заданного забоя скважины в интервале 1590 м.

При втором спуске компоновки низа бурильной колонны 2 на колонне бурильных труб 7 производят восстановление проходимости открытого горизонтального ствола скважины, начиная с интервала 1420 м и до прекращения циркуляции на устье по колонне бурильных труб 7, например, в интервале 1510 м, т.е. на протяжении 90 м, при этом применяют бурильные трубы в количестве 9 штук длиной по 10 м каждая.

Подставляя в формулу (1) числовые значения перед каждым наращиванием колонны бурильных труб 7, производят промывку в полуторакратном объеме колонны бурильных труб 7, начиная с объема V2=5,0 м3 (в интервале 1420 м), и далее с каждым наращиванием бурильной колонны труб на 10 м доводят объем промывки в одном цикле до объема V2=5,3 м3 (в интервале 1510 м). Таким образом производят второй цикл восстановления открытого горизонтального ствола скважины в интервале 1420-1510 м при забое 1590 м. При третьем спуске компоновки низа бурильной колонны 2 на колонне бурильных труб 7 производят восстановление проходимости открытого горизонтального ствола скважины, начиная с интервала 1510 м и до прекращения циркуляции на устье по колонне бурильных труб 7, например, в интервале 1590 м, т.е. на протяжении 80 м, при этом применяют бурильные трубы в количестве 8 штук длиной по 10 м каждая.

Подставляя в формулу (1) числовые значения перед каждым наращиванием колонны бурильных труб 7, производят промывку в полуторакратном объеме колонны бурильных труб 7, начиная с объема V3=5,3 м3 (в интервале 1510 м), и далее с каждым наращиванием бурильной колонны труб на 10 м доводят объем промывки в одном цикле до объема V3=5,56 м3 (в интервале 1590 м). Таким образом производят третий цикл восстановления открытого горизонтального ствола скважины в интервале 1510-1590 м при забое 1590 м. В результате достигается полное восстановление открытого ствола скважины в интервале 1350-1590 м.

Повышается надежность реализации способа. Это связано с тем, что при восстановлении проходимости горизонтального ствола скважины резко снижается вероятность прихвата колонны бурильных труб из-за отсутствия в КНБК 2 УБТ, являющейся источником высокого гидравлического сопротивления, что также позволяет сохранить сечение кольцевого пространства открытого горизонтального ствола скважины, а также за счет размещения в составе КНБК 2 за долотом 3 правого патрубка 4 и калибратора 5, придающих ей жесткость, что полностью исключает возможность отклонения («ухода в сторону») долота из восстанавливаемого горизонтального ствола 1 скважины.

Далее в скважину на конце колонны бурильных труб 7 (см. фиг. 2) спускают сферическую воронку 10, например, диаметром 127 мм с шаблоном 11 до начала интервала (1350 м) открытого горизонтального ствола 1 диаметром 142,9 мм.

В качестве шаблона применяют три трубы наружным диаметром, равным наружному диаметру перфорированного хвостовика (на фиг. 1 и 2 не показан), который необходимо спустить в восстановленный открытый горизонтальный ствол 2 (см. фиг. 3) скважины, например, диаметром 114 мм.

В скважину спускают сферическую воронку 10 с шаблоном 11 до начала интервала 1350 м открытого горизонтального ствола, затем производят прямую промывку с расходом 12 л/с одновременным перемещением колонны бурильных труб со скоростью не более 0,5 м/с относительно открытого горизонтального ствола скважины по всей ее длине (от 1350 м до 1500 м).

Перед наращиванием каждой бурильной трубы производят промывку скважины в объеме колонны бурильных труб с расхаживанием компоновки на длину бурильной трубы (10 м).

Определяют объем внутреннего пространства колонны бурильных труб ТБПН 73×9,19, начиная с длины L=1350 м, по формуле

Подставляя в формулу (2), получаем

V1=[3,14·(0,073-(0,00919 м·2))2/4]·1350 м = 3,17 м3.

Перед каждым наращиванием колонны бурильных труб 6 производят промывку в полуторакратном объеме колонны бурильных труб 6, начиная с объема V4=3,17 м3 (в интервале 1350 м), и далее с каждым наращиванием бурильной колонны труб на 10 м доводят объем промывки в одном цикле до объема V4=3,7 м3 (в интервале 1590 м).

Не допускается посадка колонны бурильных труб 7 в скважине более 5 т от собственного веса, например, при собственном весе колонны бурильных труб 7, например, равном 20 т, не допускается разгрузка колонны бурильных труб 7 менее 15 т, при этом контроль ведут по индикатору веса, установленному на устье скважины.

По окончании промывки открытого горизонтального ствола 2 скважины извлекают колонну бурильных труб 7 со сферической воронкой 10 и шаблоном 11 из скважины.

Предлагаемый способ имеет высокую эффективность восстановления открытого горизонтального ствола скважины после обвала породы, так как процесс восстановления проходимости горизонтального ствола скважины разделен на два этапа:

1) проходка (проработка) открытого горизонтального ствола скважины долотом с обратным клапаном, она позволяет восстановить проходимость открытого горизонтального ствола скважины в тех случаях, когда обычной промывкой (прямой, обратной, комбинированной) извлечь шлам из открытого горизонтального ствола скважин невозможно. Это достигается за один или несколько этапов (в зависимости от глубины забоя и твердости шлама в открытом горизонтальном стволе скважины), при этом за счет обратной промывки шлам из горизонтального ствола скважины перетекает в колонну бурильных труб, поднимают колонну бурильных труб со шламом из скважины и сливают шлам из колонны бурильных труб в желобную емкость;

2) промывка открытого горизонтального ствола скважины после восстановления его проходимости с совмещением технологической операции по шаблонированию, при этом осуществляется прямая промывка путем подачи промывочной жидкости в колонну бурильных труб с выносом частиц шлама по кольцевому пространству.

Предлагаемый способ позволяет проконтролировать восстановление проходимости открытого горизонтального ствола скважины путем проведения шаблонирования открытого горизонтального ствола скважины, а при необходимости после восстановления проходного сечения открытого горизонтального ствола скважины произвести спуск в открытый горизонтальный ствол скважины дополнительной колонны труб, например, нецементируемого перфорированного хвостовика.

Предлагаемый способ позволяет повысить надежность и эффективность реализации способа при восстановлении проходимости скважины после обвала породы в открытом горизонтальном стволе скважины и имеет возможность шаблонирования восстановленного проходного сечения горизонтального ствола скважины.

Способ восстановления проходимости открытого горизонтального ствола скважины, включающий сборку компоновки низа бурильной колонны, состоящей из долота, спуск в скважину компоновки на конце колонны бурильных труб, вращение колонны бурильных труб и вымывание шлама из горизонтального ствола скважины, восстановление проходимости открытого горизонтального ствола скважины с расхаживанием компоновки до нормального без затяжек и посадок прохождения компоновки по стволу скважины, отличающийся тем, что на устье скважины с открытым горизонтальным стволом собирают компоновку низа бурильной колонны, состоящую снизу вверх из долота, правого патрубка, калибратора, обратного клапана, пропускающего снизу вверх, затем в скважину спускают компоновку низа бурильной колонны на конце колонны бурильных труб до начала интервала открытого горизонтального ствола, создают циркуляцию промывочной жидкости обратной промывкой с расходом 8 л/с и одновременным перемещением колонны бурильных труб со скоростью не более 0,2 м/с относительно открытого горизонтального ствола скважины с выходом промывочной жидкости по колонне бурильных труб на устье скважины, причем перед наращиванием каждой бурильной трубы производят промывку в полуторакратном объеме колонны бурильных труб с расхаживанием компоновки на длину бурильной трубы, при этом в процессе обратной промывки обратный клапан открывается и шлам из горизонтального ствола скважины перетекает внутрь колонны бурильных труб выше обратного клапана, при прекращении выхода промывочной жидкости по колонне бурильных труб на устье скважины поднимают колонну бурильных труб из скважины, при этом обратный клапан закрывается, по мере подъема колонны бурильных труб из скважины производят очистку труб бурильной колонны от шлама в желобную емкость, аналогично повторяют вышеописанные операции, начиная со сборки компоновки низа бурильной колонны и заканчивая очисткой труб бурильной колонны от шлама, необходимое количество раз до достижения заданного забоя скважины.



 

Похожие патенты:

Группа изобретений относится к области нефтегазодобывающей промышленности, в частности к ликвидации осложнений при бурении скважин. Способ включает циклический процесс бурения скважины бурильным инструментом под кондуктор с промывкой водой, без циркуляции с остановками на набор воды в приемные амбары.

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для промывки горизонтальных скважин с открытым стволом. Устройство содержит корпус с отводящим и подводящим каналами, выполненными тангенциальными, насадку в отводящем канале, установленный с возможностью свободного вращения в корпусе центрированный ротор с чередующимися пазами и выступами, взаимодействующий с потоком жидкости.

Изобретение относится к ремонту горизонтальных скважин и может быть использовано для восстановления проходимости открытого горизонтального ствола скважины после обвала породы.

Группа изобретений относится к операциям нагнетания жидкостей с поверхности скважины в ее ствол при высоких давлениях, таким как, например, гидравлический разрыв пласта, включающий разделение жидкости на чистый поток, содержащий минимальное количество твердых материалов, и грязный поток, содержащий твердый материал в жидком носителе.
Способ изоляции зоны поглощения при бурении скважины включает спуск в скважину компоновки, содержащей пакер и бурильные трубы, посадку пакера, продавливание под пакер изолирующих материалов, проведение технологической выдержки для схватывания цемента, срыв пакера, контроль изоляции, подъем компоновки из скважины, разбуривание цементного моста и продолжение бурения скважины.

Насос предназначен для промывки скважин. Насос содержит конусообразный корпус, внутри которого параллельно расположены канал подвода активной жидкостной среды и активное сопло, сопряженное через боковой паз с камерой смешения, соединенной с трубопроводом отвода смеси сред, при этом внизу конусообразного корпуса установлена функциональная насадка, выполненная в виде цилиндрического корпуса насадок, горизонтально разделенного на две части, при этом верхняя часть непосредственно примыкает к конусообразному корпусу и через наклонные патрубки разных диаметров соединена с активным соплом и каналом подвода активной жидкостной среды, а нижняя часть, равная основному диаметру конусообразного корпуса, содержит по четыре радиальные насадки, расположенные по периметру, и одну насадку, расположенную по оси функциональной вставки.
Изобретение относится к нефтяной промышленности и может найти применение при бурении скважины. Способ включает вращение и осевую подачу компоновки с долотом и подачу промывочной жидкости через внутреннюю полость компоновки на забой, в зоне поглощения промывочной жидкости перевод подачи жидкости в затрубное пространство над забойным двигателем через переводник путем его активации.

Группа изобретений относится к устройству и способу бурения с непрерывным вращением бура и с непрерывной подачей бурового раствора. Устройство для буровой установки, которая содержит первую буровую машину с верхним приводом, установленную с возможностью вертикального перемещения вдоль направляющей, и вторую буровую машину, установленную между первой буровой машиной и скважиной с возможностью вертикального перемещения вдоль направляющей независимо от первой буровой машины с верхним приводом и снабженную поворотным столом, способным выдерживать вес бурильной колонны, приводом вращения, обеспечивающим непрерывное вращение бурильной колонны, и жидкостной камерой, способной обеспечивать жидкостное соединение между концом бурильной колонны и блоком подачи бурового раствора, при этом жидкостная камера снабжена отверстиями для бурильной колонны, содержащими устройства, которые могут закрывать отверстия для бурильной колонны с обеспечением непроницаемости для жидкости.

Изобретение относится к строительству и переработке (обезвреживанию) отходов бурения совместно со вторичными отходами термической утилизации нефтешламов золошлаковыми смесями, с получением дорожно-строительных композиционных материалов.

Группа изобретений относится к системе и способу повышения скорости бурения за счет использования вибрации бурильной колонны. Технический результат заключается в повышении скорости бурения, устойчивости и надежности системы, в снижении неблагоприятного влияния колебания давления на буровое долото, в обеспечении безопасности конструкции, в повышении давления нагнетания бурового раствора.

Группа изобретений относится к горной промышленности, а именно к очистке ствола скважины при бурении, преимущественно ее горизонтальных участков. При осуществлении способа в процессе бурения движение потока промывочной жидкости в затрубном пространстве создают путем «активации его винтового движения», посредством энергии вращения трубы. При этом профилактику выпадения шлама и вынос его частиц в верхнюю часть сечения затрубного пространства осуществляют действием центробежной силы «активированного винтового движения потока промывочной жидкости в затрубном пространстве». Наружная поверхность трубы для осуществления способа выполнена винтовой с тремя «активаторами винтового движения, технологически выполненными заодно с ее телом, в виде расположенных с одинаковыми угловыми интервалами по ее наружной поверхности, в поперечном сечении в форме полукруглых профилей, каждый из которых при вершине выполнен в виде «винтового опорного пояса», с опорным профилем, совмещаемым с профилем нижней стенки горизонтальных участков ствола скважины. При этом величину радиуса полукруглого профиля «активатора винтового движения потока промывочной жидкости в затрубном пространстве» соответствующей трубы определяют по расчетной формуле. Повышается эффективность очистки ствола скважины. 2 н.п. ф-лы, 9 ил.
Изобретение относится к строительству скважин и может найти применение при бурении скважины через зоны поглощения промывочной жидкости. Техническим результатом является изоляция широкого интервала поглощения. При строительстве скважины бурят скважину со вскрытием интервала поглощения. Способ изоляции зоны поглощения включает спуск в скважину колонны бурильных труб с открытым концом, не доходя до забоя, промывку забоя, перекрытие затрубного пространства. В колонну бурильных труб заливают глинистый раствор плотностью 1,12-1,16 г/см3 с наполнителем в виде улюка и кордного волокна 10-30% от объема раствора, буферную жидкость, гельцемента в виде смеси цемента с 7-9% глинопорошка, затворенного на технической воде с добавлением 1,5-2,5% хлорида кальция, и техническую воду. Открывают затрубное пространство. По колонне бурильных труб производят заливку технической воды частично с вращением и частично с расхаживанием колонны бурильных труб. При этом не допускают погружения колонны бурильных труб ниже начально установленной глубины конца. Поднимают колонну бурильных труб на глубину выше уровня залитых объемов и вымывают остатки цементного раствора из колонны бурильных труб. Закрывают затрубное пространство. По колонне бурильных труб продавливают техническую воду. Проводят технологическую выдержку для схватывания и твердения цемента. Спускают открытый конец колонны бурильных труб и нащупывают голову цементного моста. Повторяют операции на новой глубине столько раз, сколько достаточно для создания общего цементного моста не менее интервала зоны поглощения. Поднимают из скважины колонну бурильных труб. Разбуривают цементный мост, добуривают скважину до проектной глубины, обсаживают и цементируют затрубное пространство.

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для очистки ствола наклонно направленных скважин. Устройство содержит лопастные центраторы, установленные между соединениями бурильных труб на расстоянии 25-50 метров друг от друга. Каждый лопастной центратор состоит из цилиндрического корпуса с концевыми резьбовыми соединениями, лопастей и щеток. Передняя поверхность лопастей выполнена черпаковидной формы. Щетки представляют собой ряд металлических щетин, собранных в пучки и жестко закрепленных на корпусе лопастного центратора, например, путем зачеканивания. Щетки по высоте выступают над лопастями. Щетки установлены за боковой поверхностью каждой лопасти. Повышается качество очистки скважины, предупреждаются осложнения в процессе бурения. 3 ил.
Наверх