Устройство для измерения количества принудительно осаждаемых частиц аэрозоля в точке торможения потока

Изобретение относится к устройствам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды, а также для контроля аварийных выбросов. Устройство для измерения количества принудительно осаждаемых частиц аэрозоля в точке торможения потока содержит отборник аэрозоля, ускоряющий канал, на выходе которого в измерительной камере установлен сенсор с рабочей поверхностью, подключенный к блоку обработки информации, а измерительная камера соединена с отборником воздуха. При этом измерительная камера снабжена планкой для торможения потока частиц, а сенсор снабжен концентратором, выполненным в виде конического отверстия в планке, расположенной перпендикулярно потоку, и выполнен из полупроводника, меняющего свои резистивные свойства пропорционально количеству осаждаемого аэрозоля. Техническим результатом является повышение точности измерений концентрации аэрозоля в режиме реального времени. 1 з.п. ф-лы, 1 ил.

 

Устройство для измерения количества принудительно осаждаемых частиц аэрозоля в точке торможения потока содержит полупроводниковый кондуктометрический сенсор, что позволяет в режиме реального времени контролировать количество принудительно осаждаемых частиц аэрозоля в районе точки торможения потока, например, в каскадном импакторе. Такой результат достигается за счет того, что, как установлено авторами, полупроводниковые кондуктометрические сенсоры способны изменять свою проводимость не только при попадании на их чувствительную поверхность молекул газов, но и частиц аэрозоля.

Техническое решение относится к устройствам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды, а также для контроля аварийных выбросов.

В настоящий момент существует несколько способов контроля концентраций осаждаемого аэрозоля. Наиболее распространенным и признанным в качестве стандарта в Европе, в частности в России, Великобритании, Франции, Бельгии и др., является гравитационный способ, суть которого заключается в выделении из аэрозольного потока частиц и определения их массы. Выделение частиц, как правило, осуществляется через пропускание проб воздуха через различные фильтры, при этом по массе частиц, осажденных на фильтрах, определяют концентрацию С аэрозоля в воздухе по следующей формуле:

C = m Q τ ,

где m - масса осажденных частиц, мг;

Q - объемный расход воздуха через пробоотборник, м/с;

τ - время отбора пробы, с.

Основные преимущества этого способа - получение массовой концентрации веществ и отсутствие влияния их химического и дисперсного состава на результаты измерений. К недостаткам относятся большая трудоемкость процесса измерения и отсутствие возможности контроля изменения концентрации аэрозоля в режиме реального времени.

Известно устройство для измерения осаждаемых частиц аэрозоля, состоящее из полупроводникового сенсора [1]. Данный сенсор реагирует на дым, частицы которого осаждаются на поверхности чувствительного пленочного слоя, изменяя его электрическое сопротивление. Недостатком данного устройства является невозможность измерения концентрации принудительно осаждаемых частиц аэрозоля. Устройство является только сигнализатором дыма.

Известно устройство для измерения количества принудительно осаждаемых частиц аэрозоля в точке торможения потока, содержащее отборник аэрозоля, ускоряющий канал, на выходе которого установлен сборник частиц аэрозоля, а измерительная камера через выходной канал соединена с побудителем расхода [2]. Недостатком данного устройства является невозможность измерения количества принудительно осаждаемых частиц аэрозоля в реальном времени, сложность обработки результатов и невысокая точность полученных результатов.

Наиболее близким к заявляемому изобретению является устройство для измерения количества принудительно осаждаемых частиц аэрозоля в точке торможения потока, содержащее отборник аэрозоля, ускоряющий канал, на выходе которого в измерительной камере установлен сенсор с рабочей поверхностью, подключенный к блоку обработки информации, а измерительная камера через канал соединена с отборником воздуха. Недостатками данного устройства являются невысокая точность измерения, плохая селективность и невозможность проводить измерения в режиме реального времени.

Задача создания устройства состояла в повышении точности измерений концентрации аэрозоля в режиме реального времени.

Поставленная задача решается тем, что устройство для измерения количества принудительно осаждаемых частиц аэрозоля в точке торможения потока содержит: отборник аэрозоля, ускоряющий канал, на выходе которого в измерительной камере установлен сенсор с рабочей поверхностью, подключенный к блоку обработки информации, а измерительная камера соединена с отборником воздуха, и согласно изобретению измерительная камера снабжена плоской планкой с верхней и нижней поверхностями и соединена с отборником воздуха, отличающееся тем, что планка имеет коническое отверстие, направленное к сенсору, закрепленному в нем, причем верхняя поверхность планки и чувствительная поверхность сенсора предназначены для принудительного осаждения аэрозоля, а сенсор выполнен из полупроводника, меняющего свои резистивные свойства пропорционально количеству осаждаемого аэрозоля.

Кроме того, площадь нижней части концентратора равна или меньше площади рабочей поверхности сенсора, что позволяет повысить чувствительность сенсора.

Изобретение иллюстрируется чертежом, где на фигуре изображена структурная схема устройства для измерения количества принудительно осаждаемых частиц аэрозоля в точке торможения потока: 1 - отборник аэрозоля; 2 - ускоряющий канал; 3 - измерительная камера; 4 - полупроводниковый сенсор; 5 - плоская планка; 6 - верхняя поверхность планки 5, на которой принудительно осаждается аэрозоль; 7 - нижняя поверхность планки 5; 8 - коническое отверстие, в котором закреплен сенсор 4; 9 - выходной канал; 10 - побудитель расхода; 11 - блок обработки информации; 12 - частицы аэрозоля, принудительно осажденные на чувствительные поверхности сенсора 4, который связан с блоком обработки информации 11.

Устройство работает следующим образом. Отборник аэрозоля (1) забирает атмосферный воздух, содержащий аэрозоль, который под действием разрежения, создаваемого побудителем расхода (10), через ускоряющий канал (2) подается в измерительную камеру (3), откуда принудительно осаждаются на чувствительную поверхность полупроводникового кондуктометрического сенсора (4), закрепленного в коническом отверстии (8) плоской планки (5). Как только частицы аэрозоля осаждаются на чувствительную поверхность сенсора (4), молекулы аэрозоля вступают в реакцию с накопленным на поверхности сенсора (4) атмосферным кислородом, что приводит к изменению резистивных свойств сенсора (4) пропорционально количеству осаждаемого аэрозоля (12). Сигналы, получаемые от сенсора, пропорциональны массе осевших частиц аэрозоля, поступают в блок обработки информации (11).

Размещение сенсора (4) в районе точки торможения потока позволяет существенно увеличить его чувствительность к концентрации аэрозоля. Еще больше повысить чувствительность позволяет закрепление сенсора (4) в точке торможения потока - коническом отверстии (8) планки (5). Так как чувствительная поверхность полупроводникового кондуктометрического сенсора (4) существенно меньше, чем габариты его корпуса, то при классическом осаждении частиц аэрозоля лишь их незначительная часть попадет на его чувствительную поверхность. При расположении сенсора, как показано на фигуре, частицы аэрозоля осаждаются не на поверхность планки (5), а попадают в сужающийся канал (конусное отверстие в планке (5)), таким образом, увеличивая количество частиц, осаждаемых на поверхности чувствительного элемента сенсора (4). Благодаря отличительным особенностям выполнения устройства для измерения количества принудительно осаждаемых частиц аэрозоля в точке торможения потока, а именно, использования полупроводникового сенсора, чувствительность датчика аэрозоля повысилась в 5-10 раз. То, что сенсор закреплен в коническом отверстии планки, расположенной перпендикулярно потоку аэрозольных частиц, позволило повысить чувствительность еще в 1,5-2 раза. То, что площадь нижней части конического отверстия концентратора равна или меньше площади рабочей поверхности сенсора, позволяет проводить осаждение частиц только на чувствительную поверхность сенсора, что также повышает его чувствительность.

Список литературы

1. Патент США №5382341. Способ детектирования дыма (аэрозоля).

2. Патент РФ №2296975, 10.04.2007, МПК G01N 15/02. «Импактор».

3. Патент РФ №2219523, 20.12.2003, МПК G01N 15/02. «Устройство для измерения массы и счетной концентрации частиц в газовом потоке».

1. Устройство для измерения количества принудительно осаждаемых частиц аэрозоля в точке торможения потока, содержащее отборник аэрозоля, ускоряющий канал, на выходе которого в измерительной камере установлен сенсор с чувствительной поверхностью, электрически подключенный к блоку обработки информации, а измерительная камера снабжена плоской планкой с верхней и нижней поверхностями и соединена с отборником воздуха, отличающееся тем, что планка имеет коническое отверстие, направленное к сенсору, закрепленному в нем, причем верхняя поверхность планки и чувствительная поверхность сенсора предназначены для принудительного осаждения аэрозоля, а сенсор выполнен из полупроводника, меняющего свои резистивные свойства пропорционально количеству осаждаемого аэрозоля.

2. Устройство по п. 1, отличающееся тем, что площадь нижней части конического отверстия равна или меньше площади рабочей поверхности сенсора.



 

Похожие патенты:

Изобретение относится к исследованию аэрозолей жидкостей различной вязкости и предназначено для определения дисперсных характеристик аэрозоля в широком диапазоне размеров частиц, в том числе нанометров.

Изобретение относится к исследованию физико-механических свойств сталей и сварных соединений и может применяться в различных отраслях промышленности. Сущность: по окончании процесса воздействия на образец ударным изгибом предварительно готовят микрошлиф образца.

Предложенный способ позволяет измерять распределение по фракциям и концентрации твердых и жидких частиц аэрозоля в интервале размеров частиц: от 0,8 мкм до 2 мкм, от 2 мкм до 5 мкм, от 5 мкм до 10 мкм и более 10 мкм при помощи полупроводниковых кондуктометрических сенсоров по изменению проводимости.

Изобретение относится к области исследования многофазных потоков, в частности к технике определения параметров твердой, жидкой и газообразной фаз потока оптическими средствами, и может быть использовано для определения концентрации и массовой плотности дисперсной фазы в пространстве, а также оценивать распределение частиц дисперсной фазы по размерам и ослабление света в мутной среде.

Изобретение относится к области полупроводниковых технологий и более конкретно к способу мультиспектральной визуализации для измерения критического размера (КР) наноструктурированных объектов и к устройству, в котором осуществляется данный способ.

Изобретение относится к области метеорологии, а более конкретно - к способам определения характеристик загрязнения атмосферы, и может использоваться, например, для измерения размеров частиц атмосферного аэрозоля.

Изобретение относится к области техники автоматизации измерений, при анализе взвешенных наночастиц. Способ определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа и введении их в перенасыщенные пары низколетучего укрупняющего вещества.

Изобретение относится области, связанной с анализом взвешенных частиц. При реализации заявленного способа происходит освещение потока частиц пучком когерентного излучения, который разделяется на два пучка опорный и объектный и регистрации голограммы изображений частиц, по которым и судят о размерах последних.

Изобретение относится к измерительной технике. Способ определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое заключается в том, что формируют видимую область каждой частицы, путем выделения ее на растре видеоизображения от соответствующего ей максимума интенсивности отраженного излучения до ближайших к нему минимумов.

Изобретение относится к измерительной технике, а именно к оптическим методам измерения параметров несферических дисперсных частиц, взвешенных в жидкости. Способ заключается в измерении зависимостей интенсивности рассеянного излучения от времени при нескольких положениях поляризационного анализатора, промежуточных между положением, в котором пропускается излучение с линейной поляризацией, совпадающей с поляризацией возбуждающего излучения (VV), и положением, в котором пропускается излучение с поляризацией, перпендикулярной поляризации возбуждающего излучения (VH).

Изобретение относится к области оптических методов измерения физико-химических характеристик аэрозольных сред и может быть использовано при разработке лидарных комплексов для дистанционного контроля дисперсного состава аэрозольных облаков стойких токсичных химикатов (ТХ) при возникновении запроектных аварий в местах хранения и уничтожения химического оружия (УХО) и на других химически опасных объектах. В способе проводится зондирование полидисперсного аэрозольного облака ТХ многочастотным лазерным излучением ультрафиолетового, видимого и инфракрасного диапазонов спектра и регистрируются интенсивности сигналов обратного упругого аэрозольного рассеяния. В процессе хранения ТХ осуществляется контроль их оптических констант (коэффициента преломления и показателя поглощения). По результатам спектральных измерений создается база данных характеристик аэрозольного рассеяния ТХ на основе многопараметрических рядов, включающих относительные характеристики обратного аэрозольного рассеяния с использованием инструментально измеренных значений мнимой и действительной частей комплексного показателя преломления ТХ, а также медианного диаметра и дисперсии распределения логарифмически нормального закона распределения аэрозоля ТХ по дисперсному составу. При этом контроль дисперсного состава аэрозолей ТХ осуществляют в рамках теории распознавания образов по минимальному значению меры близости сигналов аэрозольного рассеяния, полученных в эксперименте с помощью дистанционного средства, и данных многопараметрических рядов в составе базы данных средства локации. Изобретение обеспечивает дистанционный контроль размеров тонкодисперсных аэрозолей стойких ТХ с логарифмически нормальным законом распределения частиц по дисперсному составу для оценки масштабов и последствий аварийных выбросов ТХ на объектах УХО. 3 табл.

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Устройство анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами включает кювету с чистым маслом, измерительный канал анализа угарных частиц, расположенный на высоте минимального уровня масла в картере, и измерительный канал анализа металлических частиц, расположенный внизу масляного поддона картера двигателя. Также устройство включает лазер в качестве источника зондирующего излучения, три смотровых окна, три светоделителя (полупрозрачных зеркала), световую ловушку, три объектива, датчик температуры и три ультразвуковых излучателя каналов анализа угарных, металлических частиц. Кроме того, устройство также включает эталонный канал, усилитель, четыре аналого-цифровых преобразователя, цифроаналоговый преобразователь, генератор ультразвуковых колебаний, коммутатор, электронно-вычислительную машину. Также устройство дополнительно содержит три ПЗС-матрицы и три DSP-процессора. Техническим результатом является повышение точности измерения параметров угарных и металлических частиц, а также повышение информативности данных для оценки концентрации, размера и формы взвешенных металлических и угарных дисперсных частиц, находящихся в масле, в частности дает возможность контролировать качество работы двигателя, оставшийся ресурс работы масла до его замены. 1 ил.

Изобретение относится к технике измерений, где необходимо проводить оперативный анализ качества моторного масла. Способ анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами включает зондирование исследуемой дисперсной среды пучком маломощного лазерного и ультразвукового излучения, регистрацию рассеянного и отраженного дисперсными частицами излучения, эталонный канал с чистым моторным маслом и два канала контроля в исследуемом объеме картера двигателя. При этом канал контроля металлических частиц располагается внизу масляного поддона картера двигателя и канал контроля угарных частиц, располагающийся на высоте минимального уровня масла в картере, а также три ультразвуковых излучателя, частота которых зависит от температуры масла, при этом по получаемым при помощи ПЗС-матриц изображениям рассеянного от исследуемых сред светового пучка и по соотношениям между параметрами изображений для эталонного канала и канала контроля металлических частиц. Кроме того, по параметрам изображений эталонного канала и канала контроля угарных частиц судят о степени и характере загрязненности моторного масла, размерах и формах дисперсных частиц. Технический результат - повышение информативности данных для оценки концентрации, размера и формы взвешенных металлических и угарных дисперсных частиц, находящихся в масле. 1 ил.

Изобретение относится к области исследования частиц с помощью ИК спектроскопии, в частности к методам экспресс-анализа полимерных композитов. В способе определения ориентации анизометричных частиц наполнителя в объеме полимерной матрицы при выполнении условия |nМ-nН|>0, где nМ и nН - показатели преломления матрицы и наполнителя соответственно, производится регистрация ИК спектров пропускания при облучении композитов под разными углами источником ИК излучения. Далее, преобразованием полученных спектров в кривые распределения частиц наполнителя по размерам и идентификацией экстремумов кривых распределения частиц наполнителя по размерам определяют угол ориентации частиц в объеме полимерной матрицы. Техническим результатом является разработка ИК спектроскопического экспресс-способа определения ориентации анизометрических частиц наполнителя в объеме полимерной матрицы. 2 табл., 4 ил.

Изобретение относится к измерительной технике, в частности к способам определения размеров частиц в аэрозольных облаках, и может быть использовано в целях охраны окружающей среды и маскировочных мероприятий. Оптический способ дистанционного измерения радиусов частиц в аэрозольных облаках заключается в том, что в течение времени существования аэрозольного облака, когда оно еще регистрируется на фоне неба, с использованием цифрового видеорегистратора измеряют оптическую плотность облака. Далее вычисляют нормированную оптическую плотность облака, которая уменьшается за счет выпадения сначала частиц больших радиусов. Затем измеряют среднюю высоту аэрозольного облака, рассчитывают промежутки времени, за которые в выбранных градациях выпадают частицы соответствующих радиусов, и распределение аэрозольных частиц по размерам определяют по попаданию точки пересечения линий времени выпадения частиц и нормированной оптической плотности облака в ту или иную градацию на номограмме. Техническим результатом является дистанционное определение закона распределения частиц по размерам в аэрозольных облаках в оптическом диапазоне электромагнитного спектра. 1 табл., 1 ил.

Изобретение относится к области исследования частиц наполнителя в объеме полимерной матрицы с помощью ИК спектроскопии, в частности к методам экспресс-анализа анизометрии полимерных композитов методом Фурье-ИК спектроскопии. ИК спектроскопический способ определения анизометрии частиц наполнителя в объеме полимерной матрицы заключается в последовательной регистрации ИК спектров пропускания образцов, состоящих из полимерной матрицы и наполнителя, причем , где nМ и nН - соответственно показатели преломления матрицы и наполнителя, при повороте образца во фронтальной и/или поперечной плоскостях. Преобразование полученных спектров в кривые распределения частиц наполнителя по размерам и идентификация их экстремумов позволяет определить анизометрию частиц наполнителя в полимерной матрице. Техническим результатом является разработка ИК спектроскопического экспресс-способа определения анизометрии частиц наполнителя в объеме полимерной матрицы. 13 ил., 1 табл.

Изобретение относится к области метеорологии и касается способа определения дисперсионного состава аэрозоля. При проведении измерений поляризованное излучение разделяют и одну из частей отклоняют и измеряют. Другую часть поляризованного излучения направляют на области, не пропускающие направленное поляризованное излучение, фокусируют излучение в счетном объеме, находящемся перед одной из областей, и измеряют излучение за этой областью, пропускающей излучение, рассеянное в счетном объеме. По измеренному излучению определяют размер частиц аэрозоля в счетном объеме. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к измерительной технике, может быть использовано для определения диаметра ферромагнитных частиц и объемной доли твердой фазы магнитной жидкости. Способ определения диаметра частиц и объемной доли твердой фазы магнитной жидкости, включающий в себя этапы, на которых осуществляют измерения при различных значениях внешнего магнитного поля, при этом измеряют вязкое трение, а диаметр частиц и объемную долю твердой фазы магнитной жидкости рассчитывают путем нахождения минимума функционала где Нi– значения напряженности магнитного поля, – значения вязкого трения, определенные экспериментально, – зависимость вязкого трения от параметров магнитной жидкости и напряженности магнитного поля; d –диаметр частиц, φ – объемная доля твёрдой фазы; α и β – числовые коэффициенты. Технический результат – сокращение времени измерений. 2 ил.

Изобретение относится к области метеорологии. Способ аспирационной оптической спектрометрии аэрозоля включает направление поляризованного излучения на задерживающую область, перед которой его экранируют. Направленное излучение фокусируют в счетном объеме, находящемся перед экраном, и измеряют излучение за областью, задерживающей направленное поляризованное излучение и пропускающей излучение, рассеянное в счетном объеме. Размер частицы дисперсной среды в счетном объеме определяют по измеренному излучению. Технический результат заключается в повышении точности определения дисперсного состава аэрозоля. 1 ил.

Способ предназначен для автоматического анализа состава пульпы в операциях измельчения и флотации при обогащении полезных ископаемых и может быть использован для контроля состава гетерофазных потоков в химии и металлургии. Осуществляют отбор из потока пульпы и подсушивание до заданной стабильной влажности пробы твердой фазы пульпы на фильтрующей поверхности под воздействием перепада давления, создаваемого путем подведения вакуума. Осажденную на фильтрующей поверхности пробу твердой фазы механически перемещают к анализатору состава и проводят рентгенофлюоресцентный анализ элементного состава пробы твердой фазы пульпы. Дополнительно визиометрическим анализом цветовых характеристик анализируется минеральный состав пробы. Дополнительно проводится анализ ионного состава жидкой фазы пульпы. Устройство для осуществления способа включает пробоотборное приспособление в виде полой емкости с перфорированной фильтрующей поверхностью и полого штока, комбинированный вакуумно-нагнетательный насос, сообщенный через ресивер и золотник с полым штоком, цилиндр с серво- или пневмоприводом для возвратно-поступательного перемещения пробоотборного приспособления. Дополнительно устройство оснащено визиометрическим анализатором цветовых характеристик пробы и потенциометрическим датчиком рН жидкой фазы пульпы. Техническим результатом является уменьшение погрешности измерения вещественного состава пробы, сокращение времени анализа, уменьшение продолжительности профилактических работ, а также расширение функциональных возможностей за счет анализа минерального состава твердой фазы пробы и ионного состава жидкой фазы. 2 н. 3 з.п. ф-лы, 2 табл., 3 ил.
Наверх