Способ получения магнитоактивного соединения

Изобретение может быть использовано в химической технологии. Магнитоактивное соединение получают путем конденсации из растворов сульфата или хлорида железа (II) и окислителя при их смешении. В качестве окислителя используют водно-аммиачный раствор нитрата серебра. Изобретение позволяет получить магнитоактивное соединение без выделения токсичных оксидов азота. 1 табл., 29 пр.

 

Изобретение относится к получению магнитоактивных соединений.

Частицы магнитоактивных соединений могут образовываться благодаря конденсации отдельных молекул. На размер образующихся частиц существенно влияют условия, при которых происходит конденсация отдельных молекул в частицы, поэтому для получения коллоидных частиц магнитных материалов используют различные варианты метода.

Одним из вариантов метода конденсации является реакция химической конденсации высокодисперсного магнетита:

2 FeCl3+FeCl2+8 NaOH→Fe3O4↓+8 NaCl+4 H2O.

10%-ные растворы FeCl2·4H2O и FeCl3·6H2O смешивают при 70°C и при постоянном перемешивании к ним добавляют избыток 10%-ного раствора NaOH. Для ограничения роста частиц использовалось интенсивное перемешивание растворов. Для получения магнетита требуемого состава соотношение солей Fe3+/Fe2+ должно быть 2 к 1 [Elmore W.С.// Phys. Rew., 1938, V. 54, P. 309].

Существуют способы получения магнитных жидкостей и рентгеноконтрастных средств на основе органических соединений. В качестве магнитного компонента использован магнетит, осажденный из смеси солей железа (II) и железа (III) 25%-ным раствором аммония гидроксида. Замена гидроксида натрия на гидроксид аммония позволяет проводить соосаждение солей при 25…40°C [АС СССР №568598 МКл2, С01G 49/08. 1977; АС СССР №861321, МКл2 C01G 49/08. 1981; АС СССР №966015, МКл2 C01G 49/08. 1982; АС СССР №978860, МКл2 А61К 33/26. 1982].

Известен способ, в соответствии с которым первоначально из раствора соли железа (II) осаждается карбонат железа (II), который при температуре 55…60°C в течение 1 ч превращается в магнитоактивный магнетит, отделяемый от жидкости путем декантации до pH 7 [Патент РФ №2230705, МПК7 C01G 49/08. 2004]. Недостатком указанного способа является низкая относительная магнитная восприимчивость образующегося магнитоактивного соединения.

Наиболее близким к предлагаемому способу является способ, по которому магнитоактивное соединение образуется в результате осаждения из подкисленного раствора соли железа(II), которое проводится в присутствии соли азотистой кислоты. К подкисленному раствору соли железа(II) добавляется расчетное количество соли азотистой кислоты, и полученный раствор подщелачивается. Выделяющийся бирюзовый осадок быстро уплотняется и через некоторое время превращается в магнитоактивное соединение с высокой относительной магнитной восприимчивостью [Патент РФ 2476382, МКИ C01G 49/08 (2006.01), 2013]. Недостатком указанного способа является выделение токсичных оксидов азота.

Задачей изобретения является повышение экологической безопасности, т.е. получение магнитоактивного соединения без выделения токсичных оксидов азота.

Это достигается тем, что магнитоактивное соединение получают путем конденсации из растворов сульфата или хлорида железа (II) и окислителя при их смешении, отличающийся тем, что в качестве окислителя используют водно-аммиачный раствор нитрата серебра.

Предлагаемый способ осуществляется следующим образом. К раствору сульфата или хлорида железа (II) добавляется расчетный объем аммиачного раствора нитрата серебра. Сразу же образуется осадок, обладающий магнитной активностью.

Пример 1. Для осаждения магнитоактивного соединения смешивали 1 мл концентрированного водного раствора аммиака и 0,2 мл 0,2 М водного раствора нитрата серебра. Затем добавляли 1 мл 0,1 М раствора сульфата железа (II). Реакцию проводили при 23°C. Сразу же выделился осадок, окрашенный в черный цвет. Относительная магнитная восприимчивость (ОМВ), измеренная через 5 мин после смешения реактивов, составила 4,6 г/г железа.

Пример 2. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 7,7 г/г железа.

Пример 3. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 14,4 г/г железа.

Пример 4. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 0,25 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 14,0 г/г железа.

Пример 5. Конденсацию магнитоактивного соединения проводили в условиях примера 4, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 17,9 г/г железа.

Пример 6. Конденсацию магнитоактивного соединения проводили в условиях примера 4, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 20,9 г/г железа.

Пример 7. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 0,3 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 16,4 г/г железа.

Пример 8. Конденсацию магнитоактивного соединения проводили в условиях примера 7, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 21,5 г/г железа.

Пример 9. Конденсацию магнитоактивного соединения проводили в условиях примера 7, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 24,4 г/г железа.

Пример 10. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 0,4 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 19,2 г/г железа.

Пример 11. Конденсацию магнитоактивного соединения проводили в условиях примера 10, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 21,7 г/г железа.

Пример 12. Конденсацию магнитоактивного соединения проводили в условиях примера 10, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 24,2 г/г железа.

Пример 13. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 0,5 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 19,9 г/г железа.

Пример 14. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 24,1 г/г железа.

Пример 15. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 20,9 г/г железа.

Пример 16. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 0,75 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 18,2 г/г железа.

Пример 17. Конденсацию магнитоактивного соединения проводили в условиях примера 16, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 19,4 г/г железа.

Пример 18. Конденсацию магнитоактивного соединения проводили в условиях примера 16, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 21,0 г/г железа.

Пример 19. Конденсацию магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что объем водного раствора нитрата серебра составил 1,0 мл. Относительная магнитная восприимчивость, измеренная через 5 мин после смешения реактивов, составила 12,2 г/г железа.

Пример 20. Конденсацию магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 60 мин после смешения реактивов. Относительная магнитная восприимчивость составила 12,2 г/г железа.

Пример 21. Конденсацию магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение относительной магнитной восприимчивости проводят через 120 мин после смешения реактивов. Относительная магнитная восприимчивость составила 13,4 г/г железа.

Пример 22. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что объем раствора сульфата железа (II) составил 0,9 мл. Относительная магнитная восприимчивость составила 13,4 г/г железа.

Пример 23. Конденсацию магнитоактивного соединения проводили в условиях примера 22, отличающихся тем, что объем раствора аммиака составил 1,1 мл. Относительная магнитная восприимчивость составила 15,7 г/г железа.

Пример 24. Конденсацию магнитоактивного соединения проводили в условиях примера 10, отличающихся тем, что объем раствора аммиака составил 2 мл. Относительная магнитная восприимчивость составила 0,4 г/г железа.

Пример 25. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что конденсацию магнитоактивного соединения проводили при 100°C. Относительная магнитная восприимчивость составила 13,3 г/г железа.

Пример 26. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что добавляли 1 мл 0,1 Μ раствора хлорида железа (II), а продолжительность выдержки реакционной смеси составила 15 минут. Относительная магнитная восприимчивость составила 8,4 г/г железа.

Пример 27. Конденсацию магнитоактивного соединения проводили в условиях примера 13, отличающихся тем, что добавляли 0,9 мл 0,1 Μ раствора сульфата железа (II). Относительная магнитная восприимчивость составила 10,1 г/г железа.

Пример 28. Конденсацию магнитоактивного соединения проводили в условиях примера 27, отличающихся тем, что продолжительность выдержки реакционной смеси составила 40 минут. Относительная магнитная восприимчивость составила 16,0 г/г железа.

Пример 29. Конденсацию магнитоактивного соединения проводили в условиях примера 27, отличающихся тем, что добавляли 1,1 мл 0,1 Μ раствора сульфата железа (II), а продолжительность выдержки реакционной смеси составила 25 минут. Относительная магнитная восприимчивость составила 17,0 г/г железа.

Результаты, полученные при синтезе магнитоактивного соединения, сведены в таблице, свидетельствуют о том, что предлагаемое решение позволяет получать магнитоактивное соединение без выделения токсичных оксидов азота.

Способ получения магнитоактивного соединения путем конденсации из растворов сульфата или хлорида железа (II) и окислителя при их смешении, отличающийся тем, что в качестве окислителя используют водно-аммиачный раствор нитрата серебра.



 

Похожие патенты:
Изобретение относится к магнитострикционному керамическому материалу на основе лантан-стронциевого манганита, полученному методом порошкой металлургии, который может найти применение в различных областях техники, например при изготовлении сверхчувствительных приемников звука, в клапанах, расходомерах, линиях задержки звуковых и электрических сигналов и пр.

Изобретение относится к области металлургии. Для улучшения свойств наложения постоянного тока листа из электротехнической стали в сердечнике, возбуждаемого на высокой частоте, лист имеет химический состав, включающий, в мас.%: C менее 0,010, Si 1,5-10 и остальное Fe и случайные примеси, в котором основная ориентация в текстуре стального листа является <111>//ND и отношение интенсивности основной ориентации относительно ориентированного случайным образом образца составляет не менее 5, и предпочтительно отношение интенсивности относительно ориентированного случайным образом образца {111}<112> ориентации составляет не менее 10, и более предпочтительно отношение интенсивности {310}<001> ориентации ориентированного случайным образом образца составляет не более 3, и более предпочтительно концентрация Si имеет градиент, при котором она является высокой на стороне поверхностного слоя и низкой в центральной части в направлении толщины, и максимальное значение концентрации Si составляет не менее 5,5 мас.
Изобретение относится к коллоидным системам, а именно к способу получения магнитной жидкости на основе воды, и может быть использовано в различных технологических устройствах, в том числе в устройствах сепарации материалов по плотности.

Изобретение относится к текстурированному листу из электротехнической стали, используемому для изготовления сердечника трансформатора. Для снижения уровня шума в трансформаторе и потерь в железе согласно настоящему изобретению в листе, подвергнутом обработке для измельчения магнитных доменов, создают области пластической деформации, располагаемые в точечной последовательности в направлении ширины стального листа, при этом длина d каждой области пластической деформации составляет от 0,05 мм до 0,4 мм, а отношение (Σd/Σw) суммы Σd длин d к сумме Σw интервалов w каждой из вышеуказанных областей пластической деформации - в диапазоне от 0,2 до 0,6, причем области пластической деформации в листе создают посредством воздействия электронным пучком.

Изобретение относится к области металлургии, а именно к текстурированному листу из электротехнической стали, который может быть использован в качестве сердечника трансформатора.

Изобретение принадлежит области техники быстрого отверждения аморфного сплава, а конкретно относится к широкой ленте из аморфного сплава на основе железа, в которой ширина составляет 220-1000 мм, толщина составляет 0,02-0,03 мм, поперечное отклонение толщины составляет менее +/-0,002 мм, коэффициент слоистости составляет более 0,84, магнитная индукция насыщения составляет более 1,5 Тл, потери в железе составляют менее 0,20 Вт/кг, при условиях, когда частота составляет 50 Гц, и максимальная магнитная индукция составляет 1,3 Тл, а мощность возбуждения составляет менее 0,50 ВА/кг.

Изобретение относится к области металлургии, а именно к производству листа из текстурированной электротехнической стали для сердечников трансформаторов, электрических машин и электрогенераторов.

Изобретение относится к текстурированной электротехнической листовой стали. Для обеспечения низких потерь в железе без ухудшения коррозионной стойкости листовая сталь толщиной t (мм) с пленкой на поверхности не имеет ржавчины на поверхности после испытания во влажной камере в течение 48 часов при температуре 50°С в атмосфере 98% влажности, при этом потери в железе W17/50 после облучения электронным пучком снижаются, по меньшей мере, на (-500t2+200t - 6,5)% потерь в железе W17/50 до облучения электронным пучком и составляют (5t2-2t+1,065) Вт/кг или менее.

Изобретение относится к области черной металлургии, в частности к области обработки листовой анизотропной электротехнической стали Fe-3% Si. Для улучшения физико-механических свойств стали, уменьшения магнитных потерь осуществляют горячую прокатку, по крайней мере одну холодную прокатку, обезуглероживающий и рекристаллизационный отжиг, выпрямляющий отжиг, нанесение электроизоляционного магнитоактивного покрытия на основе нитридно-оксидных составов с коэффициентом термического расширения, меньшим, чем у стали путем ионно-плазменного осаждения с выдержкой 10-5 мин при температуре 20-50°С, дополнительный отжиг в окислительной среде путем нагрева до температуры 300-600°С со скоростью 30-50°С/мин в переменном магнитном поле напряженностью 1-5 кА/м, частотой 30-100 кГц, направленном вдоль оси прокатки ленты, изотермической обработки в течение 20-5 минут и охлаждения до комнатной температуры в переменном магнитном поле со скоростью 50-200°С/мин и лазерную обработку движущейся ленты поперек оси ленты с длиной пятна 0,2 мм в направлении прокатки, воздействуя на всю ширину ленты с интервалом между зонами 2-10 мм.

Изобретение относится к порошковой металлургии, в частности к получению постоянных порошкообразных магнитов на основе системы Sm-Co-Fe-Cu-Zr. Повышение плотности и прочности, увеличение коэрцитивной силы и остаточной индукции полученных магнитных материалов является техническим результатом изобретения.

Изобретение может быть использовано в химической, горнодобывающей промышленности. Способ разложения карбонатов включает измельчение исходного сырья, разложение карбонатов за счет подвода внешней энергии, отвод конверсионного газа, охлаждение целевого продукта.

Изобретение может быть использовано при получении тераностических композиций для гипертермического лечения и/или диагностики опухолей с помощью магнитно-резонансной томографии.
Изобретение может быть использовано в химической промышленности. Способ получения магнетита включает окисление железа при проведении электролиза.

Изобретение может быть использовано в магнитной наноэлектронике для магнитных регистрирующих сред с высокой плотностью записи, для магнитных сенсоров, радиопоглощающих экранов, а также в медицине.

Изобретение относится к получению биосовместимых магнитных наночастиц и может быть использовано для терапевтических целей, в частности для борьбы с раком. Способ получения наночастиц, включающих оксид железа и кремнийсодержащую оболочку и имеющих значение удельного коэффициента поглощения (SAR) 10-40 Вт на г Fe при напряженности поля 4 кА/м и частоте переменного магнитного поля 100 кГц, содержит следующие стадии: А1) приготовление композиции по меньшей мере одного железосодержащего соединения в по меньшей мере одном органическом растворителе; В1) нагрев композиции до температуры в диапазоне от 50°C до температуры на 50°C ниже температуры реакции железосодержащего соединения согласно стадии С1 в течение минимального периода 10 минут; С1) нагрев композиции до температуры между 200°C и 400°C; D1) очистку полученных частиц; Е1) суспендирование очищенных наночастиц в воде или водном растворе кислоты; F1) добавление поверхностно-активного соединения в водный раствор, полученный согласно стадии E1); G1) обработку водного раствора согласно стадии F1) ультразвуком; H1) очистку водной дисперсии частиц, полученных согласно стадии G1); I1) получение дисперсии частиц согласно стадии H1) в смеси растворителя из воды и растворителя, смешивающегося с водой; J1) добавление алкоксисилана в дисперсию частиц в смеси растворителя согласно стадии I1); и К1) очистку частиц.

Изобретение относится к способам получения магнитоактивных соединений. .

Изобретение относится к магнитной системе, которая имеет структуру, содержащую магнитные нанометровые частицы формулы , где MII=Fe, Со, Ni, Zn, Mn; MIII =Fe, Cr, или маггемита, которые функционализированы бифункциональными соединениями формулы R1-(CH2)n -R2.(где n=2-20, R1 выбран из: CONHOH, CONHOR, РО(ОН)2, PO(OH)(OR), СООН, COOR, SH, SR; R 2 является внешней группой и выбран из: ОН, NH2 , СООН, COOR; R является алкильной группой или щелочным металлом, выбранным из С1-6-алкила и K, Na или Li соответственно).
Изобретение относится к получению магнитоактивных соединений. .
Изобретение относится к коллоидной химии и может быть использовано для получения высокотемпературных, с различной вязкостью, стабильных против окисления, высоковакуумных магнитных жидкостей с высокой намагниченностью.
Изобретение относится к области химической промышленности, а именно к способам получения оксидов металлов. .

Изобретение может быть использовано в неорганической химии. Магнитоактивное соединение получают путем конденсации из растворов соли железа(II) и окислителя при их смешении и добавлении щелочного реагента. В качестве соли железа(II) используют гептагидрат сульфата железа(II). В качестве окислителя используют раствор соли хрома(VI) - хромата калия или бихромата калия. Изобретение позволяет получить магнитоактивное соединение без выделения токсичных оксидов азота. 2 з п. ф-лы, 1 табл., 12 пр.
Наверх