Способ сравнительного анализа спектра звезды

Изобретение относится к области спектроскопических астрофизических исследований и касается способа сравнительного анализа спектра звезды. Способ заключается в том, что свет от опорного источника разлагают в опорный линейчатый спектр, который сравнивают со спектром исследуемой звезды. При этом свет от опорного источника предварительно пропускают через входную щель, коллиматор, дифракционную решётку и камерный объектив, с помощью чего формируют изображение опорного спектра на маске, закрывающей яркие линии, после чего оставшийся спектр собирают линзой-коллектором и направляют в основной астрономический спектрограф, в котором и производят сравнение опорного спектра и спектра исследуемой звезды. Технический результат заключается в увеличении точности измерений. 3 ил.

 

Изобретение относится к способам, применяемым в процессе астрофизических исследований для анализа спектров звезд.

Известен способ сравнительного анализа спектра звезды (Панчук В.Е., Клочкова В.Г., Юшкин М.В., Найденов И.Д. Спектрограф высокого разрешения 6-метрового телескопа БТА. // Оптический журнал, том 76, №2, февраль 2009 г.), заключающийся в том, что получаемый в астрономическом спектрографе спектр звезды сравнивают со спектром опорного лабораторного источника света.

Недостатком известного способа является то, что яркие линии спектра опорного источника света создают световые помехи (рассеянный свет, блики), что искажает как близкорасположенные линии спектра звезды, так и слабые линии опорного спектра, при этом снижается точность измерений положений и интенсивностей линий в спектре звезды.

Целью предлагаемого изобретения является устранение указанного недостатка, а именно повышение точности измерений положений и интенсивностей линий в спектре звезды.

Указанная цель достигается тем, что в способе сравнительного анализа спектра звезды, заключающемся в том, что свет от опорного источника разлагают в опорный линейчатый спектр, который сравнивают со спектром исследуемой звезды, свет от опорного источника предварительно пропускают через входную щель, коллиматор, дифракционную решетку и камерный объектив, с помощью чего формируют изображение опорного спектра на маске, закрывающей яркие линии, после чего оставшийся спектр собирают линзой-коллектором и направляют в основной астрономический спектрограф, в котором и производят сравнение опорного спектра и спектра исследуемой звезды.

Сущность заявляемого изобретения иллюстрируется графическими материалами, где на фигуре 1 изображена принципиальная схема устройства для выравнивания интенсивности линий в спектре калибровки, реализующая заявляемый способ.

Устройство для выравнивания интенсивности линий в спектре калибровки, с помощью которого реализуют заявляемый способ, содержит входную щель 1, сквозь которую пропускают лучи света от опорного источника, не показанного на фигуре 1. Далее, расходящиеся лучи направляют на объектив коллиматора 2, выполненный в виде вогнутого зеркала, формирующего параллельный пучок света, который подают на дифракционную решетку 3, осуществляющую разложение в спектр, после чего параллельные пучки различных длин волн подают на объектив камеры 4, также выполненный в виде вогнутого зеркала, с помощью которого строят изображение опорного спектра на маске 5, экранирующей яркие линии спектра. После этого оставшуюся часть спектра собирают линзой-коллектором 6 и проецируют на торец оптического волокна 7, посредством которого очищенное от ярких линий излучение опорного источника направляют в основной астрономический спектрограф, который на фигуре 1 не показан.

Способ сравнительного анализа спектра звезды осуществляется следующим образом. Свет от опорного источника пропускают сквозь входную щель 1, затем его направляют на объектив коллиматора 2, выполненный в виде вогнутого зеркала, с помощью которого формируют параллельный пучок света. После чего параллельный пучок света подают на дифракционную решетку 3, с помощью которой разлагают его в спектр, а затем с помощью камеры 4 фокусируют изображение спектра на маске 5, посредством которой вырезают из спектра определенные длины волн. После этого собирают оставшийся свет опорного источника линзой-коллектором 6 на торце оптоволокна 7, по которому его направляют в основной астрономический спектрограф, в котором собственно и производят сравнение спектра исследуемой звезды с опорным спектром.

Заявляемый способ был реализован на опытной установке, изготовленной в САО РАН. На фигуре 2 показан линейчатый спектр света, полученный традиционным способом, а на фигуре 3 - полученный заявляемым способом.

Применение заявляемого способа сравнительного анализа спектра звезды позволяет значительно повысить точность измерения звездных спектров, а значит, и достоверность научных результатов.

Способ сравнительного анализа спектра звезды, заключающийся в том, что свет от опорного источника разлагают в опорный линейчатый спектр, который сравнивают со спектром исследуемой звезды, отличающийся тем, что свет от опорного источника предварительно пропускают через входную щель, коллиматор, дифракционную решетку и камерный объектив, с помощью чего формируют изображение опорного спектра на маске, закрывающей яркие линии, после чего оставшийся спектр собирают линзой-коллектором и направляют в основной астрономический спектрограф, в котором и производят сравнение опорного спектра и спектра исследуемой звезды.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к оптическим системам жестких эндоскопов, и может быть использовано для внутриполостной диагностики и микрохирургии сложных биологических и технических объектов.

Эндоскоп // 1615663
Изобретение относится к контрольно-измерительным средствам технической дефектации и диагностики труднодоступных зон. .

Изобретение относится к оптическим системам для неразрушающего контроля внутренних поверхностей удлиненных трубчатых деталей постоянного или изменяющегося диаметра в машиностроении.

Изобретение относится к оптическому приборостроению и может быть использовано в эндоскопах медицинского назначения. .

Эндоскоп // 1554889
Изобретение относится к эндоскопии и может быть использовано для исследования внутренних труднодоступных полостей. .

Изобретение относится к оптическому приборостроению для медицинской техники и может быть использовано в эндоскопах преимущественно с диаметром канала передачи изображения 1 мм.

Изобретение относится к области спектральных измерений и касается способа компенсации дрейфа амплитуды в спектрометре. Способ включает в себя выполнение процесса стандартизации, включающего измерение спектра образца стандартизации и спектра амплитуды нулевого материала и вычисление двухлучевого спектра, относящегося к образцу стандартизации.

Изобретение относится к области спектроскопии и касается многоспектральной камеры. Многоспектральная камера содержит диафрагму, дисперсионный элемент, линзу, микролинзовую решетку, фотоприемное устройство и процессор.

Изобретение относится к области пирометрии и касается способа дистанционного измерения температуры. В среду для измерения ее температуры помещают светоизлучающий прибор (светодиод или лазер).

Изобретение относится к области фотометрии и касается пламенного фотометра. Фотометр включает горелку, оснащенную устройством впрыска раствора исследуемого вещества.

Изобретение относится к области приборостроения и может быть использовано для измерения температуры активной области светоизлучающих диодов. Заявлен cпособ измерения переходных тепловых характеристик светоизлучающих диодов (СИД), при котором инжекционный ток подают в виде последовательности импульсов нарастающей длительности с периодом между импульсами, достаточными для остывания активной области и не менее времени считывания сигнала с выхода фотоприемной линейки.

Изобретение относится к области спектроскопии и касается способа и системы для анализа данных спектра. Анализ данных осуществляется с помощью сравнения аккумулированного спектра с набором эталонов элементарных данных.

Изобретение относится к области дистанционного беспробоотборного газоанализа, а именно к способам формирования баз спектральных данных для дистанционных газоанализаторов на основе Фурье-спектрорадиометров.

Изобретение относится к области оптического приборостроения и касается спектрометра на основе поверхностного плазмонного резонанса. Спектрометр содержит последовательно расположенные на одной оптической оси источник излучения света с непрерывным спектром, коллиматор, поляризатор, цилиндрическую линзу или цилиндрическое зеркало, устройство нарушенного полного внутреннего отражения с отражающим элементом, диспергирующее устройство, фокусирующий объектив и светочувствительную фотоматрицу, установленную в фокусе объектива.

Изобретение относится к способу определения концентрации катионов и анионов в растворах электролитов. При этом концентрацию катионов определяют путем пропускания раствора электролита через катионообменную смолу и сравнивают концентрацию ионов водорода исходного раствора и концентрацию ионов водорода раствора, пропущенного через катионообменную смолу, и по разнице значений концентрации ионов водорода исходного и конечного растворов с учетом валентности катионов находят их концентрацию по формуле [ K к ] n = [ H + ] 2 − [ H + ] 1 где [Kк] - концентрация катионов электролита; n - валентность катионов электролита; [H+]2 - концентрация ионов водорода в конечной пробе; [H+]1 - концентрация ионов водорода в исходной пробе; а при определении анионов исследуемый раствор электролита пропускают через анионообменную смолу и сравнивают концентрации гидроксил-ионов исходного раствора и раствора, пропущенного через смолу, и по разнице значений концентрации гидроксил-ионов исходного и конечного растворов с учетом валентности анионов находят их концентрацию по формуле: [ K а ] n = [ OH − ] 2 − [ OH − ] 1 где [Kа] - концентрация анионов; n - валентность аниона; [OH-]2 - концентрация гидроксил-ионов в конечной пробе; [OH-]1 - концентрация гидроксил-ионов в исходной пробе.

Изобретение относится к системам однофотонных датчиков и способам регистрации и анализа многоцветного флуоресцентного излучения от биологических образцов. .

Способ возбуждения и регистрации оптических фононов включает в себя нанесение на острие иглы кантилевера АСМ слой активного материала. В нём производят возбуждение активирующим импульсом фемтосекундного лазера оптических фононов. Фононы отражаются от границы раздела слоя активного материала/поверхность образца. В этом же слое активного материала происходит регистрация отраженных оптических фононов с помощью зондирующего импульса фемтосекундного лазера. Далее, с помощью обработки полученной информации и расчетов происходит восстановление энергетического спектра оптических фононов в исследуемом образце. Технический результат заключается в получении энергетического спектра оптических фононов, а также в возможности анализа химического состава поверхности с нанометровым пространственным разрешением. 1 ил.
Наверх