Способ определения приближения сейсмического события

Изобретение относится к области сейсмологии и может быть использовано для выявления приближающегося землетрясения. Сущность: в пределах локального участка литосферы сейсмоактивной зоны проводят мониторинговые наблюдения за низкочастотными микросейсмическими колебаниями, регистрируемыми сейсмическими станциями. Выполняют спектрально-временной анализ регистрируемых низкочастотных микросейсмических колебаний, рассчитывают коэффициент множественной регрессии. По понижению коэффициента множественной регрессии и снижению уровня регистрируемого сигнала в спектральном окне 25-40 Гц делают вывод о приближении сейсмического удара. Технический результат: повышение достоверности при выявлении приближающегося сейсмического события. 3 ил.

 

Техническое решение относится к сейсмологии и может быть использовано для краткосрочного прогнозирования землетрясений по результатам обработки непрерывных временных рядов данных деформационного мониторинга в сейсмоактивных зонах литосферы.

Известен способ определения предвестника землетрясения, включающий измерение сигналов электростатических аномалий сетью сейсмических станций с выделением контрольных зон, определение их энергетических и пространственно-временных параметров и направленности развития сейсмического процесса, выявление миграции локальных областей сейсмической активности, по изменению параметров которой судят о местоположении и величине готовящегося землетрясения в сейсмоактивной зоне, при этом определение электромагнитных предвестников землетрясения выполняют с учетом амплитуд частоты резонанса в волноводе Земля-ионосфера на фиксированных частотах с размещением по крайней мере одной из сейсмических станций на космической орбите, определение в качестве предвестника землетрясения повышенного содержания радона в подземных водах, определение в качестве предвестника землетрясения повышенного содержания водорода на линиях разлома, в котором определение энергетических и пространственно-временных параметров и направленности развития сейсмического процесса производят в моменты, когда частота временного хода синусоидального периодического процесса будет соизмерима с частотой циклического времени измерения, измерение сигналов электрических аномалий наземными станциями производят на фиксированных частотах 7,8; 14,4; 20,3 Гц, а станцией, находящейся на космической орбите, измерения регистрируют в инфранизкочастотном диапазоне в области первой резонансной частоты, при этом максимальные значения амплитуды определяют по гармонической составляющей электромагнитной волны, ограниченной по контуру поверхности, причем максимальные значения амплитуд определяют для нескольких точек с вещественными или плановыми координатами с учетом высоты уровня моря для каждой точки (патент РФ 2269145, G01V 9/00, 2006 г., [1]).

Данный способ определения предвестника землетрясения весьма дорогостоящий, и при этом с учетом влияния внешних факторов, помех и измерительных ошибок приборов точность прогноза кране невысока.

Известен способ краткосрочного предсказания землетрясений, при котором регистрируют волны сейсмического фона в виде непрерывной последовательности дискретных отсчетов амплитуды сигнала A(t), находят спектр Фурье от зарегистрированной функции, в котором регистрацию осуществляют в двух разнесенных по координатам пунктах, спектр Фурье рассчитывают от последовательности выборок измерений с объемом отсчетов в каждой выборке N≥2Fmax/σ, вычисляют автокорреляционные функции В(τ), сигналов выборок и определяют интервал корреляции τ, регистрируют начало изменения параметра τ и при его непрерывном отслеживании фиксируют время запаздывания Δτ изменения фазы данного признака между двумя пунктами, рассчитывают направляющий косинус траверзы прихода сверхнизких волн очага

определяют гипотетический центр очага как точку пересечения на траверзе радиус векторов пунктов с косинусом угла при вершине

вычисляют период Т0 параметра τ и по его величине прогнозируют магнитуду М 110 / T 0 2 (ч) и время удара tx=2,3 Т0, где Fmax - максимальная частота спектра сейсмического фона, Гц; σ - среднеквадратическая ошибка вычисления спектра Фурье по дискретной выборке измерений; a - длина базы между двумя пунктами, м; v - скорость сейсмических волн в земной коре, м/с; B1(0), В2(0) - значения автокорреляционных функций в нуле для каждого пункта (патент РФ 2181205, G01V 9/00, 2002 г., [2]).

По назначению, по технической сущности и по наличию сходных признаков данное решение выбрано в качестве ближайшего аналога.

Недостатки известного решения: для выполнения прогноза необходимо иметь данные как минимум с 2-х разнесенных пунктов наблюдения, что существенно повышает затраты на мониторинг, недостаточно велика достоверность прогноза.

Задачей предлагаемого технического решения является повышение достоверности краткосрочного прогноза землетрясений с указанием места и времени энергетического класса предстоящего сейсмического события в сейсмической зоне.

Техническим результатом является регистрация характерных изменений прогнозного параметра за несколько часов до землетрясения.

Технический результат достигается тем, что в способе краткосрочного прогнозирования землетрясений, включающем инструментальный мониторинг прогнозного параметра в пределах локального участка литосферы сейсмоактивной зоны, оценку ее динамического состояния по результатам компьютерной обработки получаемого временного ряда данных, прогнозирование сейсмического события по изменению во времени характеристик прогнозного параметра, в качестве прогнозного параметра используют низкочастотные микросейсмические колебания, проводят спектрально-временной анализ регистрируемого прогнозного параметра и по снижению уровня сигнала в спектральном окне 25-40 Гц определяют приближение сейсмического события и его параметры.

Сравнительный анализ предлагаемого технического решения с решением, выбранным в качестве ближайшего аналога, показывает следующее.

Предлагаемое техническое решение и решение по ближайшему аналогу характеризуются сходными признаками:

- способ краткосрочного прогнозирования землетрясений, включающий:

- инструментальный мониторинг прогнозного параметра в пределах локального участка литосферы сейсмоактивной зоны;

- оценку динамического состояния сейсмоактивной зоны по результатам компьютерной обработки получаемого временного ряда данных;

- прогнозирование сейсмического события по изменению во времени характеристик прогнозного параметра.

Предлагаемое техническое решение характеризуется признаками, отличительными от признаков, характеризующих решение по ближайшему аналогу:

- в качестве прогнозного параметра используют вариации уровня микросейсмических колебаний;

- проводят спектрально - временной анализ регистрируемого прогнозного параметра;

- по снижению уровня сигнала в спектральном окне 25-40 Гц определяют приближение сейсмического события;

- по результатам обработки сигнала в спектральном окне 25-40 Гц, в котором зафиксировано снижение уровня микроколебаний, определяют параметры приближающегося сейсмического события.

Наличие в предлагаемом решении признаков, отличных от признаков, характеризующих решение по ближайшему аналогу, позволяет сделать вывод о его соответствии условию патентоспособности изобретения «новизна».

Техническая сущность предлагаемого решения заключается в следующем.

Преобладающее большинство землетрясений, особенно средней силы и сильные, как правило, связаны с подвижками по уже существующим разломам или их разрастанием (удлинением). Подвижки происходят при каждой активизации, и каждая подвижка синхронна сейсмическому событию. Периодичные во времени активизации разрывов и возбуждение в них сейсмических событий подчиняются периодичности прохождения деформационных волн, физические параметры которых отражаются в направленности и интенсивности (скорости) возникновения событий в областях динамического влияния разломов.

Важнейшей задачей является выбор прогнозного параметра, отражающего реальные геофизические процессы в литосфере, изменения которого однозначно (с большой вероятностью) свидетельствуют о приближении сейсмического события в пределах локального участка литосферы сейсмоактивной зоны.

По результатам анализа инструментально регистрируемых сейсмических параметров и последующей обработки полученных данных авторами в качестве такого прогнозного параметра выбраны вариации уровня микросейсмическиих колебаний, являющиеся следствием изменения состояний энергетически напряженных неустойчивых разрывных структур литосферы. И именно такие повышения энергетических состояний являются причиной активизации сейсмоактивной зоны и, как правило, грядущих сейсмических событий. Использование данного прогнозного параметра в значительной степени повышает достоверность прогноза землетрясений, т.к. микросейсмические колебания отражают внутреннее состояние геофизической системы. Иные прогнозные параметры - электромагнитные поля, радоновая активность, в значительной мере подвержены воздействиям внешних атмосферных и иных факторов и в меньшей степени отражают состояние сейсмоактивной зоны, а следовательно, их использование снижает достоверность прогноза сейсмического события.

По результатам регистрации сейсмических параметров установлено значительное понижение уровня сейсмического шума за несколько часов до землетрясения (в среднем за 2-3 часа до землетрясения). Это понижение наблюдалось также в течение нескольких часов после землетрясения. Через два с половиной часа после землетрясения началось постепенное повышение уровня сейсмического шума, и через четыре часа после толчка амплитуда сейсмического шума достигла своей нормальной величины.

Методом спектрально-временного анализа сейсмического шума для девяти землетрясений Байкальской рифтовой системы (БРС) установлено значительное понижение уровня сейсмического шума за несколько часов перед толчком, что может классифицироваться как краткосрочный предвестник. Указанный эффект может быть использован для автоматического определения приближающегося землетрясения на объектах повышенной опасности, располагающихся в сейсмически активных зонах.

Сравнительный анализ предлагаемого технического решения с другими известными решениями в данной области выявил следующее.

Известна работа А.А. Любушина «Сейсмическая катастрофа в Японии 11 марта 2011 г. Долгосрочный прогноз по низкочастотным микросейсмам» (журнал «Геофизические процессы и Биосфера», 2011, Т.10, №1, с.9-35, [3]), в которой по данным двух или более разнесенных сейсмостанций отслеживаются параметры когерентности низкочастотных микросейсм.

Известен способ определения ширины и релаксационных характеристик зоны тектонического нарушения, включающий регистрацию упругих колебаний сейсмоприемниками, размещенными на профиле, определение скорости распространения упругих колебаний и суждение по полученным данным о местоположении границ тектонического нарушения, в котором в качестве упругих колебаний регистрируют импульсные колебания волнового типа (ИКВТ), сейсмоприемники располагают с шагом, обеспечивающим размещение по крайней мере одного сейсмоприемника в пределах зоны тектонического нарушения, на профиле, расположенном вкрест простирания зоны тектонического нарушения, скорость распространения ИКВТ определяют на каждом участке между двумя соседними пунктами регистрации, дополнительно определяют спектральную плотность мощности ИКВТ для каждого пункта, а о ширине зоны тектонического нарушения судят по величине ширины зоны, в которой скорость распространения упругих колебаний (С) уменьшается на величину a≥3 по сравнению со скоростью распространения упругих колебаний, определенной вне зоны тектонического нарушения, где а среднеквадратичная ошибка определения С, при этом релаксационные характеристики T1 время релаксации напряжения при постоянной деформации, Т2 время релаксации сдвиговой деформации при постоянном сдвиговом напряжении, Т3 время релаксации напряжений сжатия при постоянной объемной деформации, Т4 время релаксации деформации при постоянном среднем давлении определяют по спектральной плотности мощности ИКВТ, определенной для зоны тектонического нарушения и вне нее путем моделирования, аппроксимируя тектоническое нарушение телом Бюргерса (патент РФ 2077736, G01V 9/00, 1997 г.,

[4]).

Известен способ оперативного прогнозирования землетрясений, тектонических и техногенных подвижек, включающий измерение сигналов в геофизических полях деформационной природы, отбор аномальных сигналов, определение на основании измерений магнитуды, места и времени землетрясений, масштаба и места тектонических и техногенных подвижек, в котором измеряют не менее чем тремя прогностическими станциями амплитуду и частоту повторений импульсных сигналов и частоту повторений серий импульсных сигналов, скорость нарастания фронта и длительность импульсных сигналов и по полученным данным проводят отбор аномальных сигналов, после чего измеряют продолжительность стадии увеличения интенсивности аномального сигнала, продолжительность стадии уменьшения интенсивности аномального сигнала и продолжительность стадии замирания аномального сигнала на каждой прогностической станции, при этом расстояния от прогностических станций до гипоцентра землетрясений места тектонических и техногенных подвижек определяют из соотношения

где t1 продолжительность стадии увеличения интенсивности аномального сигнала, с;

t2 продолжительность стадии уменьшения интенсивности аномального сигнала, с;

t3 продолжительность стадии замирания аномального сигнала, с;

M магнитуда;

K1, K2, K3 масштабные коэффициенты, характеризующие региональные особенности процесса подготовки тектонического землетрясения, тектонической и техногенной подвижки;

A1 постоянная, характеризующая масштаб очаговой зоны;

B1 масштабная поправка к A1;

A2 постоянная, характеризующая масштаб процесса уменьшения интенсивности аномального сигнала;

B2 масштабная поправка к A2;

A3 постоянная, характеризующая процесс замирания интенсивности аномального сигнала;

B3 масштабная поправка к A3;

C постоянная, характеризующая время развития неупругих деформаций в очаге;

T постоянная, характеризующая время развития процесса подготовки землетрясений, тектонической, техногенной подвижки для данного региона, T t1+t2+t3;

p постоянная, характеризующая поправку к продолжительности стадии увеличения сигнала для данного района;

q постоянная, характеризующая поправку к продолжительности стадии уменьшения аномального сигнала для данного региона;

D ошибка измерений (патент РФ 2106001, G01V 9/00, 1998 г., [5]).

Известен способ краткосрочного прогнозирования землетрясений, включающий регистрацию сейсмического фона в виде дискретных цифровых отсчетов амплитуд сигналов во взаимно ортогональных плоскостях Ax(t), Ay(t) в двух разнесенных на измерительной базе пунктах, оси чувствительности которых по координате x ориентируют по направлению базы, обработку зарегистрированных сигналов расчетом спектра Фурье от последовательности выборок измерений, в котором вычисляют одномоментные спектры Фурье ортогональных сигналов Fx, Fy для каждого из пунктов, определяют направление на фазовый фронт сейсмического фона каждого из пунктов

отождествляет момент начала сейсмического процесса с условием Q1≠Q2, гипоцентр которого находят как точку пересечений лучей, исходящих из начала координат пунктов под углами Q1 и Q2; находят период T сейсмических волн для каждого момента времени t как

по зависимости периода (T) механических колебаний от колебательной массы (m), коэффициента жесткости земной коры (к), углового ускорения Aω2 получают функцию плотности распределения вероятности w ( Δ T T ) от относительной скорости изменения периода и аналитическое выражение для функции изменения периода T(t)=ebt, рассчитывают время сейсмического удара от момента начала сейсмического процесса

и магнитуду удара из соотношения lgty [сут]=0,54М-3,37, где b - расчетный параметр наблюдаемого сейсмического процесса b = ln T 2 / T 1 Δ t , Δt=t2-t1 - интервал времени между двумя измерениями периода T; Tmax - максимальная длительность периода сейсмических волн наблюдаемого процесса, ч (патент РФ 2458362, G01V 9/00, 2012 г., [6]).

В результате поиска и сравнительного анализа не выявлено технических решений, характеризующихся совокупностью признаков, аналогичной или идентичной совокупности признаков, характеризующей предлагаемое техническое решение, обеспечивающей при использовании достижение аналогичных технико-экономические результатов, что позволяет сделать вывод о соответствии предлагаемого решения условию патентоспособности изобретения «изобретательский уровень».

Предлагаемый способ краткосрочного прогнозирования землетрясений реализуется следующим образом. В качестве примера было выбрано Куморское землетрясение 16 сентября 2003 г. с энергетическим классом KP=14.3, магнитуда Mw=5.6. Анализировалась сейсмограмма микросейсмического шума перед землетрясением, полученная на сейсмостанции Кумора (расстояние до эпицентра 25 км) (Фиг.1).

Для данной станции был определен средний спектр микросейсмического шума. Далее выполнялся спектральный анализ 20-минутных участков записи микросейсм (Фиг.1): для них строились спектры и СВАН-диаграммы. Далее проводилось сравнение полученных текущих спектров со средним спектром. На Фиг.2 приведены примеры вариаций уровня микросейсм за 5 часов до сильного Куморского землетрясения. Явно видно понижение уровня текущего спектра микросейсм Acp относительно среднего примерно за час до землетрясения.

Помимо вариаций уровня микросейсм Acp для прогноза дополнительно также использовались следующие параметры: показатель степенной функции тренда (γ), коэффициент множественной регрессии (R). Чтобы определить параметр γ, строились графики зависимости между средним и текущими спектрами, графики аппроксимировались степенной зависимостью вида:

y(x)=a·хγ,

В дальнейшем анализировались параметры γ и R, полученные для каждой эмпирической зависимости.

На Фиг.3 приведены примеры использования этих параметров для прогноза. Сопоставление временных вариаций уровня микросейсм и параметров γ и R говорит о том, что последние также могут быть использованы для прогноза землетрясений, т.к. понижение коэффициента множественной регрессии наблюдается для более продолжительного промежутка времени (в данном примере за 1 час 40 минут до землетрясения).

Предлагаемый способ позволяет осуществлять краткосрочный прогноз землетрясения и предпринять необходимые меры по предотвращению серьезных последствий на объектах повышенной опасности, на которых ведется сейсмический мониторинг.

Источники информации

1. Патент РФ 2269145, G01V 9/00, 2006 г.

2. Патент РФ 2181205, G01V 9/00, 2002 г.

3. А.А. Любушина. Сейсмическая катастрофа в Японии 11 марта 2011 г. Долгосрочный прогноз по низкочастотным микросейсмам (журнал «Геофизические процессы и Биосфера», 2011, т.10, №1, с.9-35.

4. Патент РФ 2077736, G01V 9/00, 1997 г.

5. Патент РФ 2106001, G01V 9/00, 1998 г.

6. Патент РФ 2458362, G01V 9/00, 2012 г.

Способ определения приближения сейсмического события, включающий инструментальный мониторинг прогнозного параметра в пределах локального участка литосферы сейсмоактивной зоны, прогнозирование сейсмического события по изменению во времени характеристик прогнозного параметра, отличающийся тем, что в качестве прогнозного параметра используют низкочастотные микросейсмические колебания, регистрируемые сейсмическими станциями, проводят спектрально-временной анализ регистрируемого прогнозного параметра, рассчитывают коэффициент множественной регрессии, по понижению коэффициента множественной регрессии и снижению уровня сигнала-предвестника в спектральном окне 25-40 Гц делают вывод о приближении сейсмического события.



 

Похожие патенты:

Использование: для определения компонентного состава пород хемогенных отложений. Сущность изобретения заключается в том, что выполняют геофизические исследования акустическим, гамма-плотностным, нейтронным и гамма-спектральным методами по стволу скважины в разрезе хемогенных отложений с шагом дискретизации по глубине 0.1 м и на каждой точке глубины путем алгоритмического решения системы уравнений при четырех измеренных геофизических параметрах и известных физических свойствах скелетной части пород определяют количественное содержание преобладающих 5-ти компонент породы, включающей галит, ангидрит, сильвинит, кальцит и глины.

Изобретение относится к геофизике и может быть использовано для обеспечения контроля зарождающихся процессов разрушения в массиве горных пород, ведущих к катастрофическим проявлениям, а также для исследования подобных процессов.

Изобретение относится к области геофизики и может быть использовано для поисков и разведки месторождений нефти и газа. Заявленный способ вибрационной сейсморазведки основан на возбуждении и регистрации сейсмических колебаний в широкой полосе частот, расширенной в область низких частот, и на формировании колебаний с фиксированной амплитудой реактивной массы виброисточника, передающей возбуждаемые колебания в горные породы через опорную плиту виброисточника.

Изобретение относится к области охранных систем и может быть использовано для охраны объектов различного назначения. Заявлен способ обнаружения движущихся наземных объектов по сейсмическому сигналу, согласно которому каждую секунду во входном сейсмическом сигнале после предварительного усиления за время скользящего временного окна находятся средневзвешенная частота спектра в низкочастотной полосе пропускания, соответствующей эффективной полосе частот полезного сигнала, и высокочастотная составляющая, формируемая путем подсчета числа положительных и отрицательных экстремумов входного сейсмического сигнала за определенный промежуток времени.

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. Получены данные о вращательном и поступательном движении, принятые по меньшей мере одним датчиком движения.

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на расстоянии друг от друга в зоне вероятного падения объекта.
Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. Способ вибрационной сейсморазведки основан на возбуждении и регистрации вибрационных сейсмических колебаний и включает в себя коррекцию возбуждаемых сигналов путем изменения относительной интенсивности компонент спектра для волн, представляющих разведочный интерес.

Изобретение относится к сейсмической разведке и может использоваться при разведке нефтяных и газовых залежей. Согласно заявленному решению выбирают и устанавливают фиксированную приемную базу, располагают источники возбуждения сейсмических колебаний и приемники на этой базе симметрично относительно ее центра, принятого за начало координат.
Изобретение относится к области геофизики и может быть использовано при изучении сейсмогенерирующих структур. В способе обнаружения «живущих» разломов в зоне разлома устанавливают акустическую мониторинговую станцию и выполняют суточный мониторинг зоны разлома.

Изобретение относится к области сейсморазведки и может быть использовано для поиска и разведки углеводородов (УВ). Согласно способу оценки низкочастотной резонансной эмиссии (НРЭ) для поиска УВ прогнозирование УВ осуществляется в процессе анализа геодинамического шума непосредственно по временному разрезу метода общей глубинной точки (МОГТ) в широком диапазоне частот (5-130 Гц).
Изобретение относится к области освоения месторождений углеводородов и может быть использовано для подготовки потенциального осваиваемого месторождения к разведочному и эксплуатационному бурению. Технический результат - предотвращение аварий при бурении поисково-разведочных и/или эксплуатационных скважин на площади потенциального месторождения из-за вскрытия скоплений высоконапорного природного газа в верхней части разреза. Способ характеризуется тем, что осуществляют проведение сейсмических исследований разреза горных пород на площади потенциального малоизученного месторождения. Определяют интервалы залегания его продуктивных залежей и интервалы возможных скоплений природного газа - газовые карманы в верхней части разреза. Определяют места заложения поисково-разведочных и эксплуатационных скважин. Осуществляют бурение пилотной-первоочередной скважины с использованием противовыбросового оборудования, отбором керна и исследованиями околоскважинного пространства для уточнения интервалов возможного скопления природного газа. Вскрывают пилотной скважиной эти интервалы, добывают из них газ с понижением пластового давления до значения не более гидростатического. Сооружают поисково-разведочные и эксплуатационные скважины на продуктивные залежи потенциального месторождения, в том числе с возможным вскрытием этими скважинами в верхней части разреза горных пород интервалов с отобранным газом. Пилотную скважину, выполнившую задачу добычи газа, предусматривают для использования в качестве наблюдательной для контроля за перетоками газа из нижних горизонтов. 1 пр.

Изобретение относится к области геофизики и может быть использовано в процессе добычи углеводородов. В изобретении раскрывается способ анализа подземной породы. Первый сигнал передается от передатчика к породе, а второй сигнал, который является отражением первого сигнала, принимается. Третий сигнал, который является вторым сигналом, обращенным во времени, затем передается к породе. Четвертый сигнал, который является отражением третьего сигнала от породы, затем принимается и отслеживается. Предполагают расстояние до границы пласта. Предполагают скачок удельного сопротивления или скачок акустического импеданса между предстоящим пластом и текущим пластом. Определяют вычисленный сигнал с использованием предположенного расстояния до границы пласта и предположенного скачка удельного сопротивления или предположенного скачка акустического импеданса, соответственно. Также предложена система для осуществления данного способа анализа подземной породы. Технический результат - повышение точности получаемых данных. 2 н. и 15 з.п. ф-лы, 21 ил.

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии, возникающих в массиве. Определяют уровень активности акустической эмиссии, характерный для контролируемой геосреды, до начала замораживания. Определяют среднюю активность акустической эмиссии в процессе замораживания геосреды за каждый из последовательных, соизмеримых по продолжительности интервалов времени. Судят о формировании качественного ледопородного ограждения по не менее чем пятикратному снижению средней активности акустической эмиссии относительно исходного уровня и ее стабилизации во времени в ходе замораживания. Судят о наличии и расположении зон (10) несмыкания ледопородного ограждения по превышению значений средней активности акустической эмиссии на некотором участке геосреды уровня, характерного для качественно замороженных участков той же геосреды. Технический результат: повышение надежности контроля качества ледопородного ограждения. 2 ил.

Изобретение относится к области геофизики и может быть использовано для оценки опасности возникновения высокоэнергетических толчков. Согласно предложенному способу производятся измерения колебаний (EpomI) на поверхности трехмерными датчиками колебаний (4) и измерения параметров толчков (EpomII) под землей шахтной сейсмической системой локализации толчков (12), а также измерения перемещений (Upom) на поверхности трехмерными датчиками перемещений точек поверхности (9) с периодической корректировкой тахеометрическим измерительным комплектом (B). Множества полученных данных подвергаются обработке аналитической схемой (2а) и составляется прогноз опасности возникновения высокоэнергетических толчков в пространственно-временном континууме путем эстимации критических явлений, учитывающей совмещение наблюдений в виде квазидетерминистического и по пространству-времени обширного процесса деформации горного массива, а также парасейсмических явлений в виде кратковременных колебаний частиц горного массива в аспекте времени и частоты. Система состоит из центра обработки измерительных данных (1), где установлен преобразующий сервер (2), к которому подключен модем беспроводной связи (5), аналитическая схема (2а), а также шахтная сейсмическая сеть локализации толчков (12), которая проводной связью соединена с сейсмометрическими датчиками (11). В свою очередь на наблюдаемом участке горного массива (15) установлены измерительные комплекты (А), тогда как на участке, не подвергающемся деформации под влиянием шахтной разработки, установлен тахеометрический измерительный комплект (В), к которому подключен приемник спутниковой навигационной системы тахеометра (3), а также модем беспроводной связи (5). Технический результат - повышение точности и достоверности прогнозных данных. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазовой промышленности, преимущественно к скважинным геофизическим приборам. Скважинный источник плазменно-импульсного воздействия содержит корпус, в котором расположен блок управления, накопитель энергии и плазменный излучатель, устройство подачи металлического проводника, смонтированное на отдельном основании и содержащее средство протягивания металлического проводника, средство передачи движения и бобину с навитым на нее металлическим проводником. При этом устройство подачи металлического проводника расположено в герметичном кожухе и выполнено с возможностью жесткого соединения с плазменным излучателем, а средство протягивания металлического проводника выполнено в виде подвижного и неподвижного модулей с П-образными пазами, в которых расположены сквозные прорези для размещения в них направляющих пластин, а на концах выступов расположены проушины для закрепления в них осей, на которых расположены заостренные кулачки с пружинами кручения, обеспечивающие возможность качания кулачков на оси. При этом направляющие пластины выполнены с возможностью перемещения по вертикали и фиксации в заданном положении в сквозной прорези подвижного и неподвижного модулей, а на торцах направляющих пластин выполнены желобки для направления металлического проводника. Техническим результатом изобретения является повышение надежности работы скважинного источника плазменно-импульсного воздействия. 18 з.п. ф-лы, 6 ил.

Изобретение относится к области сейсмологии и может быть использовано для измерения предвестников землетрясений. Сущность: система содержит множество первичных датчиков-фотометров (1) контроля оптической плотности атмосферы, функционирующих в режиме отслеживания превышения сигнала установленного порогового уровня. Датчики-фотометры (1) разнесены по пространству сейсмоопасных регионов и являются абонентами глобальной телекоммуникационной сети (2) с центральным диспетчерским пунктом (3). Центральный диспетчерский пункт (3) осуществляет передачу в центр (4) управления орбитальной группировки космических носителей (5) адреса и координат сработавшего датчика-фотометра (1). Для доразведки обнаруженной зоны применяют бортовые средства, установленные на двухосной платформе (11) космического носителя (5), состоящие из соосно закрепленных цифровой видеокамеры (8) и мультиспектрометра (9), щель которого совмещена с центром видеокамеры (8), а также камеры (10) регистрации ультрафиолетового свечения атмосферы над зоной готовящегося землетрясения, буферного запоминающего устройства (12) записи сигналов упомянутых средств и высокоскоростной радиолинии (13) передачи зарегистрированных сигналов в наземный комплекс (15) управления и обработки данных. Технический результат: повышение достоверности обнаружения зон подготавливаемого землетрясения. 7 ил.

Способ автоматического обнаружения морских животных, выполняемый с помощью устройства обнаружения: этап получения измерений (1) акустических сигналов, собранных с помощью, по меньшей мере, одного акустического датчика в подводной среде; по меньшей мере, одну из первой ветви (3) для обнаружения частотно-модулированных звуков и второй ветви (4) для обнаружения импульсных звуков; причем каждая ветвь содержит этап обнаружения звуков с помощью: реализации параллельно нескольких каналов обнаружения, каждый из которых имеет различное фиксированное значение, по меньшей мере, для одной степени свободы; выбора канала обнаружения, имеющего максимальное отношение сигнал/шум; и сравнения отношений сигнал/шум выбранного канала обнаружения с установленным порогом; этап (32, 42, 5) принятия решения о сигнале тревоги, указывающем на присутствие, по меньшей мере, одного морского животного, в зависимости от выходного сигнала первой ветви и/или выходного сигнала второй ветви. 3 н. и 7 з.п. ф-лы, 8 ил.
Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. Предложен способ вибрационной сейсморазведки, основанный на возбуждении и регистрации вибрационных сейсмических колебаний и включающий в себя коррекцию возбуждаемых сигналов путем уменьшения относительной интенсивности компонент спектра для колебаний, не представляющих разведочного интереса. Согласно заявленному решению предлагается дополнительно возбуждать и регистрировать колебания после того, как определена резонансная частота по меньшей мере одной из помех, которую требуется подавить. Подавление помех можно достичь непосредственно путем исключения их из спектра возбуждаемых частот, например путем возбуждения колебаний при помощи различных опорных сигналов (свип-сигналов), не содержащих резонансных частот. Другой, альтернативный, путь, предлагаемый в одном из воплощений изобретения, состоит в том, что при возбуждении колебаний повышают скорость изменения частоты возбуждаемого сигнала в диапазоне частот, содержащем каждую из резонансных частот. Технический результат - повышение качества данных вибрационной сейсморазведки. 1 з.п. ф-лы.

Изобретение относится к способу и схеме обнаружения и минимизации метановой опасности в районе очистной лавы. Техническим результатом является повышение эффективности обнаружения и минимизации метановой опасности в районе очистной лавы шахты. Способ заключается в том, что на опережении очистной лавы периодически производится локализация районов, в которых возникает концентрация напряжений (N), с применением метода пассивной сейсмической скоростной томографии с использованием сейсмометров (8) и низкочастотных геофонов (9). Одновременно эти данные сравнивают с текущими сейсмоакустическими измерениями, локализующими места (М) частых щелчков, сопутствующих трещинообразованию горного массива на опережении выработки лавы, с измерениями содержания метана и измерениями течения воздуха в этой выработке. При этом места концентрации напряжений (N) впереди фронта очистной лавы локализуют путем выполнения активной сейсмической амплитудной томографии ослабления-затухания с учетом расположения очистного комбайна (13) в выработке лавы (В), затем производится корреляция указанных выше параметров по времени и пространственная, а после установления, что коэффициент корреляции превышает определенное критическое значение, реализуют профилактические процедуры, минимизирующие метановую опасность. В схеме согласно изобретению к аналитической схеме (5) подключена сейсмическая регистрирующая система (1), метанометрическая система (3), исполнительная схема (6), а также панель предупредительных сигналов (7). При этом к сейсмической регистрирующей системе (1) с не менее чем четырьмя сейсмометрами (8), не менее чем четырьмя низкочастотными геофонами (9) и не менее чем двумя датчиками напряжений (10) подключена сейсмоакустическая регистрирующая система (2) с не менее чем четырьмя геофонами (11), а также схема контроля расположения и работы очистного комбайна (4) с датчиком местоположения очистного комбайна (12). 2 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к области геофизики и может быть использовано для исследования подземных структур. Раскрыт способ оценивания распределений температур по геологической среде на основании трехмерной модели теплопроводности для геологического пласта. Согласно предложенному способу получают измеренные данные, соответствующие представляющему интерес геологическому подземному пласту, содержащие данные сейсмических исследований, внутрискважинную температуру, измерения теплового потока на дне и поверхности моря и лабораторные измерения пористости керна. Оценивают зависимость между скоростью сейсмической волны и теплопроводностью. При этом скорость сейсмической волны линейно зависит от пористости и теплопроводность экспоненциально или линейно зависит от пористости. Калибруют указанную модель по указанным измеренным внутрискважинным данным и лабораторным измерениям пористости керна. Технический результат - повышение точности и достоверности результатов моделирования. 9 з.п. ф-лы, 5 ил.
Наверх