Способ локализации запасов в нефтематеринских толщах

Изобретение относится к области геофизики и может найти применение при разработке нефтяных залежей. Способ включает проведение геолого-геофизических и промысловых исследований скважин, комплексный анализ их результатов, выделение литотипов по данным ГИС, оценку разделения литотипов в полях скоростей продольных, поперечных волн и плотности, проведение синхронной инверсии частичных угловых сумм сейсморазведочных работ 3Д, в результате чего получают трехмерные кубы скоростей продольной, поперечной волн и плотности. Пересчитывают их в дискретный куб литологии на основе литотипов, выделенных по скважинным данным, и проводят калибровку и верификацию по данным ГИС. На основе результатов обработки и интерпретации сейсморазведочных работ 3Д строят карты когерентности волнового поля по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта. Определяют критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю. Проводят совместный анализ карт когерентности и выделяют потенциально продуктивные зоны баженовской свиты. Проводят анализ зависимости мощности литотипов от запускных дебитов скважин. Затем на основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна рассчитывают коэффициенты пористости и нефтенасыщенности, по результатам чего строят карты эффективных нефтенасыщенных мощностей, пористости, нефтенасыщенности и распределения плотности запасов нефти. Технический результат - повышение точности прогнозирования распространения запасов нефти. 8 ил.

 

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке нефтяных залежей нетрадиционных коллекторов нефтематеринских толщ баженовской свиты.

Объектом прогнозирования являются запасы нефти в отложениях, представляющих собой переслаивание пачек черных глинистых пород с высоким содержанием органического вещества и маломощных плотных пропластков преимущественно карбонатного и кремнистого состава.

С одной стороны, рассматриваемые отложения формируют нефтематеринские толщи, а с другой (в то же время) - вмещают промышленные скопления подвижной нефти, доступной для разработки на современном технологическом уровне.

Залежи нефти аккумулируются в трещинных и трещинно-кавернозных (трещинно-поровых) коллекторах, по своему типу относятся к полностью литологически экранированным и не контролируются структурным планом толщи. Дебиты нефти при этом меняются в широких пределах.

Открытие промышленных залежей нефти в такого рода толщах происходит, как правило, случайно при опоисковании и разведке нижележащих горизонтов. Запасы нефти оцениваются только в радиусе дренажа скважин, давших промышленные притоки. Подсчетные параметры при этом назначаются формально по рекомендациям директивных органов управления недропользованием. Например, эффективная толщина принимается равной 1/3 общей мощности пласта, а пористость - равной 8%.

Такое положение резко снижает эффективность разведки и освоения нефтяного потенциала рассматриваемого типа отложений.

Известен способ обнаружения нефтегазосодержащих толщ путем выполнения комплексных геофизических исследований (гравиметрической и аэромагнитометрической съемки) с выделением контура аномальных зон, который отождествляют с контуром залежи полезного ископаемого (см. патент РФ №2050015, МПК G01V 11/00, опубл. 10.12.1995).

Недостатком способа является его трудоемкость.

Известен способ поиска залежей углеводородов в карбонатных породах фундамента нефтегазоносных рифтогенных осадочных бассейнов. Способ заключается в отборе образцов породы в процессе бурения и измерении их магнитной восприимчивости, по которым судят о наличии залежей. Образцы породы отбирают с нефтегазоносных площадей с карбонатным фундаментом, соседствующим с погребенным континентальным палеорифтом, а о наличии залежей судят по значениям магнитной восприимчивости из интервала 13,0·106-31,01·106 (см. патент РФ №2276390, МПК G01V 3/08, опубл. 10.05.2006).

Однако данный способ рассчитан исключительно на карбонатные, а не на битуминозные глинистые отложения.

Известен способ поиска залежей углеводородов (см. патент РФ №№2194293, МПК G01V 11/00, опубл. 10.12.2002), в котором в качестве перспективных районов выбирают нефтегазоносные районы с фундаментом, представляющим собой тафрогенную структуру. Производят измерение магнитных и гравитационных полей. Выявляют наличие кислых экструзивных куполов в породах фундамента по совпадению отрицательных аномалий магнитного и гравитационного полей. Выбирают места заложения проверочных скважин в центральной зоне экструзивных куполов.

Однако данный способ также достаточно трудоемок и дорогостоящ, т.к. необходимо осуществлять бурение на значительно большие глубины.

Дальнейшим шагом на пути изучения промышленной нефтеносности нефтематеринских толщ явилось изобретение «Способ геофизической разведки для определения нефтепродуктивности трещинных глинистых коллекторов в межскважинном пространстве» (патент РФ №2225020, опубл. 27.02.2004). Особенностью рассматриваемой работы является то, что авторы предпринимают смелую попытку непосредственно связать коэффициент продуктивности в разведочных и эксплуатационных скважинах с сейсмическими динамическими параметрами, минуя работу с такими важнейшими характеристиками резервуара и залежей, как емкость, запасы и общая конструкция залежей. Способ по патенту №2225020 не обеспечивает выделение коллекторов в разрезе скважин, оценку их пустотности и емкости, что исключает возможность подсчета запасов. Оптимизация размещения скважин в рамках данного патента возможна только по одному критерию - максимальная продуктивность. В то время как по всем канонам необходимо учитывать как продуктивность, так массу и плотность запасов.

Известен способ прогнозирования зон развития вторичных коллекторов трещиноватого типа в осадочном чехле, который является наиболее близким к заявляемому техническому решению (прототипом), патент РФ №№2183332, опубл. 10.06.2002. Способ включает проведение и анализ результатов геолого-геофизических исследований: обработку сейсмически отраженных волн, привязанных к выбранному комплексу отложений, проведение литолого-петрофизических исследований образцов пород для определения наиболее вероятного генезиса вторичных коллекторов, выделение литотипов, по которым происходит формирование вторичных коллекторов трещиноватого типа, определение площади развития этих литотипов. Авторы связывают развитие трещиноватости в твердых хрупких пропластках исключительно с действием тектонических напряжений. Тектонические напряжения, по мнению авторов, формируют систему дизъюнктивных дислокаций разного масштаба при формировании окончательного структурного плана осадочного бассейна. Распределение трещиноватости по патенту РФ №2183332 является результатом математического, тектоноструктурного и оптико-поляризационного моделирования. Принятый авторами генезис трещиноватости привязывает зоны развития «вторичной трещиноватости» к структурному плану, картируемому сейсморазведкой. Предложенный способ имеет следующие недостатки.

1. Практика опровергла однозначную привязку зон развития вторичных трещиноватых коллекторов к каким-либо элементам структурного плана в осадочных толщах.

2. В способе, изложенном в патенте №2183332, не рассматриваются процессы, приведшие к миграции нефти в перекрывающие породы, не учитывается литологический состав разреза.

В заявляемом способе основной упор делается на выделение потенциально продуктивных зон по результатам комплексного анализа сейсморазведочных работ 3Д и промысловых испытаний разведочных и эксплуатации добывающих скважин; выделение интервалов коллектора в разрезе баженовской свиты.

Стоит задача повышения степени прогнозирования распространения запасов нефти в баженовской свите за счет возможности построения карт распределения плотности запасов нефти, которые позволяют повысить эффективность бурения эксплуатационных скважин и увеличить накопленную добычу нефти на скважину.

Поставленная задача решается тем, что в способе локализации запасов в нефтематеринских толщах, включающем проведение геолого-геофизических и промысловых исследований скважин, комплексный анализ их результатов, выделение литотипов по данным ГИС, согласно изобретению оценивают разделение литотипов в полях скоростей продольных, поперечных волн и плотности, проводят синхронную инверсию частичных угловых сумм сейсморазведочных работ 3Д, в результате чего получают трехмерные кубы скоростей продольной, поперечной волн и плотности, пересчитывают их в дискретный куб литологии на основе литотипов, выделенных по скважинным данным, проводят калибровку и верификацию по данным ГИС, на основе результатов обработки и интерпретации сейсморазведочных работ 3Д строят карты когерентности волнового поля по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта, определяют критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю, проводят совместный анализ карт когерентности и выделяют потенциально продуктивные зоны баженовской свиты, проводят анализ зависимости мощности литотипов от запускных дебитов скважин, затем на основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна рассчитывают коэффициенты пористости и нефтенасыщенности, по результатам чего строят карты эффективных нефтенасыщенных мощностей, пористости, нефтенасыщенности и распределения плотности запасов нефти.

Способ реализуется следующим образом.

1. На выбранной площади проводят геолого-геофизические и промысловые исследования разведочных и эксплуатационных скважин (ГИС), вскрывших баженовскую свиту, в том числе кросс-дипольный широкополосный акустический и плотностной каротаж. Проводят комплексный анализ и интерпретацию их результатов, выделяют основные литотипы.

2. Оценивают разделение литотипов в полях скоростей продольных и поперечных волн, плотности.

3. Проводят синхронную инверсию частичных угловых сумм сейсморазведочных данных 3Д, в результате получают трехмерные кубы скоростей продольной, поперечной волн и плотности, пересчитывают их в дискретный куб литологии на основе литотипов, выделенных по скважинным данным, и результата по п. 2. Далее проводится калибровка и верификация по данным ГИС.

4. На основе результатов обработки и интерпретации сейсморазведочных работ 3Д строят карты когерентности волнового поля по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта.

5. По данным испытаний разведочных и эксплуатации добывающих скважин определяют критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю.

6. После этого проводят совместный анализ карт когерентности баженовской свиты и вышележащих проницаемых отложений с целью выделения потенциально продуктивных зон баженовской свиты.

7. Проводят анализ зависимости мощности литотипов от запускных дебитов скважин. Тот литотип, для которого устанавливается хорошая зависимость (высокий коэффициент корреляции), считают нефтеотдающим и его мощность принимают за толщину нефтенасыщенных пород.

8. По результатам пунктов 3, 6 и 7 рассчитывают карту эффективных нефтенасыщенных мощностей, соответствующих мощности нефтеотдающего литотипа в пределах потенциально продуктивных зон.

9. На основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна рассчитывают коэффициенты пористости и нефтенасыщенности. По результатам строят карты пористости и нефтенасыщенности путем 2Д, либо 3Д моделирования.

10. По результатам пунктов 8, 9 рассчитывают карту распределения плотности запасов нефти.

Пример конкретного выполнения способа представлен на следующих иллюстрациях:

Фиг. 1 - Выделение основных литотипов в разрезе скважины.

Фиг. 2 - Разделение литотипов в поле скорость-плотность по данным ГИС.

Фиг. 3 - Куб литологии.

Фиг. 4 - Карта когерентности по кровле баженовской свиты.

Фиг. 5 - Карта когерентности по подошве ближайшего проницаемого пласта.

Фиг. 6 - Карта потенциально продуктивных зон баженовской свиты.

Фиг. 7 - Зависимость запускных дебитов скважин от мощности кремнистых пород.

Фиг. 8 - Карта плотности запасов нефти.

В качестве примера рассмотрен участок, расположенный на территории Западной Сибири, находящийся в разработке. На выбранной площади были проведены геолого-геофизические и промысловые исследования разведочных и эксплуатационных скважин (ГИС), вскрывших баженовскую свиту, в том числе кросс-дипольный широкополосный акустический и плотностной каротаж. Рассматриваемая территория покрыта сейсморазведочными работами 3Д, в процессе обработки которых были рассчитаны кубы частично кратных угловых сумм и проведена интерпретация.

Была проведена интерпретация стандартного комплекса ГИС разведочных и эксплуатационных скважин, вскрывших баженовскую свиту и выделены основные литотипы (см. фиг. 1: литотип 1 - керогеносодержащие интервалы, литотип 2 - глинистые породы, литотип 3 - кремнистые породы, литотип 4 - карбонатизированные породы). В скважинах с наличием кросс-дипольного широкополосного акустического и плотностного каротажа проведено разделение литотипов в полях скоростей продольных, поперечных волн и плотности (фиг. 2). Проводилась синхронная инверсия частичных угловых сумм сейсморазведочных данных 3Д, были получены трехмерные кубы скоростей продольной, поперечной волн и плотности, которые пересчитывались в дискретный куб литологии на основе литотипов, выделенных по скважинным данным. Была выполнена калибровка и верификация на данные ГИС (фиг. 3). На основе результатов обработки и интерпретации сейсморазведочных работ 3Д построили карты когерентности по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта (фиг. 4, 5). По данным испытаний разведочных и эксплуатации добывающих скважин определено критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю, которое для данного участка составило 0,95. Далее проводился совместный анализ карт когерентности баженовской свиты и вышележащих проницаемых отложений, в результате которого выделили потенциально продуктивные зоны баженовской свиты (фиг. 6). Была определена зависимость между запускными дебитами скважин и толщиной литотипов. Литотип 3, для которого устанавливается хорошая зависимость (высокий коэффициент корреляции), считаем нефтеотдающим (фиг. 7), его мощность принимаем за толщину нефтенасыщенных пород. На основе 3Д модели распределения куба литологии, с учетом карт продуктивных зон и толщины литотипа 3 была рассчитана карта эффективных нефтенасыщенных мощностей. На основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна были рассчитаны коэффициенты пористости, нефтенасыщенности и методом 2Д моделирования получены соответствующие карты распределения пористости и нефтенасыщенности. Затем рассчитана карта распределения плотности запасов нефти (фиг. 8).

Таким образом, предлагаемый способ локализации запасов осуществляют, произведя сейсморазведочные работы 3Д, геофизические и промысловые исследования скважин. Используются результаты стандартных и специальных исследований керна и разработанных для данных залежей петрофизических алгоритмов оценки фильтрационно-емкостных свойств. Выявляются потенциально продуктивные зоны, области миграции нефти в вышележащие проницаемые пласты, выделяются зоны развития коллекторов и их свойства.

По предлагаемому способу локализации запасов достигается высокая степень прогнозирования распространения запасов нефти в баженовской свите, что обеспечивает эффективность бурения эксплуатационных скважин и увеличение накопленной добычи нефти на скважину.

Способ локализации запасов в нефтематеринских толщах, включающий проведение геолого-геофизических и промысловых исследований скважин, комплексный анализ их результатов, выделение литотипов по данным ГИС, отличающийся тем, что оценивают разделение литотипов в полях скоростей продольных, поперечных волн и плотности, проводят синхронную инверсию частичных угловых сумм сейсморазведочных работ 3Д, в результате чего получают трехмерные кубы скоростей продольной, поперечной волн и плотности, пересчитывают их в дискретный куб литологии на основе литотипов, выделенных по скважинным данным, проводят калибровку и верификацию по данным ГИС, на основе результатов обработки и интерпретации сейсморазведочных работ 3Д строят карты когерентности волнового поля по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта, определяют критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю, проводят совместный анализ карт когерентности и выделяют потенциально продуктивные зоны баженовской свиты, проводят анализ зависимости мощности литотипов от запускных дебитов скважин, затем на основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна рассчитывают коэффициенты пористости и нефтенасыщенности, по результатам чего строят карты эффективных нефтенасыщенных мощностей, пористости, нефтенасыщенности и распределения плотности запасов нефти.



 

Похожие патенты:

Изобретение относится к атрибуту напряжения в горных породах, обеспечивающему проведение анализов геологических сред. Технический результат заключается в эффективном определении атрибута напряжения, обеспечивающего понимание напряжений в пласте горной породы и, как следствие, принятие верного решения о месте и методе извлечения ресурса.

Изобретение относится к областям скважинной геологии и геофизики и, более конкретно, к идентификации и оцениванию глубинных зон, имеющих упругую среду, видоизмененную наведенными природными трещинами или напряжениями эффектов.

Изобретение относится к геофизическим исследованиям в скважинах, а именно к анализу и обработке полученных данных с устройства акустического каротажа. .

Изобретение относится к системам отображения совокупности данных измерений вдоль траектории ствола скважины. .

Изобретение относится к области промысловой геофизики. .

Изобретение относится к области геофизических исследований скважин акустическими методами. .

Изобретение относится к средствам измерения в скважинах в процессе бурения, в частности к средствам передачи сейсмических данных в реальном времени. Техническим результатом является повышение точности и скорости передачи данных.

Изобретение относится к области геофизики и может быть использовано при проведении каротажных работ. Предложен спектральный шумомер, содержащий акустический детектор, первый частотный канал с первым каскадом усиления, выполненный с возможностью усиления первой составляющей электрического выходного сигнала, генерируемого акустическим детектором, второй частотный канал с фильтром нижних частот и вторым каскадом усиления, выполненный с возможностью фильтрации и усиления второй составляющей электрического выходного сигнала, генерируемого акустическим детектором.

Изобретение относится к области геофизики и может быть использовано при оценке продуктивности скважины и эффективности ее эксплуатации. .

Изобретение относится к области геофизики и может быть использовано при разведке месторождений углеводородов (УВ) с использованием измерений параметров геофизических полей различной природы при обработке данных для определения детальных (тонкослоистых) фильтрационно-емкостных свойств коллекторов и типа их насыщения в межскважинном и околоскважинном пространстве.

Изобретение относится к области геофизики и может быть использовано для изучения анизотропии и трещиноватости пород методами скважинной сейсморазведки. .

Изобретение относится к области исследования геологических разрезов по данным сейсмоакустических исследований нефтегазовых скважин. .

Изобретение относится к области сейсмической разведки, в частности к способам обработки сейсмических данных. .
Изобретение относится к донным станциям для проведения сейсмических исследований. Сущность: донная станция выполнена в виде установленного на дне акватории глубоководного самовсплывающего носителя геофизической аппаратуры, соединенного с бортовым вычислительным модулем, установленным на борту судна.
Наверх