Лазерная система с многопетлевым резонатором

Лазерная система одномодового одночастотного излучения содержит систему поворотных зеркал, установленных с возможностью образования кольцевого резонатора и по меньшей мере одной дополнительной петли излучения в нём. Перекрестье каждой дополнительной петли локализовано в центральной области среды активного элемента. При этом каждая дополнительная N-я петля излучения формируется пучком излучения, проходящим среду активного элемента N+1-й раз. Пучки излучения каждой из петель записывают обращающие волновой фронт зеркала в среде активного элемента - дифракционную решётку усиления, а генерируемые пучки излучения отражаются от них и когерентно складываются между собой, образуя при этом выходное лазерное излучение. Технический результат - уменьшение порогового усиления активного элемента, числа активных элементов в парциальном генераторе при построении многоканальных лазерных систем, габаритных размеров лазерной системы; расширение диапазона активных сред, используемых для генерации лазерного излучения; осуществление генерации лазерного излучения на не основных лазерных переходах для его дальнейшего смещения в среднюю инфракрасную область спектра лазерного излучения. 2 з.п. ф-лы, 5 ил.

 

Изобретение относится к квантовой электронике, а именно к твердотельным лазерам, и может быть использовано для получения одномодового импульсно-периодического режима генерации с высокой пространственной яркостью излучения, обладающего большой длиной когерентности и малой расходимостью.

В квантовой электронике широкое распространение получили твердотельные лазерные системы с самонакачивающимся обращением волнового фронта (далее ОВФ), реализуемом при четырехволновом смешении непосредственно в лазерной усиливающей среде [1-6]. Такие лазерные системы обеспечивают генерацию мощного лазерного излучения с малой расходимостью, близкой к дифракционному пределу, благодаря самокомпенсации искажений при ОВФ.

Известна лазерная система одномодового излучения [7], содержащая два активных элемента, между которыми расположен пассивный лазерный затвор, также лазерная система содержит поворотные зеркала и полностью отражающее концевое опорное зеркало, выполненное в виде интерферометра Саньяка. Поворотные зеркала установлены так, что формируют по одной петле излучения в каждом из активных элементов, что обеспечивает образование самонакачивающихся ОВФ-зеркал в виде решеток коэффициента усиления, возникающих в результате интерференции пересекающихся пучков излучения.

Одномодовый одночастотный режим генерации лазерной системы достигается путем селекции поперечных мод в интерферометре Саньяка и обращения волнового фронта излучения при четырехволновом смешении на решетках усиления в активных элементах. Пассивный лазерный затвор позволяет осуществить модуляцию добротности резонатора с увеличением мощности и сокращением длительности генерируемых импульсов лазерного излучения.

Недостатком данного устройства является необходимость использования дополнительного активного элемента с записью в нем дополнительного ОВФ-зеркала для снижения порога лазерной генерации и увеличения усиления в канале генерации. При этом запасенная энергия дополнительного активного элемента используется не полностью, что приводит к уменьшению эффективности генерации. Другим недостатком устройства является то, что излучение, отраженное от ОВФ-зеркала, распространяется в направлении, встречном к направлению выходного лазерного излучения, что приводит к неполной компенсации искажений при ОВФ.

Известна также лазерная система одномодового излучения, принятая в качестве прототипа [8], содержащая один активный элемент, поворотные зеркала, частично отражающее опорное зеркало, являющееся выходным, и оптический вентиль Фарадея, направляющий выходное лазерное излучение к выходному зеркалу. Причем поворотные зеркала установлены так, что формируют петлю излучения, перекрестье которой локализовано в центральной области среды активного элемента для обеспечения образования ОВФ-зеркала. Реализация одномодового одночастотного режима генерации, как и в предыдущей лазерной системе, достигается путем ОВФ при четырехволновом смешении в активной лазерной среде, однако при этом компенсация искажений при ОВФ является полной, т.к. отраженное ОВФ-зеркалом излучение оказывается попутным к выходному лазерному излучению. При этом реализуется режим самомодуляции добротности резонатора на решетках усиления с увеличением мощности и сокращением длительности генерируемых импульсов лазерного излучения без использования каких-либо лазерных затворов.

Недостатком данной системы является наличие высокого порога генерации лазерного излучения, что требует использования активного элемента, имеющего активную среду только с высоким усилением.

Задача изобретения состоит в уменьшении порога генерации лазерного излучения в лазерах с использованием петлевой схемы.

Известна лазерная система одномодового одночастотного излучения, содержащая активный элемент, поворотные зеркала, установленные с возможностью образования пучком излучения петли, перекрестье которой локализовано в центральной области среды активного элемента с записью в нем обращающего волновой фронт зеркала, а на выходе лазерной системы установлено выходное зеркало.

В соответствии с изобретением, лазерная система снабжена системой поворотных зеркал, установленных с возможностью образования, по меньшей мере, еще одной дополнительной петлей излучения. Перекрестья каждой из дополнительных петель также локализованы в центральной области среды активного элемента. При этом каждая дополнительная N-я петля излучения формируется пучком излучения, проходящим среду активного элемента N+1-й раз, пучки излучения каждой из петель записывают обращающие волновой фронт зеркала в среде активного элемента, а генерируемые пучки излучения отражаются от них и когерентно складываются между собой, образуя при этом выходное лазерное излучение.

Предлагаемое изобретение позволяет осуществить генерацию лазерного излучения с использованием активного элемента со слабым усилением за счет того, что пучки излучения, генерирующиеся на всех ОВФ-зеркалах, полученных с помощью дополнительных петель, суммируются между собой, обеспечивая развитие генерации лазерного излучения с обращенным волновым фронтом и самокомпенсацией внутрирезонаторных искажений.

На образовавшихся дополнительных ОВФ-зеркалах происходит частичное рассеяние излучения в петли, вызывающее дальнейшее нарастание интенсивности пучков излучения, которое приводит и к увеличению коэффициентов отражения (дифракционной эффективности) ОВФ-зеркал. Такая динамическая обратная связь, включающая одновременный взаимный рост дифракционной эффективности ОВФ-зеркал и нарастание потока излучения, приводит к формированию резонатора лазера. Пучки излучения, генерирующиеся на образованных ОВФ-зеркалах, суммируются, обеспечивая снижение порога лазерной генерации и возможность использования различных активных сред в качестве активных элементов и различных их линий люминесценции, в т.ч. со слабым усилением.

Использование в лазерной системе дополнительных поворотных зеркал, с помощью которых пучками излучения образуются две дополнительные петли с перекрестьями, также локализованными в центральной области среды активного элемента, дополнительно снижает порог и обеспечивает более эффективную лазерную генерацию.

Эффективность лазерной системы одномодового одночастотного излучения может быть повышена за счет того, что в системе поворотных зеркал, по меньшей мере, между двумя зеркалами установлен один оптический вентиль Фарадея.

Рис.1. Схема лазерной системы с многопетлевым резонатором.

Рис.2. Схема генерации ОВФ-зеркала P1 с помощью первой петли излучения.

Рис.3. Схема генерации ОВФ-зеркала Р2 с помощью второй петли излучения.

Рис.4. Схема генерации ОВФ-зеркала Р3 с помощью третьей петли излучения.

Рис.5. Графики зависимости пороговых значений усиления Gпор активного элемента от пропускания вентиля для прототипа и заявляемого изобретения.

Пример реализации изобретения для лазерной системы с количеством дополнительных петель N, равным двум. Лазерная система (рис.1) содержит закрепленный неподвижно на основании по ходу световых лучей активный элемент АЭ и систему зеркал 1-7, установленных таким образом, что формируется не менее трех внутрирезонаторных петель, в пересечении которых размещен активный элемент АЭ. По ходу распространения пучков излучения между зеркалами 6 и 7 установлен оптический вентиль фарадея ВФ. Опорное зеркало 1 является частично пропускающим и предназначено для вывода лазерного излучения в направлении ОВФ-генерации с самокомпенсацией искажений.

Генерация одномодового одночастотного лазерного излучения происходит следующим образом. Для генерации лазерного излучения с помощью ламп или линеек (матриц) лазерных диодов (не показано) возбуждается активная среда активного элемента АЭ. Пучки затравочного или инжектированного излучения распространяются в лазерной системе, последовательно отражаясь от зеркал 1, 2, 3, 4, 5, 6 и 7, и усиливаются в G раз за каждый проход АЭ (G - усиление АЭ за проход), при этом между зеркалами 6 и 7 установлен вентиль Фарадея так, что при распространении излучения от зеркала 6 к зеркалу 7 (направление записи) пучок проходит вентиль Фарадея с ослаблением (коэффициент ослабления равен пропусканию T вентиля Фарадея в закрытом направлении), а во встречном направлении (направление ОВФ-генерации) от зеркала 7 к зеркалу 6 излучение проходит вентиль Фарадея без существенного ослабления. При этом пучки излучения, распространяющиеся в направлении записи, несколько раз пересекаются в АЭ и интерферируют, записывая решетки усиления благодаря зависимости коэффициента усиления АЭ от интенсивности излучения. На записанных решетках усиления происходит ОВФ-дифракция внутрирезонаторного излучения, возвращающая генерируемое излучение в лазерный резонатор, т.е. решетки являются ОВФ-зеркалами резонатора, обеспечивающими лазерную генерацию в направлении, встречном к направлению записи.

Для формирования ОВФ-зеркал используются четыре записывающих пучка с интенсивностями I1-I4, при этом пучки I1-I3 образуются в лазерной системе из затравочного или инжектированного пучка интенсивностью I1, идущего от опорного зеркала 1 лазерной системы (рис.1). Необходимо отметить, что число записанных решеток усиления, являющихся ОВФ-зеркалами, равно числу сочетаний пар записывающих пучков (N2-N)/2=6, где N=4 - число записывающих пучков, т.е. записывается шесть решеток усиления. При этом наибольшее влияние на развитие генерации и снижение ее порога оказывают только три наиболее эффективные решетки, в записи которых участвует записывающий пучок с наибольшей интенсивностью I4~G3, где G - усиление за проход лазерной среды. Каждому ОВФ-зеркалу соответствует своя траектория обхода лазерной системы генерируемым излучением, что иллюстрируется рис.2-4. При этом лазерная генерация на каждой из решеток усиления происходит навстречу записывающим пучкам, поэтому вентиль Фарадея (рис.1) для генерируемого излучения оказывается полностью пропускающим (имеющим малые потери, не превышающие нескольких процентов).

В результате интерференции записывающих пучков I4 и I1 первой петли образуется 1-е ОВФ-зеркало (1-я решетка усиления), а пучок I5 генерируемого лазерного излучения распространяется от зеркала 2 (рис.2) навстречу записывающему пучку I1 и дифрагирует на 1-й решетке усиления, частично (с коэффициентом η1) рассеиваясь навстречу второму записывающему пучку I4 в сторону зеркала 7. Далее отражаясь от зеркал 7, 6, 5, 4, 3 и 2, генерируемое излучение (пучок I5) совершает полный обход резонатора, дважды проходя лазерную среду с усилением в G2 раз. При этом коэффициент изменения интенсивности генерируемого излучения I5 за полный обход резонатора равен η1G2.

В результате интерференции записывающих пучков I4 и I2 второй петли образуется 2-е ОВФ-зеркало (2-я решетка усиления), а пучок I6 генерируемого лазерного излучения распространяется от зеркала 4 (рис.3) навстречу записывающему пучку I2 и дифрагирует на 2-й решетке усиления, частично (с коэффициентом η2) рассеиваясь навстречу второму записывающему пучку I4 в сторону зеркала 7. Далее отражаясь от зеркал 7, 6, 5 и 4, пучок генерируемого излучения I6 совершает полный обход резонатора, один раз проходя лазерную среду с усилением в G раз. При этом коэффициент изменения интенсивности генерируемого излучения за полный обход резонатора равен η2G.

В результате интерференции пучков третьей петли I4 и I3 образуется 3-е ОВФ-зеркало (3-я решетка усиления), а пучок I7 генерируемого лазерного излучения распространяется от зеркала 6 (рис.4) навстречу записывающему пучку I3 и дифрагирует на 3-й решетке усиления, частично (с коэффициентом η3) рассеиваясь навстречу второму записывающему пучку I4 в сторону зеркала 7. Далее отражаясь от зеркал 7 и 6, генерируемое излучение I7 совершает полный обход резонатора с коэффициентом изменения интенсивности, равным η3.

В результате сформированные на трех рассматриваемых ОВФ-зеркалах пучки генерируемого лазерного излучения I5, I6, I7 складываются между собой, что позволяет преодолеть порог и осуществить развитие генерации даже при малом усилении активного элемента.

Оценку максимальной дифракционной эффективности каждой (1-й, 2-й и 3-й) решетки усиления можно провести с помощью по формулы [9]:

η 1,2,3 G ( b L V 1,2,3 ) 2 , ( 1 )

где L - длина АЭ; b=α/4 - максимальное значение коэффициента дифракционной связи [10], α=L-1·InG - коэффициент усиления лазерной среды;

V i = 2 I i I 4 I i + I 4 ( 2 )

- контраст интерференции пары пучков, записывающих i-ю решетку (i=1, 2, 3 - номер решетки); Ii - интенсивность первого записывающего пучка i-й решетки; вторым записывающим пучком во всех решетках является выходной пучок интенсивностью I4.

Для интенсификации развития генерации мы предлагаем использовать вентиль Фарадея, имеющий малое оптическое пропускание в направлении записи Т<<1, но полное оптическое пропускание в направлении генерации, установленный согласно рис.1. Использование вентиля Фарадея приводит к существенному увеличению дифракционной эффективности решеток ηi. Это происходит вследствие того, что интенсивность наиболее сильного записывающего пучка I4 уменьшается (коэффициент уменьшения равен Т), и благодаря уменьшению различия интенсивностей интерферирующих волн Ii=I1·Gi-1 и I4=T·I1·G3 увеличивается контраст интерференции Vi (2).

Значения контраста интерференции для 1-й, 2-й и 3-й решетки при подстановке интенсивностей Ii и I4 в (2) описываются следующей формулой:

V i = 2 T G 4 i 1 + T G 4 i , ( 3 )

тогда дифракционные эффективности η1,2,3 (1) определяются выражением:

η i = G 4 ( ln G ) 2 T G 4 i ( 1 + T G 4 i ) 2 . ( 4 )

В результате дифрагирующие (рассеянные) на трех рассматриваемых решетках усиления (ОВФ-зеркалах) пучки ОВФ-излучения когерентно складываются, обусловливая повышение обратной связи для образования лазерного резонатора. Тогда условие порога генерации с учетом баланса интенсивностей при обходе резонатора примет вид:

η 1 G 2 η 2 G + η 3 = 1. ( 5 )

Для прототипа дифракционная эффективность ОВФ-зеркала определяется следующей формулой:

η = G 4 ( ln G ) 2 T G ( 1 + T G ) 2 . ( 6 )

При этом условие порога генерации с учетом баланса интенсивностей при обходе резонатора примет вид:

η = 1. ( 7 )

Из формул (4)-(5) и (6)-(7) определяются пороговые значения усиления G активного элемента, превышение которого обеспечивает лазерную генерацию в предлагаемой лазерной системе и в прототипе соответственно.

Формулы (3)-(7) также справедливы для случая отсутствия вентиля Фарадея в схеме (рис.1), если принять T=1. Тогда получим для предлагаемой лазерной системы значение порогового усиления Gпор=3.54, что в 2.54 раза ниже, чем в прототипе (Gпор=9.01).

Применение вентиля Фарадея в схеме (рис.1), при котором Т<1, позволяет снизить пороговое усиление Gпор активного элемента по сравнению со случаем отсутствия вентиля Фарадея (Т=1). Так, при T=10-1 из формул (5) и (7) имеем Gпор=2.41 - для предлагаемой лазерной системы и Gпор=5.84 - для прототипа, т.е. при использовании вентиля Фарадея с пропусканием в закрытом направлении Т=10-1 в предлагаемой лазерной системе пороговое усиление активного элемента в 2.42 раза ниже, чем в прототипе. При уменьшении T до 10-2 из формул (5) и (7) получаем значения Gпор=2.87 - для предлагаемой лазерной системы и Gпор=9.82 - для прототипа, т.е. использование вентиля Фарадея с T=10-2 в предлагаемой лазерной системе снижает порог генерации, а в прототипе, наоборот, повышает по сравнению со случаем отсутствия вентиля Фарадея.

На рис.5 представлены зависимости пороговых значений усиления Gпор активного элемента от пропускания вентиля Фарадея в закрытом направлении Т. Зависимость 1 (рис.5) рассчитана по формулам (4) и (5) для предлагаемой лазерной системы, а зависимость 2 (рис.5) рассчитана по формулам (6) и (7) для прототипа.

Из рис.5 видно, что использование вентиля Фарадея (T<1) для предлагаемой лазерной системы позволяет уменьшить пороговое усиление активного элемента в сравнении со случаем отсутствия вентиля Фарадея (T=1) в более широком диапазоне T от 10-3 до 1 в отличие от прототипа, где аналогичный диапазон узок - от 10-2 до 1, а из принципа работы вентиля Фарадея следует, что уменьшение его пропускания Т в закрытом направлении приводит к уменьшению потерь излучения в его открытом направлении, что повышает эффективность лазерной генерации.

Минимальное значение порогового усиления для предлагаемой лазерной системы составляет Gmin=2.41 при T≈0.1, что в 2.27 раза меньше такового для прототипа (Gmin=5.50 при Т≈0.2). При этом Gmin примерно в 1.5 раза меньше, чем Gпор в отсутствие вентиля Фарадея (при T=1), как в предлагаемой лазерной системе, так и в прототипе.

Использование предлагаемого изобретения позволяет снизить пороговое усиление активного элемента более чем в 2 раза; уменьшить число активных элементов в парциальном генераторе при построении многоканальных лазерных систем; создавать компактные лазерные системы; расширить диапазон активных сред, используемых для генерации лазерного излучения; осуществлять генерацию лазерного излучения на не основных лазерных переходах для его дальнейшего смещения в среднюю инфракрасную область спектра лазерного излучения.

Литература

1. Бельдюгин, И.М. Твердотельные лазеры с самонакачивающимися ОВФ-зеркалами в активной среде / И.М.Бельдюгин, В.А.Беренберг, А.В.Васильев, И.В.Мочалов, В.М.Петникова, Г.Т.Петровский, М.А.Харченко, В.В.Шувалов // Квантовая электроника- 1989. - 16, №6. - С.1142-1145.

2. Damzen, M.J. Self-adaptive solid-state laser oscillator formed by dynamic gain-grating holograms / M.J.Damzen, R.P.M.Green, K.S.Syed // Optics Letters. - 1995. - 20, №16. - P.1704-1706.

3. Sillard, P. Gain-grating analysis of self-starting self-pumped phase-conjugate Nd:YAG loop resonator / P.Sillard, A.Brignon, J.-P.Huignard // IEEE J. Quantum Electronics. - 1998. - 34. - P.465-472.

4. Fedin, A.V. Passive Q-switching of self-pumped phase-conjugate Nd:YAG loop resonator / A.V.Fedin, A.V.Gavrilov, T.T.Basiev, O.L.Antipov, A.S.Kuzhelev, S.N.Smetanin // Laser Physics. - 1999. - 9(2). - P.433-436.

5. Antipov, O.L. 250-W average-power Nd:YAG laser with self-adaptive cavity completed by dynamic refractive-index gratings / O.L.Antipov, D.V.Chausov, A.S.Kuzhelev et al. // IEEE J. Quantum Electronics. - 2001. - 37(5). - P.716-724.

6. Басиев, Т.Т. Повышение эффективности генерации ИАГ:Nd-лазера с самообращением волнового фронта излучения / Т.Т.Басиев, А.В.Гаврилов, С.Н.Сметанин, А.В.Федин // Доклады Академии Наук. - 2006. - 408, №5. - С.614-617.

7. Пат. RU 2157035, Российская Федерация, МКИ H01S 3/11. Лазерная система одномодового излучения с динамическим резонатором / О.Л.Антипов, Т.Т.Басиев, А.В.Гаврилов, А.С.Кужелев, С.Н.Сметанин, А.В.Федин // Приоритет от 27.05.1998 г.

8. Smith, G. Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output / G.Smith, M.J.Damzen // Optics Express. - 2007. - Vol.15(10). - P.6458-6463.

9. Basiev, Т.Т. On the influence of reflective gain holograms on the dynamics of lasing in a loop laser cavity / Т.Т.Basiev, A.V.Fedin, V.V.Osiko, S.N.Smetanin // Laser physics. - 2003. - 13(7) - P.903-908.

10. Kogelnik, H. Coupled wave theory for volume holographic grating // Bell Syst. Techn. J. - 1969. - 48(9). - P.2909-2947.

1. Лазерная система одномодового одночастотного излучения, содержащая активный элемент, поворотные зеркала, установленные с возможностью образования пучком излучения петли, перекрестье которой локализовано в центральной области среды активного элемента с записью в нем обращающего волновой фронт зеркала, а на выходе лазерной системы установлено выходное зеркало, отличающаяся тем, что лазерная система снабжена системой поворотных зеркал, установленных с возможностью образования, по меньшей мере, еще одной дополнительной петли излучения, при этом перекрестья каждой из дополнительных петель также локализованы в центральной области среды активного элемента, при этом каждая дополнительная петля N излучения формируется пучком излучения, проходящим среду активного элемента N+1 раз, пучки излучения каждой из петель записывают обращающие волновой фронт зеркала в среде активного элемента, а генерируемые пучки излучения отражаются от них и когерентно складываются между собой, образуя при этом выходное лазерное излучение.

2. Лазерная система одномодового одночастотного излучения по п.1, отличающаяся тем, что снабжена системой поворотных зеркал, установленных с возможностью образования пучками излучения двух дополнительных петель, перекрестья которых также локализованы в центральной области среды активного элемента.

3. Лазерная система одномодового одночастотного излучения по п.1, отличающаяся тем, что в системе поворотных зеркал, по меньшей мере, между двумя зеркалами установлен оптический вентиль Фарадея.



 

Похожие патенты:

Способ и устройства относятся к лазерной технике и могут быть использованы для контроля допустимого уровня инверсии населенности активных сред, используемых в приборах телекоммуникации, хирургии и металлообработки.

Изобретение относится к области лазерной техники и может быть использовано в технологических, медицинских, метрологических, других лазерных установках и установках для научных исследований.

Изобретение касается отбраковки кольцевых резонаторов лазерных гироскопов по величине порога зоны нечувствительности (порога захвата) и значениям нелинейных искажений масштабного коэффициента.

Узкополосный кольцевой волоконный лазер состоит из диода накачки, элемента Пельтье и кольцевого однонаправленного резонатора. Указанный резонатор включает активное волокно, делитель излучения, поляризационный циркулятор, волоконно-оптический изолятор и спектральный уплотнитель с линейной частью в виде насыщающего поглотителя из ненакачиваемого активного волокна и волоконной брэгговской решетки.

Оптический кольцевой резонатор может быть использован в качестве чувствительного элемента оптических гироскопов, в частности микрооптического гироскопа. Оптический кольцевой резонатор содержит не менее трех отражающих поверхностей, взаимное расположение которых обеспечивает циркуляцию света по замкнутому контуру.

Изобретение относится к лазерной технике. .

Изобретение относится к лазерным гироскопам и предназначено для увеличения срока службы трехосного гироскопа. .

Изобретение относится к лазерной технике, в частности к твердотельным импульсным лазерам. .

Изобретение относится к твердотельным лазерным гироскопам, предназначенным для измерения скорости вращения или относительных угловых положений, и используется, в частности, в области аэронавигации.

Изобретение относится к твердотельным лазерным гироскопам, предназначенным для измерения скорости вращения или относительных угловых положений, и может быть использовано, в частности, в области аэронавигации.

Изобретение относится к лазерной технике и может быть использовано при создании мощных лазеров с активной средой, имеющей прямоугольное сечение, например мощных волноводных газовых лазеров с диффузионным охлаждением или слэб-лазеров.

Изобретение относится к измерительной технике, в частности к области преобразования параметров вращения в электрический сигнал с помощью гидроскопов, в которых чувствительным элементом служит кольцевой лазер, и может быть использовано, например, в системах навигации.

Изобретение относится к гироскопам и измерительной технике и может быть использовано для регулировки периметра зеемановского лазерного гироскопа. Система содержит фотоприемник излучения кольцевого лазера, вход которого является входом излучения кольцевого лазера, оснащенного пьезоприводом и содержащего блок частотной подставки, вход которого является входом сигнала знакопеременной подставки, а выход соединен с невзаимным устройством кольцевого лазера, включенным в его резонатор. Первый синхронный детектор, первый вход которого соединен с выходом фотоприемника излучения кольцевого лазера, а второй вход является входом сигнала знакопеременной подставки, интегратор со сбросом, вход которого соединен с выходом первого синхронного детектора. Усилитель, первый вход которого соединен с выходом интегратора со сбросом, а выход соединен с пьезоприводом кольцевого лазера, второй синхронный детектор, первый вход которого является входом сигнала знакопеременной подставки, а второй вход соединен с выходом усилителя, интегратор, вход которого соединен с выходом второго синхронного детектора. Синхронный модулятор, первый вход которого является входом сигнала знакопеременной подставки, второй вход соединен с выходом интегратора, а выход соединен со вторым входом усилителя. Технический результат заключается в повышении точности регулировки. 4 ил.

Изобретение относится к области лазерной техники и предназначено для обеспечения устойчивой генерации лазерных импульсов фемто-пикосекундного диапазона. Реализована схема с кольцевым волоконным лазером с пассивной синхронизацией мод на эффекте нелинейной эволюции поляризации, содержащая поляризующий оптический изолятор, активное волокно, накачиваемое лазерным диодом, два управляемых микроконтроллером оптических волоконных поляризационных контроллера. Устойчивость импульсного режима достигают за счет повышения стабильности генерации широкополосного спектра ультракороткого импульса путем организации автоматической оптоэлектронной обратной связи под управлением микроконтроллера. Для чего сопоставляют мощности двух спектров - полного и его части, после оптической фильтрации, с предварительно измеренными микроконтроллером эталонными значениями. При отклонении мощностей от эталонных микроконтроллер вырабатывает управляющие сигналы для оптических волоконных поляризационных контроллеров, которые и обеспечивают минимальные отклонения мощностей в измерительных каналах от эталонных значений, чем и достигают стабильную оптическую мощность импульсной генерации широкополосного спектра и устойчивость. 2 н. и 18 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, в частности к области преобразования параметров вращения в электрический сигнал с помощью гироскопов, в которых чувствительным элементом служит кольцевой лазер, и может быть использовано, например, в системах навигации. Бесплатформенная инерциальная навигационная система, состоящая из блока чувствительных элементов, вычислительной навигационной системы, причем блок чувствительных элементов состоит из блока акселерометров, преобразователя сигналов акселерометров и блока лазерных гироскопов, включающих кольцевой лазер. Кольцевой лазер состоит из резонатора, виброподвеса и фотоприемника, пьезоэлектрического преобразователя и смесительной призмы. Благодаря выполнению в корпусе кольцевого лазера, в стенках отверстия для крепления корпуса резонатора на виброподвес, четырех пазов, расположенных таким образом, что обеспечивается крепление плоских пружин опоры в упомянутых пазах, достигается возможность увеличения длины плоских пружин опоры, что в свою очередь позволяет увеличить амплитуду раскачки виброподвеса, а соответственно устранить явление синхронизации встречных волн и уменьшить величину случайной компоненты погрешности лазерного гироскопа. 2 ил.

Изобретение относится к области приборостроения и касается лазерного гироскопа с компенсацией составляющей, вносимой виброподставкой. Лазерный гироскоп (ЛГ) содержит кольцевой лазер (КЛ), устройство виброподставки, блок обработки сигналов КЛ, выход которого подключен к блоку компенсации, датчик параметров относительных крутильных колебаний КЛ в виде оптико-электронной системы определения положения КЛ. Оптико-электронная система включает в себя полупроводниковый лазер, дифракционную решетку, поляризационный светоделитель, отражающее зеркало, коллиматор, четвертьволновую пластину, фокусирующий объектив и оптический транспарант с измерительными метками, установленный на КЛ. В обратном ходе лучей от светоделителя последовательно установлены цилиндрическая линза и многоплощадный фотодетектор. Кроме того, ЛГ содержит блок автоматического регулирования размера световых пятен, формирователь квадратурных сигналов и блок преобразования квадратурных сигналов. Технический результат заключается в упрощении конструкции, повышении надежности и точности измерений. 9 ил.

Изобретение относится к лазерной технике. Волоконный лазер для генерации высокоэнергетических световых импульсов содержит источник накачки, ответвитель ввода излучения накачки, волоконный кольцевой резонатор длиной ~10 м, включающий в себя активное волокно, устройство нелинейных потерь и ответвитель вывода генерируемого излучения из кольцевого резонатора. В лазер введены дополнительный ответвитель вывода генерируемого излучения из волоконного кольцевого резонатора, пассивное волокно, дополнительный ответвитель ввода излучения в волоконный кольцевой резонатор. Источник накачки соединен с одним из концов ответвителя ввода излучения накачки, другой конец которого соединен с волоконным кольцевым резонатором. Пассивное волокно одним из своих концов соединено с дополнительным ответвителем вывода излучения из волоконного кольцевого резонатора, а другим своим концом соединено с дополнительным ответвителем ввода излучения в волоконный кольцевой резонатор. При этом длина пассивного волокна определяется по формуле: L=T⋅υ, где Т - временной интервал между соседними пичками, υ - скорость распространения света в волокне. Технический результат заключается в обеспечении возможности получения стабильных и воспроизводимых высокоэнергетических импульсов света. 1 ил.

Способ подавления спонтанной эмиссии квантовых излучателей в среде с диссипацией заключается в размещении излучателя в однородную диэлектрическую матрицу-носитель с комплексным показателем преломления. При этом подбирают параметры действительной и мнимой части показателя преломления искусственной диэлектрической среды-носителя, за счет чего происходит обнуление величины скорости спонтанной релаксации. Технический результат заключается в изменении действующего значения скорости спонтанной релаксации для квантовых точек, помещенных в диэлектрическую среду с комплексным показателем преломления. 2 ил.
Наверх