Металлическая фольга с проводящим слоем и способ ее изготовления

Изобретение относится к области электротехники, а именно к токосъемникам из металлической фольги для литий-ионных батарей и суперконденсаторов. Предложена металлическая фольга, поверхность которой снабжена проводящим слоем, включающим углеродные нанотрубки, при этом проводящий слой нанесен таким образом, что углеродные нанотрубки располагаются на поверхности фольги хаотично и в количестве 100 нг/см2-10 мкг/см2, а также предложен способ изготовления металлической фольги с проводящим слоем из углеродных нанотрубок, согласно которому углеродные нанотрубки смешивают с диспергентом с получением суспензии, которую наносят на поверхность металлической фольги таким образом, чтобы количество углеродных нанотрубок на названной поверхности составляло 10-100 нг/см2. Снижение контактного сопротивления между активным электродным слоем и токосъемником является техническим результатом изобретения. 2 н. и 9 з.п. ф-лы, 1 ил., 2 пр.

 

Изобретение относится к электропроводящим средствам и технологиям их изготовления. Оно может использоваться, преимущественно, в электрохимических источниках энергии в качестве токосъемников, однако этим возможности его использования не ограничиваются, очевидно, что оно может найти и иное применение.

Конструкция электрохимических источников энергии, например, литий-ионных батарей и суперконденсаторов, предусматривает наличие пары электродов. Эти электроды состоят из активного электродного слоя и примыкающего к нему токосъемника, который выполняют из металлической фольги.

Одной из проблем, которую необходимо учитывать при изготовлении таких электродов, является наличие внутреннего сопротивления электрода, которое приводит к потерям энергии, а тем самым - к снижению производительности источников энергии. На величину внутреннего сопротивления электрода, помимо других факторов, влияет контактное сопротивление между активным электродным слоем и токосъемником.

Для снижения этого сопротивления применяют различные технологические решения, в частности, прибегают к формированию на поверхности токосъемника специального проводящего слоя, контактирующего с активным электродным слоем.

Например, известен катод литий-ионного аккумулятора, выполненный из аморфного кремния, с токосъемником в форме алюминиевой фольги, на которую нанесено беспористое титановое покрытие, выполняющее роль проводящего слоя [Патент РФ №135187, МПК Н01М 4/12, Н01М 4/20].

Известен электрод с алюминиевым токосъемником, на котором формируется оксидная пленка толщиной несколько микрометров, через которую активный электродный слой из активированного углерода крепится к токосъемнику посредством внедрения твердых гранул углерода через поверхность пленки в токосъемник, тем самым уменьшая контактное сопротивление между активным электродным слоем и токосъемником [Патент США №6191935, МПК H01G 9/00]. В качестве гранул используются: ацетиленовая сажа, порошок графита или кристаллический углерод.

Фирма «Showa Denko K.K.» производит металлическую фольгу, снабженную слоем из технического углерода и связующих органических материалов. Ее основным недостатком является высокая стоимость, т.к. она оказывается в 2-3 раза дороже фольги без проводящего слоя, а также значительная толщина этого слоя.

Известна алюминиевая фольга, имеющая на поверхности лес из углеродных нанотрубок [Journal of Power Sources 227 (2013) р. 218-228]. Такая фольга имеет низкое контактное сопротивления (0.42-0.15 мОм/г), что делает ее исключительно привлекательной для использования в качестве токосъемников, например, в суперконденсаторах высокой мощности.

Эта фольга является ближайшим аналогом предлагаемой и принята за прототип изобретения.

Недостатком прототипа является высокая стоимость фольги, обусловленная сложной и высокозатратной технологией выращивания на ее поверхности вертикально-ориентированных углеродных нанотрубок.

Изобретение решает задачу создания металлической фольги с проводящим слоем, имеющей более низкую стоимость и более простую технологию ее изготовления.

Поставленная задача решается тем, что предлагается металлическая фольга, поверхность которой снабжена проводящим слоем, включающим углеродные нанотрубки, причем что проводящий слой сформирован путем нанесения на ее поверхность суспензии, содержащей углеродные нанотрубки и диспергент, и таким образом, что углеродные нанотрубки располагаются на поверхности фольги хаотично и в количестве 100 нг/см2-10 мкг/см2.

Углеродные нанотрубки могут быть одностенными и/или двустенными.

Фольга может быть выполнена, например, из алюминия, или меди, или никеля, или их сплавов, а также других металлов и сплавов.

Проводящий слой может быть сформирован на поверхности металлической фольги путем нанесения на нее суспензии, содержащей углеродные нанотрубки и диспергент.

Диспергентом может быть поверхностно-активное вещество, например, поливинилпирролидон.

Суспензия углеродных нанотрубок может быть приготовлена как на водной основе, так и на основе органических растворителей.

Поставленная задача решается также тем, что предлагается способ изготовления металлической фольги с проводящим слоем, включающим углеродные нанотрубки, по которому смешивают углеродные нанотрубки с диспергентом с получением суспензии, которую наносят на поверхность металлической фольги таким образом, чтобы количество углеродных нанотрубок на ней составляло 100 нг/см2-10 мкг/см2.

Преимущественно при изготовлении фольги с проводящим слоем используют углеродные нанотрубки одностенные и/или двустенные.

Фольга может быть выполнена, например, из алюминия, или меди, или никеля, или их сплавов, а также других металлов и сплавов.

Диспергентом, т.е. веществом, формирующим и стабилизирующим суспензию, преимущественно может быть поверхностно-активное вещество, например, поливинилпирролидон.

Суспензия, включающая углеродные нанотрубки, может быть приготовлена как на водной основе, так и на основе органических растворителей, например, n-метилпирролидона.

Предлагаемая металлическая фольга с проводящим слоем изображена в виде токосъемника электрода на фиг. 1, где: 1 - металлическая фольга, 2 - проводящий слой, включающий углеродные нанотрубки, 3 - активный электродный слой.

Металлическую фольгу с проводящим слоем изготавливают следующим образом.

Готовые углеродные нанотрубки одностенные и/или двустенные смешивают с диспергентом, например, с поливинилпирролидоном, на водной основе, и диспергируют ультразвуком с помощью ультразвукового диспергатора, получая таким образом суспензию, содержащую нанотрубки. Далее эту суспензию наносят на поверхность фольги 1, исходя из условия, чтобы на поверхности углеродные нанотрубки располагались хаотично и в количестве 100 нг/см2-10 мкг/см2. Суспензия может быть нанесена распылением аэрозоля, аэрокистью, ультразвуковым спреем или любым другим известным способом, подходящим для этих целей.

После высыхания поверхности металлической фольги на ней остается тонкий слой, содержащий углеродные нанотрубки 2 в количестве, достаточном для обеспечения его хорошей проводимости. При использовании такой фольги в качестве токосъемника электрода проводящий слой позволяет понизить контактное сопротивление токосъемника и активного электродного вещества 3, к которому она присоединена.

Изготовление такой фольги требует меньших затрат, чем фольги с проводящим слоем из леса углеродных нанотрубок, и технология изготовления ее много проще. Соответственно, стоимость описанной фольги ниже, чем стоимость прототипа.

Пример 1.

Одностенные и двустенные углеродные нанотрубки смешивают с поливинилпирролидоном в соотношении % масс. 50/50. В эту смесь добавляют воду из расчета содержания нанотрубок в полученной смеси на уровне 0.2% масс. Полученную смесь диспергируют с использованием ультразвукового диспергатора. Полученную таким образом суспензию наносят на поверхность алюминиевой фольги аэрокистью из расчета расхода названной суспензии 50-60 мл на 1 м2 площади фольги. Полученный на поверхности фольги слой высушивают на воздухе. Содержание углеродных нанотрубок в нанесенном проводящем слое - 10 мкг/см2.

При использовании алюминиевой фольги с полученным проводящим слоем в качестве токосъемника электрода сопротивление электрода - 40 Ом.

При использовании такой же алюминиевой фольги без проводящего слоя сопротивление электрода 300 Ом.

Пример 2.

Одностенные и двустенные углеродные нанотрубки смешивают с поливинилпирролидоном в соотношении % масс. 50/50. В эту смесь добавляют n-метилпирролидон из расчета содержания нанотрубок в полученной смеси на уровне 0.1% масс. Полученную смесь диспергируют с использованием ультразвукового диспергатора. Полученную таким образом суспензию наносят на поверхность алюминиевой фольги аэрокистью из расчета расхода названной суспензии 50-60 мл на 1 м2 площади фольги.

Полученный на поверхности фольги слой высушивают. Содержание углеродных нанотрубок в нанесенном проводящем слое - 5 мкг/см2.

При использовании алюминиевой фольги с полученным проводящим слоем в качестве токосъемника электрода сопротивление электрода - 42 Ом.

При использовании такой же алюминиевой фольги без проводящего слоя сопротивление электрода 300 Ом.

1. Металлическая фольга, поверхность которой снабжена проводящим слоем, включающим углеродные нанотрубки, отличающаяся тем, что проводящий слой сформирован путем нанесения на ее поверхность суспензии, содержащей углеродные нанотрубки и диспергент, и таким образом, что углеродные нанотрубки располагаются на поверхности фольги хаотично и в количестве 100 нг/см2-10 мкг/см2.

2. Металлическая фольга по п. 1, отличающаяся тем, что углеродные нанотрубки - одностенные и/или двустенные.

3. Металлическая фольга по п. 1, отличающаяся тем, что она выполнена из алюминия, или меди, или никеля, или их сплавов.

4. Металлическая фольга по п. 1, отличающаяся тем, что диспергентом является поверхностно-активное вещество, например поливинилпирролидон.

5. Металлическая фольга по п. 4, отличающаяся тем, что диспергентом является поверхностно-активное вещество, например поливинилпирролидон.

6. Металлическая фольга по п. 4, отличающаяся тем, что суспензия приготовлена на водной основе или на основе органического растворителя.

7. Способ изготовления металлической фольги с проводящим слоем из углеродных нанотрубок, отличающийся тем, что углеродные нанотрубки смешивают с диспергентом с получением суспензии, которую наносят на поверхность металлической фольги таким образом, чтобы количество углеродных нанотрубок на названной поверхности составляло 100 нг/см2-10 мкг/см2.

8. Способ по п. 7, отличающийся тем, что используют углеродные нанотрубки - одностенные и/или двустенные.

9. Способ по п. 7, отличающийся тем, что фольга выполнена из алюминия, или меди, или никеля, или их сплавов.

10. Способ по п. 7, отличающийся тем, что диспергентом является поверхностно-активное вещество, например поливинилпирролидон.

11. Способ по п. 7, отличающийся тем, что суспензия приготовлена на водной основе или на основе органического растворителя.



 

Похожие патенты:

Заявленное изобретение относится к способу получения твердых электролитических конденсаторов, имеющих низкий ток утечки, а именно к способу получения анодов конденсатора на основе вентильного металла в процессе их прессования, а также к твердому электролитическому конденсатору и к электронной схеме с таким конденсатором.

Изобретение относится к электротехнике. Технический результат заключается в повышении равномерности и эффективности охлаждения.

Группа изобретений относится к электротехнике, а именно к способам и устройствам для накопления и хранения электрической энергии. Техническим результатом изобретений является снижение саморазряда, увеличение КПД, при увеличении плотности энергии на единицу массы.

Предложенное изобретение относится к области электротехники, а именно к твердотельным суперконденсаторам на основе многокомпонентных оксидов. Увеличение емкости и плотности запасаемой энергии и уменьшение токов утечки конденсатора является техническим результатом изобретения.

Изобретение относится к производству электрохимических конденсаторов с двойным электрическим слоем (DEL). .
Изобретение относится к производству изделий электронной техники, в частности к технологии пропитки пористых материалов, конкретно - к технологии получения катодной обкладки оксидно-полупроводниковых конденсаторов в виде многослойного покрытия из диоксида марганца, наносимого на поверхность секций, представляющих собой оксидированные объемно-пористые аноды из порошка вентильного металла, например тантала, ниобия, и являющегося полупроводниковым твердым электролитом.

Изобретение относится к области электротехники, в частности к конструкции суперконденсаторов с двойным электрическим слоем, и может быть использовано для их производства.

Изобретение относится к электролитическому пусковому конденсатору. .

Изобретение относится к области электрохимических конденсаторов, более конкретно, к коллектору тока для использования в электродном узле электрохимического суперконденсатора с двойным электрическим слоем и способу его изготовления.

Изобретение относится к электротехнике и может быть использовано для изготовления конденсаторов высокой емкости, использующих энергию двойного электрического слоя (ДЭС).

Изобретение относится к способу накопления и хранения электрической энергии в ионисторах, обладающих повышенной удельной электроемкостью, мощностью и низкой плотностью тока утечки. Сущность изобретения заключается в том, что в качестве среды для переноса заряда в ионисторе используют ионизированные газообразные молекулы неорганических комплексных соединений металлов и/или солей. Данный способ характеризуется низкой плотностью тока утечки (1-20 мкА/см2) и позволяет использовать ионисторы в жестких температурных условиях (600-1000°C). 1 ил. 4 пр.

Изобретение относится к области материалов для создания конденсаторов, используемых в силовой электротехнике. Состав электрода накопителя электроэнергии, содержащий смесь активного углерода со связующим, отличается тем, что он содержит несколько слоев активного углерода в структурной форме углеграфитовой ткани, а связующим является кремний, причем графитовые сердечники частично силицированных углеродных волокон ткани удалены. Изобретение позволяет получить состав электрода химически стойкого, обладающего значительной удельной емкостью и способного использоваться при повышенных температурах на воздухе без применения электролитов. 3 ил.

Изобретение относится к модулю (10) накопления энергии, содержащему множество электрически соединенных между собой устройств (12) накопления энергии, при этом модуль содержит наружный кожух (40), в котором расположены устройства (12) накопления энергии и по меньшей мере один теплообменник (24). Согласно изобретению устройства (12) накопления энергии расположены рядом друг с другом по меньшей мере на двух разных уровнях (N1, N2), при этом теплообменник или по меньшей мере один из теплообменников (24) находится между двумя смежными уровнями, входя в термический контакт по меньшей мере с одним устройством накопления энергии каждого из двух смежных уровней на двух соответствующих противоположных контактных сторонах (26А, 26В) теплообменника, при этом указанный теплообменник или по меньшей мере один из указанных теплообменников (24) закреплен на кожухе (40) модуля на уровне по меньшей мере одной стенки (28) крепления, отличной от контактных сторон (26А, 26В), при этом стенки крепления теплообменника и кожуха выполнены так, что модуль содержит пространство между соответствующим стенками (28; 44) крепления теплообменника и кожуха по меньшей мере в одном месте, отличном от места (70) крепления. Повышение равномерности отвода тепла от устройства накопления энергии является техническим результатом изобретения. 2 н. и 13 з.п. ф-лы, 3 ил.
Наверх