Способ получения микроволновых импульсов с непрерывным спектром излучения

Изобретение относится к области плазменной релятивистской СВЧ-электроники и может найти применение при создании источников широкополосного электромагнитного СВЧ-излучения, используемого в импульсной СВЧ-энергетике, радиофизических исследованиях, экспериментальной физике, в технологических процессах обработки материалов. Способ основан на инжекции импульсного трубчатого релятивистского электронного пучка в трубчатую плазму, замагниченную в генераторной секции, в которой обеспечивают черенковское усиление медленной плазменной волны от уровня шумов электронного пучка до уровня насыщения, при этом длительность Т импульса тока электронного пучка задают в соответствии с условием: Т<L/u+L/V, где: L - длина генераторной секции, u - скорость электронов в пучке, V - групповая скорость отраженной плазменной волны. Технический результат - обеспечение возбуждения колебаний плазменной волны на всех частотах внутри интервала, определяемого диапазоном изменения концентрации плазмы. 6 ил.

 

Изобретение относится к плазменной релятивистской СВЧ-электронике и может быть использовано при создании источников широкополосного электромагнитного СВЧ-излучения, используемого в импульсной СВЧ-энергетике, радиофизических исследованиях, экспериментальной физике, в технологических процессах обработки материалов.

Известен способ генерирования волны СВЧ-диапазона, излучаемой короткими импульсами (патент РФ №2188500, МПК H03K 5/04 от 28.03.2002), заключающийся в том, что нагнетают заданный газ в волноводную трубку, распространяют незатухающую волну СВЧ-диапазона или волну СВЧ-диапазона, излучаемую длинными импульсами, в волноводной трубке, и осуществляют преобразование части заданного газа в плазму путем облучения трубки в направлении ее поперечного сечения лазерным излучением и разделения таким образом незатухающей волны СВЧ-диапазона или волны СВЧ-диапазона, излучаемой длинными импульсами, с помощью плазменной части заданного газа для получения волны СВЧ-диапазона, излучаемой короткими импульсами.

Недостатком такого способа является ограниченная область применения, обусловленная малой мощностью излучения (милливатты) и малой длительностью импульсов (наносекунды).

Известен также способ генерации импульсов СВЧ-излучения в приборе с виртуальным катодом (патент РФ №2175155, МПК H01J 25/68 от 29.03.1999), заключающийся в том, что формируют тонкий плазменный слой, отделяющий сильноточный вакуумный диод прибора с виртуальным катодом от эквипотенциальной полости, а затем в диоде формируют импульсный электронный пучок и инжектируют его в эквипотенциальную полость, при этом в месте формирования плазменного слоя предварительно формируют взвесь частиц конденсированного вещества размером 0,1-10000 мкм, а электронный пучок инжектируют с током выше предельного вакуумного.

Недостатком этого способа является низкий кпд и отсутствие возможности перестройки спектра излучения, что также ограничивает область применения.

Наиболее близким к предлагаемому техническому решению является известный способ получения микроволновых импульсов, выбранный в качестве прототипа, (Кузелев М.В., Мухаметзянов Ф.X., Рабинович М.С. и др. Релятивистский плазменный СВЧ-генератор // ЖЭТФ, 1982, т. 83, с. 1358 // ДАН СССР, 1982, т. 267, с. 829) с возможностью электронной перестройки в широкой полосе частот, основанный на взаимодействии сильноточного релятивистского электронного пучка и плазмы. Способ предусматривает получение микроволновых импульсов в автогенераторе, т.е. усилителе с обратной связью. Спектр излучения меняется в пределах 2 октав от импульса к импульсу за счет изменения концентрации плазмы в очередном импульсе.

Недостатком прототипа является то, что спектр излучения меняется за счет исчезновения и появления колебаний на частотах из фиксированного набора. Если другие, кроме плазмы, параметры устройства (например, геометрические параметры) остаются неизменными, то получаемый при этом спектр излучения не непрерывен, а состоит из набора отдельных частот, причем сами эти частоты мало меняются даже при значительном изменении концентрации плазмы. Иными словами, при любой концентрации плазмы отсутствует излучение на многих частотах между граничными частотами. Это обусловлено тем, что прототип является широкополосным усилителем с обратной связью за счет частичных отражений волны на границах генераторной секции, то есть автогенератором. Частоты излучения прототипа определяются колебаниями плазмы на собственных частотах плазменно-пучкового резонатора с фиксированной длиной.

Технический результат, заключающийся в устранении недостатка прототипа, а именно - в обеспечении возбуждения колебаний плазменной волны на всех частотах внутри интервала, определяемого диапазоном изменения концентрации плазмы, достигается в способе получения микроволновых импульсов с непрерывным спектром излучения, основанном на инжекции импульсного трубчатого релятивистского электронного пучка в трубчатую плазму, замагниченную в генераторной секции, тем, что в генераторной секции обеспечивают черенковское усиление медленной плазменной волны от уровня шумов электронного пучка до уровня насыщения, при этом длительность Т импульса тока электронного пучка задают в соответствии с условием: Т<L/u+L/V, где: L - длина генераторной секции, u - скорость электронов в пучке, V - групповая скорость отраженной плазменной волны.

Сущность изобретения поясняется графическими материалами, полученными в результате экспериментов, где:

На фиг. 1 показана конструкция экспериментальной установки, обеспечивающей реализацию предлагаемого способа.

На фиг. 2 приведен спектр S одного импульса излучения, полученный при реализации предлагаемого способа при некоторой концентрации плазмы, содержащий все частоты f в интервале с шириной более 3 ГГц.

На фиг. 3 показан спектр S одного импульса излучения прототипа при той же концентрации плазмы, имеющий узкий диапазон с сателлитами значительно меньшей амплитуды.

Фиг. 4 иллюстрирует эффективности η заявляемого способа (кривая 1) и прототипа (кривая 2), полученные при сходных условиях, кроме длины генераторной секции и длительности импульса тока. Эффективности рассчитаны как отношение энергий импульса излучения к энергии импульса электронного пучка при разных концентрациях плазмы n. График показывает, что эффективность заявляемого источника не меньше эффективности прототипа.

На фиг. 5 представлены зависимости частот излучения f при различных концентрациях плазмы n. Вертикальными линиями обозначены диапазоны частот излучения заявляемого источника, крестиками отмечены фиксированные частоты излучения прототипа. Диапазон изменения частот излучения при изменении концентрации плазмы в 5 раз, от 0.7 до 3.5 (1013 см-3), составляет от 4 ГГц до 16 ГГц, т.е. 2 октавы.

На фиг. 6 приведен спектр S пачки импульсов излучения, полученных при различных концентрациях плазмы. Пачка из нескольких импульсов в предлагаемом способе, полученных при различных концентрациях плазмы, содержит все частоты излучения в диапазоне изменения. Спектр аналогичной пачки импульсов прототипа содержит ограниченное количество линий (~30).

Предлагаемый способ реализуется с помощью установки (фиг 1), состоящей из нескольких узлов и секций:

узел 1, представляющий диод с взрывоэмиссионным катодом;

узел 2, обеспечивающий создание трубчатой плазмы;

генераторная секция 3;

выходной узел 4.

Узел 1 предназначен для создания трубчатого электронного пучка 5.

Узел 2 предназначен для формирования трубчатой плазмы 6.

Генераторная секция 3 предназначена для создания колебаний плазмы 6 в СВЧ-диапазоне.

Замагничивание электронного пучка 5 и плазмы 6 осуществляется с помощью соленоида 7.

Выходной узел 4 включает в себя внутренний электрод 8 и внешний электрод 9, которые образуют коаксиальный волновод.

Предлагаемый способ осуществляется следующим образом.

Способ основан на взаимодействии сильноточного релятивистского электронного пучка и плазмы. Трубчатый электронный пучок 5 инжектируется в заранее созданную замагниченную трубчатую плазму 6 и взаимодействует с ней благодаря эффекту Вавилова-Черенкова, возбуждая плазменную волну с фазовой скоростью, равной скорости электронов (медленную плазменную волну).

Путем выбора длины L генераторной секции 3 при известном коэффициенте усиления обеспечивают усиление медленной плазменной волны от уровня шумов, инициируемых релятивистским электронным пучком, до уровня насыщения, определяемого появлением отраженных полем плазменной волны и движущихся в сторону катода электронов релятивистского пучка.

При этом длительность T импульса тока электронного пучка задают в соответствии с условием: Т<L/u+L/V, где: L - длина генераторной секции, u - скорость электронов в пучке, V - групповая скорость отраженной плазменной волны.

Учитывая, что скорость релятивистских электронов близка к скорости света «c», а групповая скорость плазменной волны приблизительно в полтора раза меньше, V≈2/3 с, взаимосвязь длины L генераторной секции и длительности импульса тока релятивистского электронного пучка можно представить как Т[нс]<8·L[м]. Например, для генераторной секции длиной 0.5 м импульс тока не должен длиться больше 4 нс.

В установке (фиг. 1) для реализации способа соленоид 7 обеспечивает сильное (более 1 Тл) магнитное поле для транспортировки электронов.

Плазма трубчатой формы создается путем ионизации газа при давлении 10-3 Тор потоком электронов с энергией 600 эВ и током до 50 А с кольцевого термоэмиссионного катода.

Выходной узел 4 является коаксиальным волноводом, образованным внутренним электродом 8 и внешним электродом 9. По указанному волноводу СВЧ-волна выходит из генераторной секции 3. Внутренний электрод играет роль также коллектора электронов, оседающих на его поверхности. Расширяющийся внешний электрод 9 образует рупор, излучающий широкополосное СВЧ-излучение с непрерывным спектром частот.

Прямая плазменная волна 6 преобразуется в ТЕМ-волну коаксиального волновода и излучается узлом 4. Часть прямой волны отражается от электрода 8 и в виде обратной плазменной волны 11 распространяется в сторону узла 2, но поскольку обратная волна не успевает достичь узла 2 до окончания импульса тока электронов, обратная связь не осуществляется, а спектр излучения остается непрерывным.

При осуществлении предлагаемого способа (см. фиг. 2 и фиг. 6) в отличие от способа-прототипа (фиг. 3) отсутствуют какие-либо фиксированные частоты, появляющиеся при наличии собственных типов колебаний (мод) резонатора.

Волны усиливаются и излучаются на всех частотах, определяемых концентрацией плазмы, в интервале до 2 октав.

Изменяя концентрацию плазмы можно регулировать частотный диапазон СВЧ-излучения.

Сопоставительный анализ совокупности признаков предлагаемого способа с известными техническими решениями того же назначения позволяет сделать вывод о соответствии заявленного технического решения критерию "новизна".

Способ реализуется на известных и доступных средствах электронной техники.

Способ получения микроволновых импульсов с непрерывным спектром излучения, основанный на инжекции импульсного трубчатого релятивистского электронного пучка в трубчатую плазму, замагниченную в генераторной секции, отличающийся тем, что в генераторной секции обеспечивают черенковское усиление медленной плазменной волны от уровня шумов электронного пучка до уровня насыщения, при этом длительность T импульса тока электронного пучка задают в соответствии с условием: Т<L/u+L/V, где: L - длина генераторной секции, u - скорость электронов в пучке, V - групповая скорость отраженной плазменной волны.



 

Похожие патенты:

Магнетрон // 2572347
Изобретение относится к магнетронам. Катод магнетрона, содержащего радиальное удлинение для размещения клемм 6, 7 катода, опирается на значительно более короткие опорные держатели 3, 4, поскольку данные держатели закреплены в концевой стенке 18 радиального удлинения, которая расположена ближе к катодному концу радиального удлинения, чем к другому концу.

Изобретение относится к технике генерации электромагнитных импульсов (ЭМИ) и может быть использовано в импульсной радиолокации и при испытаниях радиоэлектронной аппаратуры на воздействие импульсных полей.

Изобретение относится к технике генерации электромагнитных импульсов (ЭМИ) и может быть использовано в импульсной радиолокации и при испытаниях радиоэлектронной аппаратуры на воздействие импульсных полей.

Изобретение относится к сверхвысокочастотной (СВЧ) технике, может быть использовано при разработке мощных источников СВЧ излучения с высоким электронным КПД для целей радиолокации, навигации и передачи информации.

Изобретение относится к радиоэлектронике, в частности к электровакуумным СВЧ-приборам, предназначенным для получения сверхбольших импульсных и средних мощностей.

Система импульсно-периодической зарядки (СИЗ) относится к высоковольтной импульсной технике и может быть использована при разработке мощных импульсно-периодических ускорителей электронов и СВЧ-генераторов на их основе.

Изобретение относится к радиоэлектронике, в частности к электровакуумным СВЧ приборам, предназначенным для получения сверхбольших импульсных и средних мощностей, и может быть использовано в системах радиопротиводействия, системах функционального поражения, ускорителях заряженных частиц и других областях техники.

Способ генерации широкополосного электромагнитного излучения СВЧ диапазона может быть использован в радиотехнической и электронной промышленности, в частности в технике генерации мощных широкополосных электромагнитных импульсов (ЭМИ) в сантиметровом, миллиметровом и субмиллиметровом диапазонах.

Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации мощного СВЧ-излучения. Релятивистский магнетрон содержит многорезонаторный анодный блок (1), коаксиальный с ним взрывоэмиссионный катод (3), внешнюю магнитную систему (4), излучающую антенну (6), расположенную во внешнем канале связи (5) на расстоянии nλ+λ/4 от одного из резонаторов (2), и разрядник (7), расположенный на расстоянии kλ/4 от оси антенны (6), где n - целое число; λ - длина волны в волноводе; k - нечетное число.

Изобретение относится к области техники СВЧ. Лампы бегущей волны, основанные на использовании принципа непрерывного длительного взаимодействия электронного потока с полем бегущей электромагнитной волны в нерезонансной колебательной системе, могут быть использованы в различной радиоэлектронной аппаратуре.

Изобретение относится к электронной технике, а именно к электровакуумным приборам клистронного типа, содержащим один двухзазорный резонатор, и предназначено для генерации большой мощности СВЧ. Первый зазор резонатора имеет протяженное пространство взаимодействия (ППВ) электронов с СВЧ полем, длина которого выбирается из условий получения отрицательной активной электронной проводимости и оптимального группирования электронов. В приборе используется ППВ с неравномерным электрическим полем и большие амплитуды СВЧ напряжений в пределах (2,6-2,8)U0. Технический результат - увеличение КПД на 20-25% по сравнению с двух- и однорезонаторными с двумя зазорами клистронными генераторами. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники, а конкретно к способу электропитания многолучевых клистронов горизонтального исполнения. Соединительный модуль содержит разделительный трансформатор коаксиального типа с незамкнутым магнитопроводом, на первичную обмотку (1) которого снаружи и со стороны крепления ее к корпусу СМ (3) установлены медные магнитные экраны (10), вторичную обмотку (2), закрепленную на высоковольтный разъем (4), который в свою очередь установлен на заднюю стенку корпуса СМ, трансформатор тока (5), высоковольтный делитель напряжения (7), верхнее плечо которого выполнено в виде конструктивной емкости, водяную систему охлаждения (6), расположенную в расширительном объеме корпуса СМ, блок датчиков контроля (8) и узел наполнения и слива масла (9). Технический результат - улучшение эксплуатационных характеристик и упрощение конструкции соединительного модуля. 2 з.п. ф-лы, 2 ил., 11 ил.

Изобретение относится к области электронный СВЧ техники. Электронный СВЧ прибор большой мощности пролетного типа, использующий магнитную систему для формирования и транспортировки электронного пучка, содержит вакуумный корпус, выполненный из материала с низкой электропроводностью. Снаружи вакуумного корпуса коаксиально расположен дополнительный соленоид, запитываемый переменным периодическим током. Прибор снабжен коллектором из металла или сплава с высокой электро- и теплопроводностью в виде электрически изолированной от вакуумного корпуса незамкнутой однозаходной или многозаходной спирали. Технический результат - снижение максимальной рабочей температуры поверхности коллектора электронного СВЧ прибора и повышение долговечности СВЧ прибора при заданной мощности СВЧ излучения. 6 з.п.ф-лы, 3 ил .

Изобретение относится к технологии производства электровакуумных приборов, а именно к изготовлению высокочастотного пакета замедляющих систем спирального типа для ламп бегущей волны. В способе изготовления высокочастотного пакета замедляющей системы соединение между спиралью с металлическим покрытием и опорными керамическими стержнями происходит в твердой фазе и осуществляется за счет давления на спираль и керамические стержни, которое создается за счет разницы коэффициентов термического расширения колец оправки и стержней из нержавеющей стали при нагреве узла в вакууме, при этом температура нагрева должна быть ниже температуры плавления металлического покрытия спирали. Технический результат - повышение надежности соединения спирали с опорными стержнями без образования галтелей и их травления, что позволяет обеспечить эффективный теплоотвод от спирали за счет улучшения теплового контакта спираль - опорные стержни.1 з.п. ф-лы, 1 ил.

Изобретение относится к электронной технике и может быть использовано в электровакуумных приборах, в частности в магнетронах непрерывного или импульсного действия, работающих в широком диапазоне длин волн. Технический результат - повышение стабильности и воспроизводимости электрических параметров магнетрона за счет использования в нем прессованного оксидно-никелевого катода, обладающего высокой равномерностью плотности тока эмиссии и устойчивостью к деградирующему воздействию ионной и электронной бомбардировок. В магнетроне, содержащем анод и концентрически размещенный внутри него оксидно-никелевый катод, изготовленный путем совместного прессования смеси порошков никеля и эмиссионно-активного вещества, спекания прессовки в среде осушенного водорода при температуре 1000÷1200°С в течение 15-30 мин, в качестве эмиссионно-активного вещества используются агломераты никеля со слоем тройного карбоната, представляющие собой частицы никелевого порошка, равномерно покрытые слоем тройного карбоната бария-кальция-стронция толщиной до 20 мкм. Составляющие исходную рабочую смесь для прессования катода порошки никеля и указанных агломератов никеля со слоем тройного карбоната имеют одинаковый гранулометрический состав. Эмиссионные, тепловые и механические свойства катода могут управляться варьированием зернового состава формообразующего металла и эмиссионно-активного вещества, а также регулированием концентрации этих компонентов в рабочей смеси. Существенно снижена трудоемкость изготовления катода, исключены операции, связанные с применением токсичных, химически активных и взрывоопасных соединений. 7 з.п. ф-лы, 4 ил.
Наверх