Метод поражения малогабаритных беспилотных летательных аппаратов

Изобретение относится к области обнаружения и поражения малогабаритных беспилотных летательных аппаратов (МБЛА). Система обнаружения и поражения МБЛА состоит из средств обнаружения и прицеливания, устройств поражения, боевой части пакета направляющих, ракеты, состоящей из головной части, поражающих элементов, взрывчатого вещества, детонатора, блока питания. Средства обнаружения и прицеливания выполнены на трех гиростабилизированных платформах, связанных между собой рабочими базами, автоматически определяющими расстояния между собой и свои пространственные координаты. На каждой базе размещены датчики, работающие в оптическом, акустическом и в настраиваемых радиолокационных диапазонах электромагнитных волн. Управление работой и обработку полученной информации и сигналов осуществляет ЭВМ. Достигается возможность поражения МБЛА в различных условиях наблюдения. 5 ил.

 

Изобретение относится к области обнаружения и поражения малогабаритных беспилотных летательных аппаратов (МБЛА) и может быть использовано в военной технике.

Известны различные методы и технические решения обнаружения и поражения МБЛА с использованием устройства сети-ловушки для борьбы с дистанционно пилотируемыми (беспилотными) летательными аппаратами (ДПЛА) (патент №72753, прототип), устройство борьбы с дистанционно пилотируемыми (беспилотными) летательными аппаратами (патент №72754).

Недостатками являются: сложность конструкции, большие размеры, большая мощность двигателя для буксировки сети из-за ее большого аэродинамического сопротивления; использование звукотеплового метода наводки на цель, который малоэффективен из-за низкого энергопотребления цели - ДПЛА и высокой стоимости самого устройства наведения, и обязательного применения низких температур для инфракрасных датчиков; отсутствие парашюта или иного устройства, смягчающего приземление.

Устройство - истребитель для уничтожения дистанционно пилотируемых (беспилотных) летательных аппаратов (патент №2490585, прототип) [3].

Недостатками являются использование радиолокатора для наведения средства к цели при ведении радиоэлектронной борьбы, что может привести к полной потере управления ДПЛА на этапе выхода устройства в рабочий режим видеокамер и датчиков, отсутствие камер кругового обзора, сложность конструкции, непредсказуемое влияние инерционных взрывателей на направленность полета игл, что может повлиять на их попадание в МБЛА, имеющий малые размеры.

Использование противовертолетной мины (патент РФ №2237859, прототип). Сущность изобретения заключается в следующем.

1. Противовертолетная мина, содержащая боевую часть направленного действия, состоящую из корпуса с размещенным в нем зарядом взрывчатого вещества, детонатором и металлическим поражающим блоком, систему нацеливания и систему подрыва, включающую неконтактный взрыватель, отличающаяся тем, что система нацеливания выполнена полноповоротной с возможностью нацеливания по экваториальному углу в пределах ±180° от исходного положения и в пределах от 0 до 90° по меридиональному углу и включает датчик координат цели, блок управления, механический или гидравлический привод, источник питания, при этом металлический поражающий блок выполнен или в виде пластины, или в виде одного или нескольких слоев готовых поражающих элементов, или в виде облицовки для формирования "ударного ядра", или в виде набора параллельно уложенных стержней, попеременно соединенных верхними и нижними концами.

2. Мина по п. 1, отличающаяся тем, что датчик координат цели выполнен с использованием оптического, магнитного или акустического сигнала цели; датчик координат цели выполнен с использованием радиолокационной системы, включающей высокочастотный передатчик, антенну, приемник, усилитель; система нацеливания выполнена с устройством опознавания цели "свой - чужой"; пластина выполнена прямоугольной формы, выгнутой в направлении метания; пластина выполнена заданного дробления; пластина выполнена с выдавленными полусферическими углублениями, обращенными вершинами к заряду взрывчатого вещества, при этом оси полусферических углублений размещены под углом к направлению метания; готовые поражающие элементы имеют форму, допускающую их плотную укладку, например форму куба, параллелепипеда, шестигранной призмы; готовые поражающие элементы выполнены в форме пластин с широкой стороной в виде неравнобочной трапеции, имеющей один из углов при основании трапеции равным 90°; готовые поражающие элементы выполнены с заданным расстоянием между проекцией центра масс на грань, обращенную к заряду взрывчатого вещества, и точкой приложения равнодействующей сил давления продуктов детонации на эту грань [3].

Известное изобретение имеет следующие недостатки: малая дальность действия поражающих элементов, одноразовое использование, невозможность использования в движении, активный метод обнаружения, низкая возможность использования против МБЛА, из-за их малых размеров и использования электродвигателей.

Предлагаемая система обнаружения и поражения МБЛА включает в себя средства обнаружения и прицеливания, а также устройства поражения, характеризующие параллельную работу в оптическом, звуковом и радиолокационном диапазонах электромагнитных волн, возможности размещения на подвижных объектах, создания достоверного трехмерного объемного изображения МБЛА и определения его дальнейшего направления движения для прицеливания и поражения ракетами.

Средство обнаружения и прицеливания состоит из трех и более пространственно разнесенных точек обнаружения на гиростабилизирующих платформах 1, связанных между собой рабочими базами 2, автоматически определяющими расстояния между собой и свои пространственные координаты, что позволяет разместить в любых удобных местах как на подвижном объекте, так и стационарном (фиг. 1). На каждой базе размещено по три датчика: датчик 3 (камера кругового обзора), работающий в оптическом диапазоне, датчик 4, работающий в акустическом диапазоне, и датчик 5, работающий в трех и более настраиваемых радиолокационных диапазонах электромагнитных волн. Управление работой и обработкой полученной информации осуществляется ЭВМ 6 с элементами искусственного интеллекта, который сам выбирает наиболее эффективные датчики для более точного обнаружения и определения пространственных координат МБЛА и прицеливания устройств поражения в различных условиях.

Рассчитанные пространственные координаты по информационному лазерному каналу 7 (проводной резервный) через входное и выходное устройство (размещено на гиростабилизированной платформе 8) поступают в устройства поражения. Гиростабилизированная платформа 8 предназначена для устойчивой работы боевой части пакета направляющих с кассетным заряжанием для поражения МБЛА противника во время стрельбы, размещения блока питания, кругового беспроводного соединения с ЭВМ 6 и крепления механизмов наведения пакета направляющих 9 для установки контейнера 10 с шестнадцатью и более ракетами. Наведение пакета направляющих 9 осуществляется с помощью механизмов горизонтального наведения 14 (фиг. 2) и вертикального наведения 11 с помощью электродвигателей, питание которых поступает через вилку карданного подвеса 12. Ракета состоит из головной части 15 с оперением для устойчивого полета, элементов поражения 16, взрывчатого вещества и детонатора с замедлителями 17, двигателя на твердом топливе 18. Установка таймера замедлителя и пуск ракеты производятся с помощью электродатчика 19, сигналом переданного с ЭВМ 6. Ракеты размещаются в контейнере, а их пуск осуществляется по выбору ЭВМ 6, в зависимости от класса МБЛА. Перезарядка осуществляется кассетной установкой ракет в направляющую.

Система обнаружения и поражения МБЛА работает в следующей последовательности: одновременно регистрируя кадры видеопоследовательности и определения геометрических и цветовых изменений сформированных изображений [4], согласно изобретению контрольное (наиболее ярко-выраженное) и сравниваемое цифровые изображения регистрируют одновременно для каждого фрагмента изображений тремя и более идентичными видеосистемами (датчиками) 3 на основе многоэлементных высокоскоростных фотоприемников 13 (фиг. 2). Анализ изображений проводится на ЭВМ 6, где определяются величины смещения P1, Р2, Р3 (фиг. 3) характерных фрагментов 20 (фиг. 4) сравниваемого изображения с аналогичными фрагментами контрольного при максимально возможном их совпадении в направлении параллактического смещения 21. Сущность измерения расстояния до МБЛА заключается в суммарном определении линейного параллакса, которое рассчитывается между двумя датчиками 1-2 (2-3, 1-3 или 1-i), одновременно по трем и более базам (фиг. 3) по формуле Д=Б/tgεМБЛА (стереоскопический базовый метод измерения дальности). Дальность Д до МБЛА определяется по величине параллактического угла εМБЛА определяемой суммой εМБЛА1МБЛА2МБЛА=P1/f+P2/f и по величине базы между датчиками Б [5]. Использование трех и более приемных устройств позволяет определять достоверные трехмерные объемные изображения МБЛА. Для наиболее достоверного обнаружения и распознавания МБЛА в условиях плохой видимости, когда оптический канал по выбору ЭВМ 6 не эффективно использовать (густой туман, полная темнота и т.д.), в процессе обнаружения используется звуковой и радиолокационный каналы. Датчики 4 и 5 размещены совместно на гиростабилизирующих платформах 1 и параллельно фиксируют появления объекта, и также с помощью ЭВМ 6 определяют пространственные координаты МБЛА в звуковом и радиолокационном диапазонах электромагнитных волн.

Используя определенные координаты датчиков 3 и углы направления ε1МБЛА, ε2МБЛА, ЭВМ 6 рассчитывает пространственные координаты МБЛА и гиростабилизированной боевой части пакета направляющей в оптическом диапазоне электромагнитных волн. Определяя постоянно пространственные координаты, ЭВМ 6 определяет скорость и направление движения, что позволяет производить сопровождение МБЛА и прицеливание. При определении противника пространственные координаты передаются на механизмы наведения, которые разворачивают направляющие в стороны МБЛА и производится выстрел одной ракеты (фиг. 4). На расчетной высоте с помощью детонатора происходит подрыв взрывчатого вещества 17, при взрыве которого элементы поражения 16 разлетаются по строго секционной направленности, имея максимальную эффективность поражения МБЛА. Используя датчики обнаружения, ЭВМ 6 оценивает попадание, при необходимости повторяет выстрел или переходит в пассивный режим работы, используя средства обнаружения. Вариант размещения системы обнаружения и поражения на подвижном объекте показан на фиг. 5.

Источники информации

1. Пархоменко В.А., Устинов Е.М., Пушкин В.А., Беляков В.А., Шишков С.В. Устройство борьбы с дистанционно пилотируемыми (беспилотными) летательными аппаратами. - ФИПС. Патент на полезную модель №72754, 27.04.08 г.

2. Богомолов А.И., Пархоменко В.А., Устинов Е.М., Елизаров С.С., Искоркин Д.В., Шишков С.В. Устройство сети-ловушки для борьбы с дистанционно пилотируемыми (беспилотными) летательными аппаратами. - ФИПС. Патент на полезную модель №72753, 27.04.08 г.

3. Голодяев А.И., Чистяков Н.В. Устройство - истребитель для уничтожения дистанционно пилотируемых (беспилотных) летательных аппаратов. - ФИПС Патент на изобретение №2490585 15.05.2012 г.

4. Одинцов В.А., Долгопятова Н.Р., Кобылкин И.Ф., Костылев В.К., Ладов С.В., Метасов В.Ф., Попов В.А. Противовертолетная мина. - ФИПС. Патент на изобретение №2237859, 10.10.2004 г.

5. Шишков С.В., Музаи К., Устинов Е.М., Пархоменко А.В., Чернов Е.М., Щербаков А.С Программа определения геометрических изменений на кадрах видеопоследовательности для обнаружения ДПЛА. - ФИПС. Свидетельство о государственной регистрации программы для ЭВМ №2013611694, 31.01.13 г.

Система обнаружения и поражения малогабаритных беспилотных летательных аппаратов (МБЛА), состоящая из средств обнаружения и прицеливания, устройств поражения, боевой части пакета направляющей, ракеты, состоящей из головной части, поражающих элементов, взрывчатого вещества, детонатора, блока питания, отличающаяся тем, что средства обнаружения и прицеливания выполнены на трех и более пространственно разнесенных точках на гиростабилизирующих платформах, связанных между собой рабочими базами, автоматически определяющими расстояния между собой и свои пространственные координаты, что позволяет разместить в любых удобных местах как на подвижном, так и на стационарных объектах, на каждой базе размещены датчики, работающие в оптическом, акустическом и в настраиваемых радиолокационных диапазонах электромагнитных волн, управление работой и обработкой полученной информации и сигналов осуществляет ЭВМ с элементами искусственного интеллекта, который сам выбирает наиболее эффективные датчики для более точного обнаружения и определения пространственных координат МБЛА в различных условиях ведения наблюдения, позволяет построить объемное 3D изображение МБЛА и сравнить с запрограммированными МБЛА для их распознавания и прицеливания устройства поражения МБЛА по рассчитанным пространственным координатам МБЛА и гиростабилизированной боевой части пакета направляющих с кассетным заряжанием, используя механизмы наведения в точку упреждения, запускает таймеры настраиваемых детонаторов ракеты с оперением - одну из шестнадцати и более, производит контроль поражения МБЛА.



 

Похожие патенты:

Настоящее изобретение относится к техническим решениям для правоохранительных органов и служб безопасности и более конкретно к способам оценки дальности до точки выстрела.

Изобретение относится к акустическим пеленгаторам (базным пунктам перспективных автоматизированных звукометрических комплексов) и может быть использовано для определения пеленга источника звука (ИЗ) и топографических координат этого ИЗ.

Изобретение относится к акустическим пеленгаторам и может быть использовано для определения удаления и топографических координат источника звука (ИЗ). .

Изобретение относится к области применения индивидуальной защиты (скрытности) объектов на основе формирования голографического изображения реального фона без объекта от оптико-электронных приборов малогабаритных беспилотных летательных аппаратов (МБЛА), может быть использовано в военной технике.
Группа изобретений относится к способу определения нарушения воздушной границы охраняемого объекта и устройству для реализации этого способа. Для определения нарушения воздушной границы используют частотный радиолокатор в виде одного передающего модуля и четырех приемных модулей, два фазовых детектора, четыре блока отображения информации.

Изобретение относится к области радиоэлектронной борьбы, а именно к способам защиты наземных малоразмерных подвижных объектов от высокоточного оружия с лазерным наведением.

Изобретение относится к классу моделирующих устройств, которые следует рассматривать как учебные или тренировочные устройства, вызывающие в обучающихся ощущения, идентичные ощущениям, возникающим при обращении с реальными системами вооружения.

Комплекс средств автоматизации системы управления силами и средствами ракетно-космической обороны содержит каналы связи, управляющую подсистему, подсистему приема и передачи данных, управляемую подсистему, подсистему информационной поддержки принятия решения, интеллектуальной подсистемы информационной поддержки принятия решения.

Изобретение относится к военной технике. При адаптивном способе защиты объекта от управляемой по лазерному лучу ракеты обнаруживают лазерный сигнал ракеты.

Группа изобретений относится к оборонной технике. При способе противодействия оптико-электронным системам с лазерным наведением (ОЭСЛН) регистрируют облучающие лазерные импульсы и генерируют помеховые лазерные импульсы определенным способом сразу после регистрации каждого облучающего лазерного импульса.

Изобретение относится к классу моделирующих устройств, которые следует рассматривать как учебные или тренировочные устройства. Устройство для тренировки должностных лиц боевых расчетов командных пунктов войск воздушно-космической обороны содержит узел доступа первого уровня, узел доступа второго уровня, маршрутизатор первого уровня, автоматизированное рабочее место сегмента первого уровня, автоматизированное рабочее место сегмента второго уровня.

Группа изобретений относится к способу и устройству формирования команды на пуск защитного боеприпаса, а также к применению этого устройства в качестве радиолокационной станции (РЛС) измерения скорости цели, в качестве радиовзрывателя и в качестве измерителя интервала времени пролета целью известного расстояния.

Изобретения относятся к радиолокационной технике. Техническим результатом является расширение функциональных возможностей устройств определения защитного боеприпаса, подлежащего пуску.

Изобретение относится к системам обнаружения и борьбы с малогабаритными беспилотными летательными аппаратами (МБЛА). Изобретение содержит две системы поражения, систему управления боевой частью, пакет направляющих, ракету, систему обнаружения и прицеливания, систему управления боевой частью, систему навигации и топопривязки, систему горизонтального и вертикального наведения, систему скрытности, систему перехвата, систему подавления, блок питания, систему управления МБЛА, процессор, систему захвата, МБЛА со средствами борьбы, систему обработки и формирования команд с ЭВМ с элементами искусственного интеллекта. Обеспечивается эффективность борьбы с МБЛА. 5 з.п. ф-лы, 8 ил.

Изобретение относится к военной технике и может быть использовано в средствах противовоздушной обороны. Зенитная ракетно-пушечная боевая машина (ЗРПБМ) содержит башенную установку с пушечным и ракетным вооружением, зенитные управляемые ракеты (ЗУР) с оптическими и радиолокационными ответчиками, оптико-электронную аппаратуру визирования ЗУР, цифровую вычислительную систему, радиолокационную станцию (РЛС) обнаружения целей, РЛС сопровождения целей и ввода ЗУР миллиметрового диапазона волн (ССЦР) с устройством обработки сигналов и управления, задающий генератор (ЗГ), усилитель мощности (УМ), передающий тракт, приемопередающую основную антенну (OA), с корпусом в виде металлического кольца, в виде фазированной антенной решетки (ФАР) проходного типа с пространственным возбуждением с системой управления лучом (СУЛ), моноимпульсным облучателем (МИО), приемным трактом, малошумящими усилителями (МШУ), приемником промежуточной частоты (ПЧ-приемник), приемную антенну ввода ЗУР (АВР) в виде ФАР проходного типа с пространственным возбуждением с СУЛ, МИО, приемным трактом, МШУ, ПЧ-приемником, примыкающие друг к другу линейные модули с основанием в виде металлической ленты с многопроводной печатной платой, стяжки с закрепленными между собой металлическими пластинами, упоры. Корпус АВР, ФАР АВР, СУЛ АВР и МИО АВР в виде функционально-завершенного модуля АВР, ЗГ, УМ и передающий тракт, OA, МШУ OA и ПЧ-приемник OA в виде функционально-завершенных конструктивных сменных единиц расположены в корпусе ССЦР, приемный тракт АВР, МШУ АВР и ПЧ-приемник АВР в виде функционально-завершенной конструктивной сменной единицы размещены в корпусе АВР. Изобретение позволяет повысить боевую эффективность и надёжность, упростить конструкцию. 4 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам для систем противоракетной обороны, а также к средствам уничтожения живой силы и техники вероятного противника. Согласно способу поражения цели боевой лазер, выполненный с возможностью сбивать ракету, запускают в полет на ракете и поражают цель излучением лазера. Устройство для реализации способа поражения цели содержит боевой лазер, установленный на ракете с системой наведения, выполненный с возможностью сбивать ракету. 2 н. и 66 з.п. ф-лы, 14 ил.

Изобретение относится к способу имитации оптического излучения воздушных целей. Для имитации воздушной цели сбрасывают источник ложного излучения, в котором индуцируют ложное оптическое излучение широкой полосы с помощью набора излучающих светодиодов различного диапазона и/или лазеров, смешивают мультипликативно эти дискретные излучения на нелинейных оптических элементах, выделяют и фильтруют участки спектров, необходимые для имитации конкретной воздушной цели, а ненужные компенсируют или ослабляют с помощью оптических фильтров, затем аддитивно смешивают и рассеивают их на внешней оболочке имитатора. Обеспечивается повышение точности и качества имитации оптического излучения воздушной цели. 2 ил.

Изобретение относится к области защиты летательного аппарата в процессе противодействия управляемому оружию на основе системы самонаведения на источник оптического излучения. Сущность способа использования тепловой ловушки заключается в снижении уровня непреднамеренных помех бортовым оптико-электронным средствам путем экранирования излучения тепловой ловушки в направлении защищаемого летательного аппарата. Снижает уровень непреднамеренных помех бортовым оптоэлектронным системам, создаваемых ложными тепловыми целями. 3 ил.

Изобретение относится к способам определения координат летательных аппаратов. Для определения координат летательных аппаратов принимают и формируют информацию в пространственно разнесенных приемниках, одновременно регистрируют информацию на основе двух дирекционных углов и угла места летательного аппарата, обрабатывают ее в ЭВМ определенным образом, определяя координаты летательного аппарата в геодезической системе координат. Обеспечивается уменьшение времени обработки информации при определении пространственных координат летательных аппаратов. 2 ил.
Изобретение относится к боеприпасам, предназначенным для постановки высотных завес и защиты объектов от высокоточных средств поражения. В способе создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы снаряжение боеприпасов выполняют в виде тлеющих ленточных или ленточно-спиральных элементов на основе бумаги. Осуществляют вращение элемента вокруг его большей оси симметрии при падении в атмосфере. Основа элемента пропитывается водным раствором окислителя, например раствором марганцевокислого калия, высушивается и покрывается с двух сторон однородным сплошным слоем пудры алюминия в связующем, например, на основе целлулоида или полистирола. Техническим результатом изобретения является повышение эффективности радиопротиводействия. 2 пр.

Изобретение относится к области противодействия управляемому оружию на основе самонаведения на источник оптического излучения. Способ применения ложной тепловой ловушки основан на обнаружении управляемого элемента поражения с тепловой головкой самонаведения, определении текущей скорости полета летательного аппарата, в соответствии с которой регулируют силу тяги и время включения реактивного двигателя тепловой ловушки, поджигают вышибной заряд и термическое вещество тепловой ловушки, выбрасывают тепловую ловушку и стабилизируют ее полет в требуемом направлении, включают в заданное время реактивный двигатель тепловой ловушки и осуществляют ее полет под действием силы тяги реактивного двигателя с требуемой скоростью. После пуска реактивного двигателя тепловой ловушки, вручную или автоматически формируется команда на увеличение скорости полета летательного аппарата. Достигается повышение эффективности защиты летательного аппарата. 2 ил.

Изобретение относится к области обнаружения и поражения малогабаритных беспилотных летательных аппаратов. Система обнаружения и поражения МБЛА состоит из средств обнаружения и прицеливания, устройств поражения, боевой части пакета направляющих, ракеты, состоящей из головной части, поражающих элементов, взрывчатого вещества, детонатора, блока питания. Средства обнаружения и прицеливания выполнены на трех гиростабилизированных платформах, связанных между собой рабочими базами, автоматически определяющими расстояния между собой и свои пространственные координаты. На каждой базе размещены датчики, работающие в оптическом, акустическом и в настраиваемых радиолокационных диапазонах электромагнитных волн. Управление работой и обработку полученной информации и сигналов осуществляет ЭВМ. Достигается возможность поражения МБЛА в различных условиях наблюдения. 5 ил.

Наверх