Устройство контроля точности нарезания резьбы на токарном станке

Устройство контроля точности нарезания резьбы на токарном станке, включающем станину, шпиндель, предназначенный для закрепления в нем заготовки, и каретку с закрепленным на ней инструментом, содержит средство для съема информации, средство сбора и обработки информации и компьютер. Устройство снабжено стойкой, предназначенной для размещения на каретке с противоположной от резца относительно заготовки стороны. Средство для съема информации выполнено в виде трех датчиков, первый из которых - датчик радиального перемещения обработанной резьбовой поверхности заготовки, снабжен наконечником и установлен на стойке с возможностью взаимодействия наконечника с наружной поверхностью нарезаемой резьбы, второй - датчик линейных перемещений, включающий линейку, предназначенную для установки на станине, и движок, предназначенный для взаимодействия с кареткой, и третий - датчик угловых перемещений, включающий муфту, предназначенную для его соединения со шпинделем. При этом все три датчика функционально соединены со средством сбора и обработки информации. Предпочтительно, чтобы датчик радиального перемещения был выполнен бесконтактным. Достигаемый технический результат - повышение точности измерения и, как следствие, исключение необоснованной отбраковки изделий 2 з.п. ф-лы, 1 ил.

 

Техническое решение относится к металлообрабатывающей промышленности, в частности к токарным станкам, и может быть использовано для контроля точности изготовления резьбовых изделий в процессе нарезания резьбы.

Известен способ контроля резьбовых отверстий и устройство для его осуществления, которое содержит оправку с резьбовым хвостовиком, предназначенным для взаимодействия с резьбой отверстия, резьбовой хвостовик оправки выполнен с направляющей на его торце. Устройство снабжено размещенным по направляющей с возможностью поворота относительно оси оправки дополнительным резьбовым элементом, шаг резьбы которого равен шагу резьбы хвостовика оправки и шагу резьбы отверстия. На торце направляющей выполнен паз, устройство снабжено стопором, выполненным с выступом на его торце, предназначенным для размещения в пазу направляющей (Патент РФ №2051327, G01B 3/48, 1995).

Недостатком аналога является то, что устройство контроля резьбовых отверстий не контролирует параметры точности резьбы ни в поперечном сечении, ни по величине шага резьбы.

В качестве прототипа выбрано устройство для контроля геометрических параметров цилиндрических изделий с резьбовой поверхностью, которое может быть установлено на эквивалентном базовым элементам устройства токарном станке, включающем станину, шпиндель, предназначенный для закрепления в нем заготовки, и каретку с закрепленным на ней инструментом, содержащее средство для съема информации, средство сбора и обработки информации и компьютер, в котором средство для съема информации выполнено в виде оптоэлектронных головок, каждая из которых снабжена источником светового потока и приемником светового потока, причем приемник светового потока установлен с возможностью триангуляционной оптической связи с источником светового потока через соответствующий участок внутренней или наружной поверхности контролируемого изделия, а выходы приемников светового потока подключены к входам средства сбора и обработки информации и компьютера (Патент РФ №2386925, G01B 11/30, 2006).

К недостаткам прототипа следует отнести тот факт, что в известном техническом решении обеспечивается измерение параметров точности резьбы, но это осуществляется вне взаимосвязи измеренных отклонений и, как следствие, не позволит исключить необоснованную отбраковку изделий.

Задачей технического решения является определение на основе измерений реальных величин показателей точности резьбы путем проведения измерений отклонения от круглости, отклонения по шагу резьбы и отклонения по углу поворота детали в процессе нарезания резьбы, обработки результатов измерений в их взаимосвязи и сравнения полученных комплексных данных с величинами допусков.

Достигаемый технический результат - повышение точности измерения и, как следствие, исключение необоснованной отбраковки изделий.

Поставленная задача решается и заявленный технический результат достигается тем, что устройство для контроля точности нарезания резьбы на токарном станке, включающем станину, шпиндель, предназначенный для закрепления в нем заготовки, и каретку с закрепленным на ней инструментом, содержащее средство для съема информации, средство сбора и обработки информации и компьютер, снабжено стойкой, предназначенной для размещения на каретке с противоположной от резца относительно заготовки стороны, а средство для съема информации выполнено в виде трех датчиков, первый из которых выполнен в виде датчика радиального перемещения обработанной резьбовой поверхности заготовки, установленного на стойке, второй - в виде датчика линейных перемещений, включающего линейку, предназначенную для установки на станине, и движок, предназначенный для взаимодействия с кареткой, и третий - в виде датчика угловых перемещений, включающего муфту для соединения со шпинделем, при этом все датчики функционально соединены со средством сбора и обработки информации контроля, целесообразно датчик радиального перемещения снабдить наконечником с возможностью его взаимодействия с наружной поверхностью нарезаемой резьбы, предпочтительно, чтобы датчик радиального перемещения был выполнен бесконтактным.

Измерения всех трех датчиков, обработанные средством сбора и обработки информации, поступают на компьютер в виде данных, описывающих получаемую поверхность «как она есть» в реальном времени. Если полученные данные не превышают величин допусков, то подается сигнал о нормальном протекании технологического процесса. Если полученные данные выходят за пределы допусков, компьютер подает сигнал об изготовлении брака и останавливает обработку.

Техническая сущность предложенного решения поясняется изображением - Фиг. 1 - на котором дан общий вид устройства контроля точности нарезания резьбы на токарном станке.

Заявленное устройство контроля точности нарезания резьбы на токарном станке 1 выполнено следующим образом.

Заготовка 2 для нарезания резьбы закрепляется в патроне 3 токарного станка 1 и обрабатывается резцом 4. Датчик 5 (преимущественно - бесконтактный, как наиболее точный в рассматриваемых условиях) радиального перемещения обработанной резьбовой поверхности с помощью стойки 6 крепится на верхней поверхности каретки 7 с противоположной стороны от резца 4. На станине 8 крепится линейка датчика 9 линейных перемещений. Его движок 10 соединяется с кареткой 7. Датчики 5 и 9 проводами соединяются со средством 11 сбора и обработки информации и далее с компьютером 12. Для фиксации положения шпинделя 13 используется датчик 14 угловых перемещений, который через муфту 15 соединяется со шпинделем 13.

Заявленное устройство контроля точности нарезания резьбы на токарном станке работает следующим образом.

При нарезании резьбы резцом 4 заготовка 2 перемещается в плоскости резания под воздействием многих силовых факторов и в первую очередь под воздействием силы резания. Ось заготовки будет перемещаться по некоторой траектории, при этом бесконтактный датчик 5 будет измерять смещение оси в плоскости резания. Так как геометрический образ обрабатываемой поверхности в основном зависит от смещения оси заготовки в плоскости резания, то можно на основе данных по изменению величины зазора между поверхностью резьбы и чувствительным наконечником датчика 5 построить геометрический образ обрабатываемой поверхности в поперечном сечении заготовки. Расчет текущего радиуса Rго геометрического образа рассчитывается по формуле

Rго=Dзд,

где Dз - диаметр заготовки; Хд - показания датчика 5.

Сигнал от датчика 5 подается в средство 11 сбора и обработки информации и далее в компьютер 12. Специально разработанная программа обрабатывает полученный сигнал, рассчитывает Rго, строит геометрический образ, рассчитывает и строит базовую окружность и на ее основе определяет показатели точности в поперечном сечении обработанной резьбы и в первую очередь определяются отклонение от круглости и погрешность размера.

Датчик 9 линейных перемещений выдает референтные метки, соответствующие перемещению каретки 7 токарного станка, что соответствует перемещению резца 4 вдоль заготовки 2. Величина перемещения каретки 7 за один оборот шпинделя 13 равна реальному шагу нарезаемой резьбы.

Для определения начала и конца одного оборота используются базовые метки, которые, помимо данных о реальном угле поворота системы шпиндель-деталь, выдает датчик 14 угловых перемещений. Таким образом, с высокой точностью определяется реальный шаг резьбы, который также сравнивается с допуском на шаг резьбы, приведенный на рабочем чертеже детали.

Программа суммирует показания датчиков 5, 9 и 14 и сравнивает полученные данные с величинами допусков, приведенных на рабочем чертеже изготавливаемой детали. Если полученные данные (сумма показаний датчиков) не превышают величин допусков, то подается сигнал о нормальном протекании технологического процесса. Если полученные данные выходят за пределы допусков, компьютер подает сигнал об изготовлении брака и останавливает обработку.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в независимом пункте формулы признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата, который выражается в следующем.

Отдельно снятое с каждого датчика показание (например, шаг резьбы) может иметь отклонение, выходящее за пределы допустимого значения в точке измерения, однако другое отклонение (например, угла поворота шпинделя) может дать положительный или отрицательный прирост первого показания (шага резьбы) и тем самым в определенной степени нивелировать отклонение, и так далее. Сумма всех отклонений, измеренных предложенным устройством, сформирует данные об отклонениях в их взаимосвязи, т.о. повысится точность измерения и, как следствие, исключение необоснованной отбраковки изделий.

Свойства, регламентированные в заявленном техническом решении отдельными признаками, общеизвестны из уровня техники и не требуют дополнительных пояснений.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении может найти применение для контроля точности нарезания резьбы в процессе ее нарезания на токарном станке;

- для заявленного объекта в том виде, как он охарактеризован в независимом пункте формулы изобретения, подтверждена возможность его осуществления с помощью вышеописанных в материалах заявки известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

В соответствии с изложенным, заявленный объект соответствует условиям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

1. Устройство для контроля точности нарезания резьбы на токарном станке, включающем станину, шпиндель, предназначенный для закрепления в нем заготовки, и каретку с закрепленным в ней инструментом, содержащее средство для съема информации, средство сбора и обработки информации и компьютер, отличающееся тем, что оно снабжено стойкой, предназначенной для размещения на каретке с противоположной от резца относительно заготовки стороны, а средство для съема информации выполнено в виде трех датчиков, первый из которых выполнен в виде датчика радиального перемещения обработанной резьбовой поверхности заготовки, установленного на стойке, второй - в виде датчика линейных перемещений, включающего линейку, предназначенную для установки на станине, и движок, предназначенный для взаимодействия с кареткой, и третий - в виде датчика угловых перемещений, включающего муфту для соединения со шпинделем, при этом все датчики функционально соединены со средством сбора и обработки информации.

2. Устройство по п.1, отличающееся тем, что датчик радиального перемещения снабжен наконечником с возможностью его взаимодействия с наружной поверхностью нарезаемой резьбы.

3. Устройство по п.1, отличающееся тем, что датчик радиального перемещения выполнен бесконтактным.



 

Похожие патенты:

Изобретение относится к области станкостроения и может быть использовано при проверке станков по нормам точности. Для измерения осевого биения рабочего органа станка на торцовую поверхность рабочего органа устанавливают коленчатую оправку с возможностью поворота относительно этой поверхности на угол 180° в любом положении рабочего органа, при этом на другой конец коленчатой оправки устанавливают измерительный прибор, который настраивают относительно концевой меры длины на нулевое значение в первоначальной точке измерения.

Способ включает выполнение проходов резца, контроль размеров заготовки и шероховатости обработанной поверхности и корректировку режимов обработки. Для повышения точности изготовления деталей, уменьшения шероховатости обрабатываемой поверхности и сокращения времени на обработку при корректировке режимов обработки используют устройства обратной связи и осуществляют непрерывное измерение в процессе обработки размеров заготовки лазерными дальномерами, жестко укрепленными на расстоянии до 1 м от обрабатываемой поверхности с учетом возрастания расстояния от лазерного дальномера до обрабатываемой поверхности при снятии слоя металла резцом за проход, а величину шероховатости в месте обработанной поверхности - лазерными измерителями шероховатости, жестко закрепленными на расстоянии до 1 м неподвижно на расстоянии от обработанной поверхности, на которую подают поток лазерного излучения.

Изобретение относится к способу и устройству компенсации упругих тепловых деформаций подшипников шпинделей металлообрабатывающих станков. При вращении вала шпинделя осуществляют непрерывное измерение температуры нагрева каждого его подшипника.

Изобретение относится к электромеханике и может быть использовано для повышения точности токарной обработки серийных некруглых деталей при наличии на обрабатываемой поверхности зон прерывистого резания.

Изобретение относится к области обработки металлов резанием и может быть использовано для определения оптимальной скорости резания при работе на выбранном технологическом оборудовании.

Изобретение относится к области обработки металлов резанием, в частности к способу определения оптимальной скорости резания при обработке жаропрочных сплавов на никелевой основе для твердосплавного инструмента.

Устройство содержит образец детали, установленный на оправке, и резец, изолированные от зажимных элементов станка и резцедержателя. При этом образец детали и режущая часть резца электрически соединены через токосъемник и измерительный прибор для регистрации термо-ЭДС.

Способ включает осуществление процесса резания с одновременной регистрацией величины термоЭДС, образующейся в результате взаимодействия материалов режущего инструмента и заготовки, определение значений температуры в зоне контакта и соотнесение ее со значением термоЭДС, изменение параметров режимов резания и повторное получение соотносящихся данных, по которым строят тарировочный график.

Изобретение относится к области общего и специального машиностроения и может использоваться во всех областях промышленного производства, а именно при токарной обработке длинных деталей типа вал, и, в частности, при обработке валопроводов движительно-рулевых колонок (ДРК).

Способ включает осуществление процесса резания на интересующих режимах с одновременной регистрацией величины термо-ЭДС, образующейся в результате взаимодействия материалов инструмента и заготовки, соотнесение значения температуры в зоне контакта со значением термо-ЭДС и построение по полученным данным тарировочного графика.

Изобретение относится к области диагностики физико-механических свойств древесины на корню. Технический результат - повышение точности и оперативности в экспресс-диагностике резонансных свойств древесины. Устройство содержит буровое устройство с электрическим двигателем и программно-аппаратный комплекс с источником питания. Оно снабжено датчиком давления, измерителем глубины сверления, цанговым держателем, продольной рейкой с мерной вилкой и горизонтально-ориентированным желобом. При этом буровое устройство установлено в горизонтально-ориентированном желобе с возможностью продольного перемещения по нему. Причем желоб с помощью ползунка закреплен перпендикулярно на продольной рейке мерной вилки с возможностью передвижения вдоль нее. Устройство выполнено с возможностью в процессе сверления в реальном масштабе времени определения дендроакустических характеристик древесины по динамике изменения величины сопротивления сверлению дерева полым буром. 2 ил.

Изобретение относится к области металлообработки и может быть использовано для прогнозирования параметров качества обрабатываемой поверхности. Способ включает формирование полигармонического возбуждающего воздействия на входе металлообрабатывающего станка путем взаимодействия инструмента станка в виде шлифовального круга или дисковой фрезы с поверхностью заготовки в виде пластины с пазами прямоугольного профиля в процессе ее обработки с заданными параметрами. При этом осуществляют регистрацию амплитуды и частоты воздействия на входе станка и регистрацию изменения амплитуды и частоты ее выходного сигнала, в качестве которого используют полученную после обработки профилограмму заготовки. Параметры динамической модели операции механической обработки определяют по отношениям амплитуд выходного сигнала и возбуждающего воздействия. Использование изобретения позволяет уменьшить трудоемкость и длительность процесса идентификации. 4 ил., 1 табл.

Изобретение относится к области металлообработки и может быть использовано при измерении температур в зоне резания. По сигналам датчиков тока и напряжения определяют мощность главного электропривода станка, расходуемую на процесс резания. Сигнал, пропорциональный мощности главного электропривода станка, пропускают через динамическое звено, моделирующее динамические свойства тепловой модели процесса резания и преобразованное к виду передаточной функции, связывающей сигналы, характеризующие упомянутую мощность и нагрев деформируемой в процессе резания части стружки. Сумма сигнала, пропорционального температуре охлаждающей среды, и выходного сигнала упомянутого динамического звена определяет температуру в зоне резания. Использование изобретения позволяет повысить быстродействие и обеспечить высокую точность измерения температуры в зоне резания с применением уже имеющейся информационной системы станка. 1 ил.

Изобретение относится к инструментальному производству и может быть использовано для определения профиля винтовой фасонной поверхности детали по известному профилю инструмента. Способ включает использование эталонной модели обрабатывающего инструмента, выполненной идентично обрабатывающему инструменту в виде тела вращения, и мерительного инструмента со щупом, размещенного на базе, которая установлена на направляющей с возможностью перемещения вдоль нее, при этом мерительный инструмент размещен с возможностью дискретного перемещения относительно базы. Эталонную модель обрабатывающего инструмента и направляющую мерительного инструмента устанавливают в соответствии с установкой детали при ее обработке, а щуп мерительного инструмента приводят в контакт с поверхностью эталонной модели. Искомый профиль винтовой фасонной поверхности детали определяют путем измерений положения поверхности эталонной модели при соответствующих перемещениях щупа мерительного инструмента. 4 ил., 1 табл.

Изобретение относится к оснастке токарных станков и применяется для подготовки станка к работе. Приспособление содержит пластину для размещения резца и установочный элемент, который прикреплен к упомянутой пластине посредством болта и выполнен в виде вертикально установленной на упомянутой пластине втулки с размещенным на ней сверху установочным диском, при этом высота размещения нижней плоскости установочного диска от верхней плоскости упомянутой пластины соответствует расстоянию от резцовых площадок резцедержателя до линии центров токарного станка. Установка резца на требуемую высоту осуществляется с применением подкладок, которые подбираются и укладываются под резец до момента ощутимого прикосновения вершины резца с нижней плоскостью установочного диска, затем резец с подкладками переносится и устанавливается в нужном положении в резцедержателе и крепится зажимными болтами. Приспособление может быть установлено на коробке скоростей токарного станка. Использование изобретения позволяет осуществлять точную установку резца по линии центров токарного станка. 1 з.п. ф-лы, 1 ил.
Наверх