Высокопрочный деформируемый сплав на основе алюминия


 


Владельцы патента RU 2573164:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") (RU)

Изобретение относится к области металлургии сплавов, в частности деформируемых термически упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Ag, предназначенных для использования в качестве высокопрочных конструкционных материалов в авиационно-космической промышленности. Сплав содержит, мас. %: медь 4,0-5,5, магний 0,2-0,8, марганец 0,2-0,6, серебро 0,4-0,8, титан 0,05-0,2, хром 0,02-0,1, цирконий 0,05-0,2, ванадий <0,1, цинк <0,25, железо <0,1, кремний <0,1, алюминий - остальное. Техническим результатом изобретения является повышение уровня прочностных свойств алюминиевого сплава. 2 пр., 3 табл.

 

Предлагаемое изобретение относится к области металлургии сплавов, в частности деформируемых термически упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Ag, предназначенных для использования в качестве высокопрочных конструкционных материалов в авиационно-космической промышленности.

Жаропрочные алюминиевые сплавы системы Al-Cu-Mg, легированные серебром, широко используются в авиакосмической промышленности и машиностроении. Основное свое применение они нашли в качестве материалов для изготовления различных элементов силового набора и обшивки фюзеляжа, крыла, летательных аппаратов, силовых элементов конструкций в автомобильной промышленности. Данные сплавы характеризуются уникальным сочетанием прочностных характеристик и высокой вязкостью разрушения. Однако непрерывное усовершенствование используемых конструкций и стремление улучшить свойства материала с целью снижения расходов на эксплуатацию, обслуживание и ремонт, улучшения экономичности и характеристик изделия приводят к поиску новых сплавов, обеспечивающих необходимый комплекс свойств.

Известен высокопрочный сплав серии АА2000 на основе алюминия (US №5652063, опубл. 29.07.1997), следующего состава (мас. %):

Медь 4,85-5,3

Магний 0,5-1,0

Марганец 0,4-0,8

Серебро 0,2-0,8

Цирконий 0,05-0,25

Кремний ≤ 0,1

Железо ≤ 0,1

Предпочтительное соотношение Cu/Mg между 5 и 9 и наиболее предпочтительное между 6 и 7,5.

Также известен высокопрочный сплав системы Al-Cu-Mg для работы в интервале температур от 0°С до 250°С (US №4772342, опубл. 20.09.1988).

Химический состав данного изобретения (в мас.%):

Медь 5-7

Магний 0,3-0,8

Серебро 0,2-1

Марганец 0,3-1

Цирконий 0,1-0,25

Ванадий 0,05-0,15

Кремний <0,1

В состоянии Т6 указанный сплав имеет следующие характеристики прочности: при комнатной температуре предел текучести при растяжении составляет 510 МПа, при 200°С этот же показатель равен 400 МПа и при 250°С около 300 МПа. Предел ползучести при 180°С после 500 ч выдержки равен 250 МПа.

Наиболее близким к предлагаемому изобретению является сплав Al-Cu-Mg, подходящий для авиационно-космического применения (RU №2418876, опубл. 20.05.2011), следующего состава (мас. %):

Медь 4,1-5,5

Магний 0,30-1,6

Марганец 0,15-0,8

Титан 0,03-0,4

Хром 0,05-0,4

Серебро <0,7

Цирконий <0,2

Железо <0,20, предпочтительно <0,15

Кремний <0,20, предпочтительно <0,15

Остаток составляет алюминий и другие примеси или случайные элементы, каждый <0,05%, в сумме <0,15%.

Механические свойства сплава в состоянии Т3 при комнатной температуре равны: предел текучести при растяжении 328-334 МПа, предел прочности 441-466 МПа, удлинение до разрушения ~ 22%.

Cуществующие сплавы обладают достаточным уровнем механических свойств, однако для создания новых конструкций, отвечающих требованиям экономичности и эффективности, необходим материал, рабочие характеристики которого превосходят достигнутый уровень. Таким образом, существует необходимость в создании нового сплава, обладающего улучшенным комплексом надлежащих механических свойств.

Основной задачей предлагаемого изобретения является разработка алюминиевого сплава системы Al-Cu-Mg-Ag, обладающего повышенным по сравнению с существующими сплавами уровнем механических свойств (ударная вязкость, предел текучести условный, предел прочности, относительное удлинение после разрыва).

Задача решается за счет того, что в сплав на основе алюминия, содержащий медь, магний, марганец, серебро, титан, хром, цирконий, железо, кремний, дополнительно введены ванадий и цинк, а также снижено содержание железа и кремния, причем компоненты взяты в следующих соотношениях, мас. %:

Медь от более 5,0 до 5,5

Магний 0,2-0,8

Марганец 0,2-0,6

Серебро 0,4-0,8

Титан 0,05-0,2

Хром 0,02-0,1

Цирконий 0,05-0,2

Ванадий <0,1

Цинк <0,25

Железо <0,1

Кремний <0,1

Алюминий - остальное

Наличие меди, магния и серебра в сплаве обеспечивает образование дополнительной тонкодисперсной упрочняющей Ω-фазы, благодаря которой сплавы этой системы легирования обладают уникальным комплексом механических свойств, такие как высокая прочность, сопротивление ползучести и вязкость разрушения, значительная усталостная долговечность. Комплексное легирование переходными металлами, такими как марганец, титан, цирконий и ванадий, при относительно низком содержании каждого компонента позволяет повысить плотность дисперсных частиц и избежать появления первичных интерметаллидов при литье сплава.

Техническим результатом изобретения является сплав, обладающий улучшенными механическими прочностными характеристиками, который может быть использован при производстве полуфабрикатов в виде катаных плит и листов, поковок и прессованных прутков.

Примеры осуществления

Пример 1

Были отлиты два сплава: по прототипу и предлагаемого химического состава (табл.1). Сплавы были гомогенизированы при 525°С в течение 24 ч. Далее следовала горячая прокатка при 420°С до суммарной степени деформации ~ 80%, холодная прокатка со степенью деформации ~ 70% и закалка заготовок с 510°С (выдержка 1 ч) в холодную воду. Затем полученные полуфабрикаты выдерживались при комнатной температуре в течение 4 часов, после чего следовало предрастяжение листов на 2% деформации и естественное старение в течение 5 дней (состояние Т3).

В таблице 1 представлен химический состав предлагаемого сплава и прототипа, а результаты сравнения механических испытаний на растяжение по ГОСТ 1497-84 при комнатной температуре представлены в таблице 2 (состояние Т3). Образцы вырезались вдоль направления прокатки.

Таблица 1

Cu Mg Mn Ag Ti Zr Zn V Cr Fe Si Al
Прототип 5.1 0.58 0.3 0.2 0.1 <0.01 - - <0.004 <0.06 <0.04 Ост.
Предлагаемый сплав 4.7 0.5 0.35 0.5 0.15 0.14 0.2 0.05 0.04 <0.04 <0.03 Ост.

Таблица 2

Прототип Предлагаемый сплав
σ0.2, MПa σв, МПa δ, % σ0.2, MПa σв, МПa δ, %
335 466 22,6 360 490 20

В таблице 2: σ0.2 - предел текучести условный; σв - предел прочности; δ, % - относительное удлинение после разрыва.

Как видно из таблицы 2, механические свойства предлагаемого сплава существенно выше, чем прототипа. Это позволяет применять предлагаемое изобретение при практическом производстве различных полуфабрикатов, таких как поковки, плиты, листы, свариваемые детали.

Пример 2

Предлагаемый сплав с содержанием легирующих элементов, как указано в таблице 1, был получен методом литья, затем слиток гомогенизировали при 525°С в течение 24 ч. Далее из полученной заготовки вырезали прутки, которые подвергали равноканальному угловому прессованию при 400°С до суммарной степени деформации ~ 2. Затем полученную заготовку закаливали в воду с температуры 520°С, выдержка 1 ч, и подвергали холодной прокатке до суммарной степени деформации ~ 20% и искусственному старению при 190°С в течение 2 ч (состояние Т82). Образцы для механических испытаний вырезались вдоль и поперек направления прокатки, результаты испытаний при комнатной температуре приведены в таблице 3. Механические испытания на растяжение проводились по ГОСТ 1497-84, на определение ударной вязкости − по ГОСТ 9454-78, тип образца KCV.

Механические свойства предлагаемого сплава в состоянии Т82 при комнатной температуре приведены в таблице 3.

Таблица 3

Номер образца σ0.2, MПa σв, МПa δ, % Ударная вязкость, Дж/см2
1 490 540 10.5 33.5
2 495 535 10.0 34.0

Таким образом, предлагаемый химический состав сплава обладает уникальным комплексом механических свойств, таких как: высокая прочность, сопротивление ползучести и вязкость разрушения, значительная усталостная долговечность. Значительно улучшенные характеристики алюминиевого сплава позволят изготавливать детали для авиационно-космической промышленности. Сплав может быть обработан до изделий различных форм, например лист, плита, кованое изделие, экструдированный пруток, может быть без покрытия или может иметь покрытие с целью дополнительного улучшения коррозионных свойств.

Высокопрочный деформируемый сплав на основе алюминия, содержащий медь, магний, марганец, серебро, титан, хром, цирконий, железо и кремний, отличающийся тем, что он дополнительно содержит ванадий и цинк при следующем соотношении компонентов, мас. %:

медь от более 5,0 до 5,5
магний 0,2-0,8
марганец 0,2-0,6
серебро 0,4-0,8
титан 0,05-0,2
хром 0,02-0,1
цирконий 0,05-0,2
ванадий <0,1
цинк <0,25
железо <0,1
кремний <0,1
алюминий остальное



 

Похожие патенты:
Изобретение относится к области металлургии, в частности к высокопрочным сплавам пониженной плотности с повышенной вязкостью разрушения на основе системы алюминий-медь-литий, и может быть использовано для изготовления элементов конструкций в авиакосмической промышленности, таких как лонжероны, балки, шпангоуты и т.д.

Изобретение относится к области металлургии, а именно к высокоресурсным деформируемым термически упрочняемым свариваемым алюминиевым сплавам пониженной плотности с высокими характеристиками вязкости разрушения и прочности, в частности системы Al - Cu - Li, используемым в качестве конструкционных материалов в изделиях авиакосмической техники.

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия, применяемых в качестве нагруженных деталей, длительно работающих при температурах до 300°C в авиационной, автомобильной и других отраслях промышленности.

Алюминий-медный сплав для литья, содержащий по существу нерастворимые частицы, которые занимают междендритные области сплава, и свободный титан в количестве, достаточном для измельчения зернистой структуры в литейном сплаве.

Изобретение относится к области металлургии, в частности к деформируемым наноструктурным сплавам на основе алюминия и способам их получения для изделий, работающих при повышенных температурах.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении изделий, работающих в диапазоне температур до 350°С.
Изобретение относится к металлургии литейных сплавов, в частности к антифрикционным сплавам на основе алюминия, работающим в условиях трения скольжения. Антифрикционный сплав на основе алюминия содержит основные компоненты в следующем соотношении, мас.%: кремний - 12-15, медь - 3-5, алюминий - остальное, и имеет структуру, содержащую кристаллы эвтектического кремния глобулярной формы размером от 2 до 8 мкм.

Изобретение относится к продуктам из алюминиевых сплавов и способам их изготовления. .
Изобретение относится к металлургии и может быть применено для получения алюминиево-медных лигатур. .
Изобретение относится к изделию из алюминиевого сплава для конструктивных элементов, имеющего химический состав, включающий в себя, в мас.%: Cu 3,4-5,0, Li 0,9-1,7, Mg 0,2-0,8, Ag 0,1-0,8, Mn 0,1-0,9, Zn 0,1-1,5 и один или более элементов, выбранных из группы, состоящей из: (Zr 0,05-0,3, Cr 0,05-0,3, Ti 0,03-0,3, Sc 0,05-0,4, Hf 0,05-0,4,), Fe<0,15, Si<0,5, обычные и неизбежные примеси и остальное - алюминий, и к способу изготовления изделия из этого сплава, изделия имеют баланс высокой прочности и высокой вязкости и используются в авиации и космонавтике.

Изобретение относится к области металлургии, в частности к деформируемым наноструктурным сплавам на основе алюминия, содержащим медь и марганец, и может быть использовано для получения изделий, работающих при повышенных температурах. Сплав на основе алюминия содержит, мас. %: медь 0,5-2,0; марганец 0,3-1,6; цирконий 0, 1-0,5; бор 0,02-0,15; серебро 0,01-0,5; скандий 0,02-0,15; железо 0,01-0,3; кремний 0,01-0,35, неизбежные примеси до 0,1, из них каждой до 0,03, алюминий - остальное. Сплав имеет структуру, состоящую из алюминиевого твердого раствора и наночастиц вторичных алюминидов циркония и скандия, а бор присутствуют в структуре сплава в виде наночастиц AlB2, AlB12 со средним размером не более 50 нм. Сплав обладает повышенной термостойкостью, предел прочности (σв) после выдержки 250°C 400 часов составляет не менее 170 МПа, и электропроводностью не менее 55% IACS. 1 з.п. ф-лы, 2 табл.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас.%: кремний 8-13, медь 0,1-10, германий 1,5-8, железо 0,5-3, хром 0,1-2,1, марганец 0,5-3, кобальт 0,001-0,8, молибден 0,001-0,8, стронций 0,001-0,2, бериллий 0,001-0,1, титан 0,001-0,1, натрий 0,001-0,2 и ванадий 0,001-0,2, алюминий остальное. Суммарное содержание меди и германия не превышает 14 мас.%. Отношение содержания железа к марганцу составляет 1:1. Отношение содержания хрома к железу составляет от 1:1 до 1:1,2. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас.%. Изобретение обеспечивает понижение температуры плавления припоя, повышение прочности паяных конструкций, что позволяет увеличить срок их службы. 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас. %: кремний 5-13, медь 4-7, цинк 4-7, никель 0,5-3, марганец 0,3-3, железо 0,3-3, по меньшей мере один элемент из группы, включающей стронций 0,001-0,2, бериллий 0,001-0,1, титан 0,001-0,1, натрий 0,001-0,2 и ванадий 0,001-0,2, остальное - алюминий. Отношение содержания железа к марганцу составляет от 1:1 до 1:1,1. Отношение содержания никеля к железу составляет не более 1:2. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас. %. При пайке с длительным термическим циклом припой дополнительно содержит, мас.%: кобальт 0,001-0,8 и молибден 0,001-0,8. Технический результат заключается в понижении температуры плавления припоя, повышении прочности и коррозионной стойкости получаемых паяных конструкций из алюминиевых сплавов, что обеспечивает повышение их срока службы. 2 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к массивным изделиям из деформируемого алюминиевого сплава серии 2ххх. Изделие из алюминиевого сплава, полученное обработкой давлением и имеющее конечную толщину по меньшей мере 25,4 мм, выполнено из алюминиевого сплава, содержащего, в вес.%: от 3,00 до 3,80 Cu, от 0,05 до 0,35 Mg, от 0,975 до 1,385 Li, причем -0,3×Mg-0,15Cu+1,65≤Li≤-0,3×Mg-0,15Cu+1,85, от 0,05 до 0,20 Zr, от 0,20 до 0,50 Zn, от 0,10 до 0,50 Mn, вплоть до 0,12 Si, вплоть до 0,15 Fe, вплоть до 0,15 Ti, вплоть до 0,05 любой примеси, при сумме примесей, не превышающей 0,15, остальное - алюминий. Изобретение направлено на достижение улучшенного сочетания прочности и вязкости. 24. з.п. ф-лы, 3 пр., 14 табл., 22 ил.

Изобретение относится к порошковой металлургии. Способ получения порошка квазикристаллического материала системы Al-Cu-Fe включает перемешивание порошков алюминия, меди и железа при соотношении компонентов, соответствующем области существования квазикристаллической фазы сплава системы Al-Cu-Fe, нагрев полученной смеси в камере в бескислородной атмосфере с последующим измельчением спека до получения порошка заданной дисперсности. Нагрев смеси производят до температуры 600-700°С, обеспечивающей инициализацию экзотермического процесса самопроизвольного формирования квазикристаллической фазы сплава, при этом измеряют текущую температуру нагрева в камере и температуру нагрева смеси порошков. При превышении температуры смеси порошков над текущей температурой нагрева в камере проводят отжиг при температуре 800-1300°С с обеспечением стабилизации квазикристаллической фазы сплава по всему объему смеси порошков. Обеспечивается получение качественного порошка квазикристаллического материала. 5 з.п. ф-лы, 1 ил., 1 табл, 4 пр.
Наверх