Способ сжигания топливо-воздушной смеси и прямоточный воздушно-реактивный двигатель со спиновой детонационной волной

Способ сжигания топливовоздушной смеси для создания реактивной тяги в прямоточном воздушно-реактивном двигателе со спиновой детонационной волной заключается в том, что набегающий высокоскоростной поток тормозят до чисел Маха в диапазоне от 3 до 4 в сверхзвуковом двухступенчатом воздухозаборнике с затупленным центральным телом. Далее подают в поток топливо, закручивают образующийся топливовоздушный поток хорошо перемешанной горючей смеси, тормозят до дозвуковой осевой компоненты скорости, инициируют воспламенение закрученной хорошо перемешанной топливовоздушной смеси и сжигают в спиновой детонационной волне. Детонационные и ударные волны, распространяющиеся против потока, гасят набегающим сверхзвуковым потоком топливовоздушной смеси. Образующиеся при сжигании продукты сгорания направляют на создание реактивной тяги двигателя. Прямоточный воздушно-реактивный двигатель со спиновой детонационной волной для высокоскоростных полетов содержит сверхзвуковой двухступенчатый воздухозаборник с затупленным центральным телом, систему слива энтропийного и пограничных слоев, топливные пилоны с соплами для подачи топлива в набегающий воздушный поток, венцы которых выполнены и расположены так, что продолжают торможение и закручивают образующийся топливовоздушный поток, кольцевой решеточный гаситель детонационных и ударных волн, осесимметричное кольцевое сопло, имеющее расширяющуюся внешнюю обечайку и центральное тело с донным срезом. Кольцевой решеточный гаситель детонационных и ударных волн содержит кольцевые решетчатые перегородки, образующие каналы, для торможения и поворота топливовоздушного потока до дозвуковой осевой компоненты скорости с сохранением сверхзвуковой скорости в каналах гасителя. На выходе гасителя расположена кольцевая детонационная камера сгорания, начальный внутренний радиус которой меньше внутреннего радиуса колец гасителя. На выходе камеры сгорания расположена кольцевая решетка, спрямляющая выходящий поток. Изобретение направлено на интенсификацию скорости химических реакций горения и энерговыделения за счет спинового детонационного горения хорошо перемешанной топливовоздушной смеси. 2 н. и 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области двигателей для аэрокосмической отрасли.

Известен сверхзвуковой пульсирующий детонационный прямоточный воздушно-реактивный двигатель, который содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, сверхзвуковое сопло, устройство запуска двигателя и систему подачи топлива. Система подачи топлива содержит пилоны с соплами и клапаны изменения режима подачи топлива, связанные через систему управления подачей топлива с датчиками регистрации прохождения детонационными волнами заданных расстояний от входа и выхода камеры сгорания (Патент РФ №2157909). В момент запуска двигателя подают топливо и инициируют детонационную волну, дальнейшую работу двигателя обеспечивают последовательно-периодически, изменяя подачу топлива, реализуя в камере сгорания богатую и бедную топливовоздушную смесь и вызывая изменения направления и скорости перемещения волны относительно камеры сгорания от ее выхода ко входу по богатой смеси и в обратном направлении по бедной смеси, в предельном случае - по чистому воздуху, при сохранении направления движения волны против потока.

Известен пульсирующий детонационный прямоточный воздушно-реактивный двигатель, который содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, газовоздушный тракт между ними, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива, которая включает коллекторы и пилоны с топливными каналами и соплами, установленные в сверхзвуковой камере смешения. Воспламенитель топливовоздушной смеси размещен в сверхзвуковой камере сгорания в поперечной нише и выполнен постоянно работающим. Каналы системы подачи топлива выполнены открытыми с возможностью газодинамического перекрытия, полностью прерывающего подачу топлива (Патент РФ №2476705).

В известных технических решениях топливовоздушная смесь горит в детонационных волнах, пульсирующих вдоль оси двигателя, а расход топлива периодически изменяется. В сверхзвуковом пульсирующем детонационном прямоточном воздушно-реактивном двигателе расход топлива изменяет постоянно работающее механическое устройство (вентиль) в системе подачи топлива, а в пульсирующем детонационном прямоточном воздушно-реактивном двигателе - «газодинамический клапан» - ударная волна, которая на каждом цикле, полностью прерывает подачу топлива. Ударная волна движется к воздухозаборнику и может нарушить расчетные характеристики работы двигателя.

Эти недостатки не позволяют получить максимально высокую экономичность двигателя для аэрокосмических летательных аппаратов.

Известны способы и устройства для сжигания топлива в спиновой детонационной волне для создания реактивной тяги (RU 2333423 С2, 10.09.2008; RU 2459150 С2, 20.08.2012; RU 2468292 С2, 27.11.2012).

Реагент в камеру сгорания, подают равномерно по окружности камеры сгорания под углом к сплошному потоку другого реагента, подаваемого через щель в направлении выхода из камеры.

Во всех этих известных патентах потоки воздуха и топлива подаются в камеру сгорания с дозвуковой или звуковой скоростью. При более высоких скоростях спиновая детонационная волна может сильно тормозить поток, что ведет к большим потерям полного давления и высокой теплонапряженности тракта двигателя. Поэтому сжигание топлива в спиновой детонационной волне в двигателях для высоких скоростей полета не использовалось.

В основу изобретения положена задача создания способа сжигания топливовоздушной смеси и прямоточного воздушно-реактивного двигателя со спиновой детонационной волной, расширяющие числа Маха полета до высоких значений и не имеющие указанных недостатков.

Техническим результатом, достигаемым изобретением, является интенсификация скорости химических реакций горения и энерговыделения за счет спинового детонационного горения хорошо перемешанной топливовоздушной смеси.

Еще одним техническим результатом является уменьшение теплонапряженности тракта двигателя при высокоскоростных полетах с расширением чисел Маха полета до М=4-8.

Поставленная задача решается тем, что при сжигании топливо-воздушной смеси для создания реактивной тяги в прямоточном воздушно-реактивном двигателе со спиновой детонационной волной для высокоскоростных полетов набегающий высокоскоростной поток тормозят до сравнительно больших чисел Маха (М=3-4), подают в него поток топлива и закручивают, образующийся закрученный топливовоздушный поток хорошо перемешанной горючей смеси тормозят до дозвуковой «осевой» (параллельной оси двигателя) компоненты скорости, инициируют воспламенение закрученной хорошо перемешанной топливовоздушной смеси и сжигают во вращающейся («спиновой») детонационной волне, детонационные и ударные волны, распространяющиеся против потока, гасят набегающим сверхзвуковым потоком топливовоздушной смеси, а образующиеся при сжигании продукты сгорания направляют на создание реактивной тяги двигателя.

Поставленная задача решается также тем, что прямоточный воздушно-реактивный двигатель со спиновой детонационной волной для высокоскоростных полетов содержит сверхзвуковой двухступенчатый воздухозаборник с затупленным центральным телом и служащий для торможения поступающего воздушного потока до сравнительно больших чисел Маха (М=3-4), систему слива энтропийного и пограничных слоев, топливные пилоны с соплами для подачи топлива в набегающий воздушный поток, венцы которых выполнены и расположены так, что тормозят и закручивают образующийся топливовоздушный поток, кольцевой решеточный гаситель детонационных и ударных волн, содержащий кольцевые решетчатые перегородки, образующие каналы, для торможения и поворота топливо-воздушного потока до дозвуковой «осевой» (параллельной «оси» двигателя) компоненты скорости с сохранением сверхзвуковой скорости в каналах гасителя, расположенную на выходе гасителя кольцевую детонационную камеру сгорания, начальный внутренний радиус которой меньше внутреннего радиуса колец гасителя, кольцевую решетку, расположенную на выходе камеры сгорания, спрямляющую выходящий поток; осесимметричное кольцевое сопло, имеющее расширяющуюся внешнюю обечайку и центральное тело с донным срезом.

Поперечный размер каналов гасителя меньше размера ячейки детонационной волны.

Настоящее изобретение поясняется более подробным описанием осуществления способа сжигания топливовоздушной смеси на примере прямоточного воздушно-реактивного двигателя со спиновой детонационной волной, реализующего способ сжигания топливовоздушной смеси для создания реактивной тяги согласно изобретению.

На фиг. 1 изображена принципиальная схема двигателя, на фиг. 2 - пространственная картина того же двигателя, где ДВ, УВ и BP - детонационная и ударная волны и волна разрежения.

При сжигании топливо-воздушной смеси набегающий высокоскоростной поток тормозят до сравнительно больших чисел Маха (М=3-4), подают в него топливо, закручивают образующийся топливовоздушный поток хорошо перемешанной горючей смеси, тормозят до дозвуковой «осевой» (параллельной оси двигателя) компоненты скорости, инициируют воспламенение закрученной хорошо перемешанной топливовоздушной смеси и сжигают во вращающейся («спиновой») детонационной волне, детонационные и ударные волны, распространяющиеся против потока, гасят набегающим сверхзвуковым потоком топливовоздушной смеси, а образующиеся при сжигании продукты сгорания направляют на создание реактивной тяги двигателя.

Прямоточный воздушно-реактивный двигатель со спиновой детонационной волной для высокоскоростных полетов содержит последовательно размещенные двухступенчатый воздухозаборник 1 с центральным затупленным телом, служащий для торможения набегающего высокоскоростного воздушного потока (М=4-8) до сравнительно больших чисел Маха (М=3-4).

Далее по потоку размещены топливные пилоны 2, венцы которых выполнены и расположены так, что продолжают тормозить и закручивают топливо-воздушный поток, систему слива энтропийного и пограничных слоев (не показана), кольцевой решеточный гаситель 3 детонационной и ударных волн, детонационную кольцевую камеру сгорания 4 с начальным внутренним радиусом, меньшим внутреннего радиуса гасителя (то есть высота камеры сгорания 4 больше высоты гасителя 3), воспламенитель 5, расположенный в нише в начале кольцевой камеры сгорании 4, который служит инициатором создания «спиновой» детонационной волны для запуска двигателя, кольцевую решетку 6, спрямляющую поток и расположенную на выходе из камеры сгорания, осесимметричное кольцевое сопло 7, имеющее расширяющуюся внешнюю обечайку и центральное тело с донным срезом 8.

Радиус притупления центрального тела на фиг. 1 не показан ввиду его малой величины. Первая и вторая ступени воздухозаборника обозначены на фиг. 1 позициями 9 и 10, соответственно.

Кольцевой решеточный гаситель 3 детонационных и ударных волн содержит кольцевые решетчатые перегородки (в виде пластин), образующие каналы, для торможения и поворота топливо-воздушного потока до дозвуковой «осевой» (параллельной «оси» двигателя) компоненты скорости с сохранением сверхзвуковой скорости в каналах гасителя. Поперечный размер каналов гасителя 3 меньше размера ячейки детонационной волны. Достаточно большая сверхзвуковая скорость набегающего потока не пропускает ударные волны к воздухозаборнику 1.

Для сохранения сверхзвуковой скорости в каналах компенсируют вытесняющий эффект пограничных слоев и пластин - боковых стенок каналов расширением стенок (не показано).

Расположенная на выходе гасителя 3 детонационная кольцевая камера сгорания 4 имеет начальный внутренний радиус меньше внутреннего радиуса колец гасителя.

Способ осуществляется при функционировании прямоточного воздушно-реактивного двигателя со «спиновой» детонационной волной и заключается в следующем.

Набегающий высокоскоростной поток воздуха и подаваемое из пилонов 2 топливо образуют хорошо перемешанную смесь. Воздухозаборник 1, пилоны 2 и перегородки гасителя 3 тормозят образующуюся смесь до сравнительно больших чисел Маха (М=3-4), облегчая охлаждение тракта двигателя. Воспламенителем 5 инициируют воспламенение горючей смеси в начале кольцевой камеры сгорания 4 с возникновением детонационных волн. Горению способствует подача в камеру сгорания 4 закрученного сверхзвукового потока хорошо перемешанной горючей смеси, осевая компонента скорости которой на выходе из гасителя 3 меньше звуковой. Из-за того, что поперечные размеры каналов гасителя меньше размера детонационной ячейки, часть детонационной волны гаснет при входе в гаситель 3, а возникающие при этом ударные волны не могут преодолеть сверхзвуковой поток с М=3-4, так как достаточно большая сверхзвуковая скорость входящего потока не пропускает ударные волны к воздухозаборнику.

В камере сгорания 4 воспламенителем 5 инициируют горение смеси, переходящее в детонацию известным образом (см.: 1. Войцеховский Б.В. и др. Структура фронта детонации в газах. Новосибирск: СО АН СССР, 1963, 168 с.; 2. Митрофанов В.В. Детонация гомогенных и гетерогенных систем. Новосибирск: ИГЛ СО РАН, 2003. 199 с.; 3. Васильев А.А. Особенности применения детонации в двигательных установках. С. 129, 141-145; 4. Левин В.А. и др. Инициирование газовой детонации электрическими разрядами. С. 235-254; 5. Быковский Ф.А. и др. Инициирование детонации в потоках водородно-воздушных смесей. С. 521-539 / Импульсные Детонационные Двигатели. Под ред. С.М. Фролова. М.: Торус-Пресс, 2006, 92 с.; 6. Быковский Ф.А., Ждан С.А. Непрерывная спиновая детонация. Новосибирск: ИГЛ СО РАН, 2013. 422 с.).

Поток в каналах гасителя 3 сохраняют сверхзвуковым. Небольшая часть спиновой детонационной волны, входя в каждый канал гасителя 3, гаснет из-за того, что поперечные размеры каналов гасителя выбраны меньшими, чем размер детонационной ячейки. При этом образуется ударная волна, которая после взаимодействия со стенками канала гасителя 3 выносится сверхзвуковым потоком из гасителя в камеру сгорания 4.

В кольцевой раскручивающей (спрямляющей) решетке 6 перед входом в сопло 7 поток продуктов сгорания приобретает направление, близкое к осевому. Слив энтропийного и пограничных слоев через щели в сечениях стыковки ступеней воздухозаборника осуществляется в донную область, находящуюся за донным срезом 8 центрального тела.

Таким образом, в двигателе происходит сжигание заранее хорошо перемешанной горючей смеси во вращающейся по кольцевой камере нестационарной детонационной волне, часть которой гаснет, входя в гаситель 3, а возникающие при этом ударные волны не могут преодолеть набегающий сверхзвуковой поток и выйти в воздухозаборник 1.

При числах Маха полета М=4-8 реализуемый процесс горения требует меньшего, чем в прямоточном воздушно-реактивном двигателе (ПВРД) и ПВРД со сверхзвуковым горением (СПВРД), торможения потока (до М=3-4 на входе в камеру сгорания), снижая теплонапряженность тракта двигателя.

В предлагаемом изобретении - прямоточном воздушно-реактивном двигателе для высокоскоростных полетов со «спиновой» детонационной волной уменьшение теплонапряженности тракта двигателя при высокоскоростных полетах с расширением чисел Маха полета до М=4-8 соочетается с постоянной подачей и горением топлива и без нарушения работы воздухозаборника возмущениями, идущими из детонационной камеры сгорания.

1. Способ сжигания топливовоздушной смеси для создания реактивной тяги в прямоточном воздушно-реактивном двигателе со спиновой детонационной волной отличающийся тем, что набегающий высокоскоростной поток тормозят до чисел Маха в диапазоне от 3 до 4, подают в него топливо, закручивают образующийся топливовоздушный поток хорошо перемешанной горючей смеси, тормозят до дозвуковой осевой компоненты скорости, инициируют воспламенение закрученной хорошо перемешанной топливовоздушной смеси и сжигают в спиновой детонационной волне, детонационные и ударные волны, распространяющиеся против потока, гасят набегающим сверхзвуковым потоком топливовоздушной смеси, а образующиеся при сжигании продукты сгорания направляют на создание реактивной тяги двигателя.

2. Прямоточный воздушно-реактивный двигатель со спиновой детонационной волной для высокоскоростных полетов, отличающийся тем, что содержит сверхзвуковой двухступенчатый воздухозаборник с затупленным центральным телом, служащий для торможения поступающего воздушного потока до чисел Маха в диапазоне от 3 до 4, систему слива энтропийного и пограничных слоев, топливные пилоны с соплами для подачи топлива в набегающий воздушный поток, венцы которых выполнены и расположены так, что продолжают торможение и закручивают образующийся топливовоздушный поток, кольцевой решеточный гаситель детонационных и ударных волн, содержащий кольцевые решетчатые перегородки, образующие каналы, для торможения и поворота топливовоздушного потока до дозвуковой осевой компоненты скорости с сохранением сверхзвуковой скорости в каналах гасителя, расположенную на выходе гасителя кольцевую детонационную камеру сгорания, начальный внутренний радиус которой меньше внутреннего радиуса колец гасителя, кольцевую решетку, расположенную на выходе камеры сгорания, спрямляющую выходящий поток, осесимметричное кольцевое сопло, имеющее расширяющуюся внешнюю обечайку и центральное тело с донным срезом.

3. Прямоточный воздушно-реактивный двигатель по п. 2, отличающийся тем, что поперечный размер каналов гасителя меньше размера ячейки детонационной волны.

4. Прямоточный воздушно-реактивный двигатель по п. 2, отличающийся тем, что воспламенитель расположен в нише в начале кольцевой камеры сгорания и служит инициатором создания спиновой детонационной волны для запуска двигателя.



 

Похожие патенты:

Изобретение относится к способам функционирования сверхзвуковых пульсирующих детонационных прямоточных воздушно-реактивных двигателей, преимущественно при полете с числом Маха больше 6.

Изобретение относится к классу ВРД условно называемому "пульсирующими детонационными двигателями" (ПДД). .

Изобретение относится к авиационному двигателестроению, а именно, к гиперзвуковым прямоточным воздушно-реактивным двигателям. .

Способ организации детонационно-дефлаграционного горения в воздушно-реактивном двигателе для высоких скоростей полета заключается в том, что набегающий высокоскоростной сверхзвуковой поток воздуха тормозят в криволинейном пространстве воздухозаборника, по мере продвижения, в зоне образования скорости, меньшей, чем скорость детонационной волны, возникающей при горении, но большей, чем скорость ударной волны, возникающей при гашении детонационной волны.

Изобретение относится к области двигателей и движителей и может быть использовано для перемещений различных объектов, например летательных аппаратов, а также наземных или водных транспортных средств, в строительстве, при погрузоразгрузочных работах, в военной технике.

Изобретение относится к камерам сгорания прерывистого действия, таким как камеры пульсирующего горения для сжигания газообразных и жидких топлив, а также к камерам сгорания пульсирующих воздушно-реактивных двигателей.

Изобретение относится к авиационной технике, воздушно-реактивным двигателям для беспилотных летательных аппаратов, летающих мишеней, малых летательных аппаратов и может быть применено в качестве двигателя привода ротора реактивных вертолетов.

Изобретение относится к установкам, где рабочее тело используется для создания реактивной струи, а также к устройствам для сжигания топлива. .

Изобретение относится к области энергомашиностроения и может быть использовано в качестве источника электроэнергии как непосредственно, так и в составе приводов различных транспортных средств.

Изобретение относится к двигателестроению, а точнее к импульсному детонационному ракетному двигателю. .

Изобретение относится к бесклапанным пульсирующим воздушно-реактивным двигателям, в частности к двигателям беспилотных летательных аппаратов. .

Изобретение относится к бесклапанным пульсирующим воздушно-реактивным двигателям, в частности к двигателям беспилотных летательных аппаратов. .

Изобретение относится к бесклапанному многотрубному двигателю с импульсной детонацией. Двигатель содержит несколько детонационных труб, причем каждая детонационная труба имеет независимое разгрузочное выпускное отверстие, несколько детонационных труб соединены друг с другом в общем отверстии впуска воздушно-топливной смеси, при этом воздушно-топливная смесь детонирует в детонационных трубах одновременно, и общее отверстие впуска воздушно-топливной смеси минимизирует обратное давление, вызванное детонацией воздушно-топливной смеси, направляя несколько обратных ударных волн друг на друга, эффективно используя обратные давления как реактивные фронты друг для друга и эффективно снижая воздействие ударных волн, распространяющихся назад, в направлении вверх по потоку. Детонационные трубы могут быть непрямолинейными. Обеспечивается более равномерная подача энергии на турбину. 2 н. и 20 з.п. ф-лы, 12 ил.

Изобретение относится к аэрокосмическим двигателям. Детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, систему непрерывной подачи топлива, решеточный пластинчатый гаситель детонационных волн, расположенный так, что в него поступает хорошо перемешанная горючая смесь, камеру сгорания и выхлопное сопло. Сверхзвуковой воздухозаборник тормозит набегающий высокоскоростной сверхзвуковой поток воздуха до чисел Маха М=3-4. Решеточный пластинчатый гаситель содержит одну или более пластин, расположенных вдоль оси проточного тракта двигателя. Поперечный размер каждого канала, образованного пластинами гасителя, меньше, чем поперечный размер ячеек образующейся при горении детонационной волны, движущейся против потока и набегающей на тот же гаситель, что останавливает и гасит распространение детонационной волны при попадании в узкие каналы гасителя, а ударные волны, возникающие при погасании детонационной волны, сверхзвуковым потоком выносит из каналов в камеру сгорания, препятствуя разрушению ими течения набегающего потока и ограничивая движение детонационных и ударных волн частью гасителя и камерой сгорания, обеспечивая переход горения дефлаграции в детонацию, в результате чего организуется непрерывное нестационарное горение в динамически пульсирующих (возникающих и гаснущих) детонационных волнах и фронтах медленного горения. Технический результат - увеличение тяги и расширение диапазона скоростей полета до чисел Маха М=5-8 при уменьшении теплонапряженности тракта двигателя по сравнению с прямоточным воздушно-реактивным двигателем и прямоточным воздушно-реактивным двигателем со сверхзвуковым горением. 2 н. и 1 з.п. ф-лы, 2 ил.

Детонационный двигатель содержит первый и второй впуски, первое и второе сопла и сепаратор. Первый впуск имеет первый конец, соединенный по текучей среде с первой емкостью, и второй конец, соединенный по текучей среде с детонационным двигателем. Второй впуск имеет первый конец, соединенный по текучей среде со второй емкостью, и второй конец, соединенный по текучей среде с детонационным двигателем, напротив первого впуска. Первый и второй впуски выровнены по общей оси. Первое сопло соединено с первым впуском. Второе сопло соединено со вторым впуском. Сепаратор расположен между вторым концом первого впуска и вторым концом второго впуска и вдоль упомянутой общей оси. Изобретение направлено на стабилизацию детонацию смеси. 2 н. и 17 з.п. ф-лы, 15 ил.

Газотурбинный двигатель с пульсирующей работой содержит симметрично расположенные камеры сгорания с окнами входа и выхода над ними, прилегающие к торцу диска ротора. Диск ротора выполнен по окружности против открытых окон камер глухой стороной, впадиной с лопатками турбины, продувочным окном и каналом сообщении, В диске имеются сквозные окна, а с противоположной стороны к нему прилегают выхлопные патрубки. Изобретение направлено на повышение надежности. 3 ил.

Способ организации рабочего процесса в непрерывно-детонационной камере сгорания турбореактивного двигателя включает двухступенчатое преобразование химической энергии топлива в полезную механическую работу и в кинетическую энергию реактивной струи. При осуществлении способа инициируют одну или несколько самоподдерживающихся детонационных волн в кольцевой камере сгорания с последующим преобразованием химической энергии топлива частично в тепловую и частично в кинетическую энергию при его сжигании в непрерывно-детонационном режиме в кольцевой камере сгорания при повышенном среднем давлении, получаемом с помощью компрессора, а затем частично преобразуют тепловую и кинетическую энергии течения в механическую энергию с помощью турбины, передающей крутящий момент компрессору, а также другим вспомогательным агрегатам, и в кинетическую энергию реактивной струи с помощью реактивного сопла. Крутящий момент на турбине создают проникающими из камеры сгорания вверх по потоку одной или несколькими косыми ударными волнами, движущимися в следе одной или нескольких самоподдерживающихся детонационных волн, непрерывно циркулирующих в кольцевой камере сгорания, а горячие продукты непрерывно-детонационного горения направляют в окружающее пространство непосредственно через реактивное сопло. Турбореактивный двигатель для осуществления способа содержит входное устройство, компрессор, инициатор детонации, кольцевую камеру сгорания, турбину и выходное реактивное сопло. Турбина размещена вверх по потоку от кольцевой камеры сгорания, а выходное реактивное сопло установлено вниз по потоку от последней. Изобретения позволят повысить эффективность рабочего процесса в турбореактивном двигателе. 2 н. и 3 з.п. ф-лы, 10 ил.

Изобретение относится к области двигателестроения. Пульсирующий газотурбинный двигатель содержит корпус, ротор, снабженный реактивными двигателями с компрессором на валу, и газовую турбину, посаженную коаксиально на вал ротора. Ротор, с тангенциально установленными пульсирующими реактивными двигателями, встроен в раздвоенную в виде вилки газовую турбину с лопатками, установленную коаксиально на валу ротора, охватывая его симметрично с обеих сторон. Лопатки турбины выполнены с фасонными вырезами с небольшим зазором по контуру сопел пульсирующих реактивных двигателей, выполненных в виде параболических камер. В фокусах параболических камер установлены свечи зажигания топливовоздушной смеси, поступающей из проходных каналов через обратные клапаны, расположенные в вершинах параболических камер, в которые по топливным каналам с помощью конических воздухозаборников, установленных на тыльных сторонах параболических камер, выполняющих функцию компрессоров и образующих струйные насосы, подается топливо в виде топливовоздушной смеси (аэрозоля). Из выходных сопел параболических камер сфокусированные потоки продуктов горения топливовоздушной смеси направлены на лопатки газовой турбины. Противоположно направленные крутящие моменты на валу ротора и на коаксиальном валу турбины суммируются с помощью дифференциала. Изобретение направлено на повышение КПД пульсирующего газотурбинного двигателя. 3 ил.
Наверх