Способ получения базовых компонентов высокоиндексных нефтяных масел



Способ получения базовых компонентов высокоиндексных нефтяных масел
Способ получения базовых компонентов высокоиндексных нефтяных масел
Способ получения базовых компонентов высокоиндексных нефтяных масел
Способ получения базовых компонентов высокоиндексных нефтяных масел
Способ получения базовых компонентов высокоиндексных нефтяных масел
Способ получения базовых компонентов высокоиндексных нефтяных масел
Способ получения базовых компонентов высокоиндексных нефтяных масел
Способ получения базовых компонентов высокоиндексных нефтяных масел

 


Владельцы патента RU 2573573:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" (RU)

Изобретение относится к получению базовых компонентов высокоиндексных нефтяных масел.

Способ получения базовых компонентов высокоиндексных нефтяных масел осуществляют из неконвертированного остатка гидрокрекинга вакуумного газойля, получаемого в процессе вакуумной перегонки мазутов сернистых и высокосернистых нефтей. Способ характеризуется тем, что неконвертированный остаток гидрокрекинга подвергают ректификации с целью отбора фракции 400-500°C с последующей ее экстракцией N-метилпирролидоном и последующим разделением на экстрактный и рафинатный растворы, отгонкой N-метилпирролидона из рафинатного и экстрактного растворов, депарафинизацией полученного рафината бинарным растворителем МЭК-толуол и последующей отгонкой растворителя из фильтрата. Технический результат - получение высокоиндексного базового масла с ультранизким содержанием серы. 8 табл.

 

Изобретение относится к процессам нефтепереработки, в частности к получению базовых компонентов высокоиндексных нефтяных масел.

На экологические характеристики нефтяных масел, в том числе остаточных, основное влияние оказывают содержание серы и групповой состав углеводородов. На технические характеристики остаточных масел оказывает влияние индекс вязкости.

В качестве основных требований к базовым нефтяным маслам в таблице 1 приведены спецификации в соответствии с классификацией API.

В качестве возможного прототипа приведен патент на СПОСОБ ПОЛУЧЕНИЯ БАЗОВЫХ КОМПОНЕНТОВ НЕФТЯНЫХ МАСЕЛ (Патент RU 2109793, дата публикации: 27.04.1998; заявитель: Акционерное общество открытого типа "Уфанефтехим"; авторы: Гилязиев Р.Ф., Ситников С.А., Мингараев С.С., Хамитов Г.Г., Гайсин И.Х., Батыров Н.А.), в котором рекомендован способ получения базовых компонентов нефтяных масел путем каталитического гидрокрекинга нефтяного сырья с получением остаточной фракции гидрокрекинга, вакуумной ректификации последней с выделением легкой и тяжелой фракций, их депарафинизации селективными растворителями и доочистки, отличающийся тем, что регулирование выходов легкой и тяжелой фракций проводят изменением количества остаточной фракции гидрокрекинга, идущей на рециркуляцию в сырье гидрокрекинга в пределах 0-60 мас. % на сырье процесса гидрокрекинга и температуры конца кипения сырья процесса гидрокрекинга в пределах 480-520°C.

Недостатком вышеприведенных примеров является отсутствие регулирования группового химического состава получаемого базового масла (таблица 1).

При создании изобретения ставилась задача получения высокоиндексного остаточного базового масла с ультранизким содержанием серы и минимальным содержанием полициклических ароматических углеводородов из доступной сырьевой базы, соответствующего требованиям II и/или III группы по классификации API (таблица 1).

Вышеуказанная задача решается способом получения базовых компонентов высокоиндексных нефтяных масел из неконвертированного остатка топливного гидрокрекинга вакуумного газойля, получаемого в процессе вакуумной перегонки мазутов сернистых и высокосернистых нефтей, в котором, согласно изобретению, неконвертированный остаток топливного гидрокрекинга сернистых и высокосернистых нефтей подвергают ректификации с целью отбора фракции 400-500°C с последующей ее экстракцией N-метилпирролидоном и последующим разделением на экстрактный и рафинатный растворы, отгонкой N-метилпирролидона из рафинатного и экстрактного растворов, депарафинизацией полученного рафината бинарным растворителем метилэтилкетон (МЭК)-толуол и последующей отгонкой растворителя из фильтрата.

Предлагаемый способ за счет применения ректификации и последующей экстракции селективным растворителем целевой фракции неконвертированного остатка гидрокрекинга вакуумного газойля позволяет получить базовый компонент высокоиндексных нефтяных масел из доступного сырья.

Сущность предлагаемого способа иллюстрируется следующим примером.

На первом этапе из неконвертированного остатка топливного гидрокрекинга путем вакуумной ректификации на стандартном аппарате АРН-2 в лабораторных условиях по ГОСТ 11011-85 была получена фракция с интервалами кипения 400-500°C (таблицы 2 и 3).

На втором этапе полученная фракция неконвертированного остатка гидрокрекинга с интервалами кипения 400-500° была подвергнута экстракции селективным растворителем N-метилпирролидоном. Экстракцию проводили однократно в обогреваемой делительной воронке с мешалкой и регулируемым термостатом. Механическое перемешивание при температуре эстракции проводилось в течение 30 минут при атмосферном давлении. Скорость вращения мешалки выбиралась такой, чтобы было эффективное перемешивание без образования большой воронки и устойчивой эмульсии. Разделение слоев проводили при температуре экстракции в течение 30 минут в чистые конические термостойкие колбы.

На третьем этапе рафинатный раствор промывали дистиллированной водой при интенсивном механическом перемешивании без образования эмульсии и температуре 60-70° до полного удаления растворителя. Количество водных промывок - не менее семи. Количество воды на одну промывку - не менее одного объема рафинатного раствора в делительной воронке. Удаление промывочной воды с растворителем проводилось путем отстаивания в делительной воронке.

На четвертом этапе полученный рафинат профильтровали через двойной обеззоленный бумажный фильтр с хлористым кальцием марки «ХЧ» при температуре 70°C для удаления следов воды.

Для полученного образца рафината были выполнены определения основных физико-химических показателей (таблица 4) и составлен материальный баланс экстракции (таблица 5).

Баланс разгонки остатка гидрокрекинга представлен в таблице 3.

Примерный выход фракции 400 - к.к. составляет 49% об.

Согласно приведенным в таблице 4 результатам анализов, рациональнее всего использовать пробу, полученную при соотношении растворитель:сырье 1,5:1 и температуре процесса 60°C, так как ее физико-химические показатели качества (выход рафината, содержание общей серы, плотность, индекс вязкости, показатель преломления) более всего оптимальны для последующей депарафинизации.

На пятом этапе по выбранному оптимальному технологическому режиму селективной очистки накопили образец рафината для получения депарафинированного масла с температурой застывания - 15°C. Депарафинизацию проводили бинарным растворителем МЭК-толуол в лабораторных условиях на обеззоленном бумажном фильтре под вакуумом с последующей отгонкой растворителя из полученного фильтрата. Технологический режим депарафинизации рафината представлен в таблице 6.

Материальный баланс депарафинизации рафината представлен в таблице 7.

Результаты определения физико-химических свойств полученного образца депарафинированного масла представлены в таблице 8.

Полученное депарафинированное масло (таблица 8) полностью отвечает требованиям II группы масел по классификации API, а именно содержанию общей серы 0,0011 (≤0,03) и индексу вязкости 114 (80-119).

Параметры качества получаемых базовых компонентов высокоиндексных нефтяных масел из остатка гидрокрекинга регулируются путем изменения:

- температуры экстракции фракции 400-500°C N-метилпирролидоном,

- объемным соотношением растворитель:сырье в процессе экстракции.

Контроль показателей базового масла в соответствии с требованиями систем стандартов ГОСТ и API.

Таким образом, при создании данного изобретения решена задача получения базовых компонентов высокоиндексных нефтяных масел с ультранизким содержанием серы и минимальным содержанием полициклических ароматических углеводородов из доступной сырьевой базы, соответствующих требованиям II группы по классификации API (таблицы 1 и 8).

Способ получения базовых компонентов высокоиндексных нефтяных масел из неконвертированного остатка топливного гидрокрекинга вакуумного газойля, получаемого в процессе вакуумной перегонки мазутов сернистых и высокосернистых нефтей, характеризующийся тем, что неконвертированный остаток топливного гидрокрекинга сернистых и высокосернистых нефтей подвергают ректификации с целью отбора фракции 400-500°C с последующей ее экстракцией N-метилпирролидоном и последующим разделением на экстрактный и рафинатный растворы, отгонкой N-метилпирролидона из рафинатного и экстрактного растворов, депарафинизацией полученного рафината бинарным растворителем МЭК-толуол и последующей отгонкой растворителя из фильтрата.



 

Похожие патенты:

Настоящее изобретение относится к способу получения основ низкозастывающих арктических масел, при этом нефтяное сырье - фракция гидрокрекинга вакуумного газойля, выкипающая при температуре 280°C-КК, подвергается гидроизомеризации путем ее контактирования с водородом при объемном соотношении водорода к сырью 500-1000 нм3/м3 на катализаторе, содержащем, мас.%: Pt - 0,30-0,35, WO3 - 3,0-4,0, SiO2 - 8,0-38,8, In2O - 0,4-0,42, алюмосиликат - остальное, при температуре 240-320°C, парциальном давлении водорода 3,5-6,0 МПа, объемной скорости подачи сырья 0,5-2,0 ч-1 с получением маловязкой основы низкозастывающего арктического масла, имеющей кинематическую вязкость при температуре 100°C - 2,11-5,05 мм2/с и температуру застывания продукта - минус 62 - минус 65°C, а для получения средневязкой и вязкой основы низкозастывающего арктического масла проводят гидрирование полученной маловязкой основы низкозастывающего арктического масла при температуре 240-260°C, парциальном давлении водорода 4,0-5,0 МПа, объемной скорости подачи сырья 0,25-0,5 ч-1, соотношении водорода к сырью 800-900 нм3/м3 на сульфидированном платиновом катализаторе, нанесенном на оксид алюминия, с содержанием платины в пересчете на прокаленный при температуре 850°C катализатор - 0,45-0,5 мас.%, последующее фракционирование с выделением средневязкой основы низкозастывающего арктического масла, имеющей кинематическую вязкость при температуре 100°C - 5,06-10,10 мм2/с и температуру застывания продукта - минус 62 - минус 65°C, и вязкой основы низкозастывающего арктического масла, имеющей кинематическую вязкость при температуре 100°C - 10,11-15,12 мм2/с и температуру застывания продукта - минус 62 - минус 65°C.

Настоящее изобретение относится к защитной смазке для металлических деталей, включающей отработанное минеральное моторное масло, при этом смазка дополнительно содержит продукты окисления отработанного минерального моторного масла, состоящие из нейтральных смол и асфальтенов, при следующем соотношении компонентов, мас.

Настоящее изобретение относится к консервационной консистентной смазке, содержащей нефтяное масло, азотсодержащую антикоррозионную присадку и борсодержащую добавку, при этом в качестве азотсодержащей антикоррозионной присадки она содержит смесь продукта конденсации моноэтаноламина, борной кислоты, пентаэритрита и олеиновой кислоты в мольном соотношении 1,5:0,2:(0,2-0,4): 1,5 соответственно и соединения класса азолов, а в качестве борсодержащей добавки смазка содержит продукт взаимодействия глицидилметакрилата и борной кислоты в мольном соотношении 0,5:1 при следующем соотношении компонентов, мас.%: продукт конденсации 30,0-50,0; соединение класса азолов 4,0-8,0; продукт взаимодействия 4,0-8,0; нефтяное масло до 100.
Настоящее изобретение относится к пластичной смазке, содержащей смесь двух масел, одно из которых индустриальное, литиевое мыло 12-оксистеариновой кислоты, политетрафторэтилен и полисилоксановую жидкость, суспензию стеарата и ацетата меди в касторовом масле, которая дополнительно содержит модифицированный олигомерами капролактама графит в соотношении компонентов 1:0,1:0,1:4-1:0,3:0,3:6, а в качестве второго масла смазка содержит рапсовое масло при следующем соотношении компонентов, мас.%: литиевое мыло 12-оксистеариновой кислоты - 9-19; политетрафторэтилен - 2-6; полисилоксановая жидкость - 16-27; суспензия модифицированного графита, стеарата и ацетата меди в касторовом масле в соотношении 1:0,1:0,1:4-1:0,3:0,3:6 - 1,5-6; рапсовое масло - 15-22; индустриальное масло - остальное.

Изобретение относится к композиции смазочного масла, которая включает: базовое масло в количестве более 85 весовых частей на 100 весовых частей смазочной композиции и один или несколько ингибиторов коррозии на основе алкилэфиркарбоновых кислот, имеющих формулу, приведенную ниже, в которой R обозначает C6-C18 алкильную группу с прямой или разветвленной цепью, а n обозначает число от 0 до 5.
Настоящее изобретение относится к защитной смазке для стыковых и сварных соединений металлических деталей сельскохозяйственной техники при хранении ее на открытых площадках, которая содержит отработанное моторное масло, при этом дополнительно содержит фосфатидный концентрат и порошок цинка, при следующем соотношении компонентов, мас.%: отработанное масло - 88; фосфатидный концентрат - 10; порошок цинка - 2.
Настоящее изобретение относится к пластичной смазке для тяжелонагруженных узлов трения, содержащей базовое масло, синтетические жирные кислоты и гидроокись кальция, при этом в качестве базового масла используют очищенное отработанное моторное масло, а в качестве синтетических жирных кислот - кубовые остатки производства синтетических жирных кислот, при следующем соотношении компонентов: очищенное отработанное моторное масло - 68-70 масс.%, кубовые остатки производства синтетических жирных кислот - 27-30 масс.%, гидроокись кальция - 2-3 масс.%.
Настоящее изобретение относится к пластичной смазке на основе минеральных масел или их смесей, содержащих высокодисперсные наполнители, при этом она подвергнута модификации наночастицами железа, образующегося после перемешивания в реакторе со скоростной мешалкой от 1000 до 2500 об/мин с жидким пентакарбонилом железа и дальнейшим его термическим разложением при температуре 250-300°C при работающей мешалке в течение 30-120 минут, а затем в том же реакторе к полученной массе добавляется тройная смесь порошковых наполнителей - графита (А), дисульфида молибдена (Б) и тетрафторэтилена (В) в соотношении А:Б:В от 40:40:20 до 80:10:10, при этом она содержит в массовых частях: Минеральное масло или смесь минеральных масел 100 Наночастицы железа 0,3-4,0 Тройная смесь наполнителей 15-60 Техническим результатом настоящего изобретения является получение пластичной смазки с улучшенными температурными, антифрикционными и прочностными характеристиками.
Настоящее изобретение относится к пластичной смазке, содержащей синтетическое масло или смесь синтетических масел с кинематической вязкостью при 40°C от 5 до 700 мм2/с, загущенных неорганическим загустителем, и дополнительно содержащей наполнитель для повышения термостойкости, полярный реагент и полимер при следующем соотношении компонентов, вес.%: неорганический загуститель 5,0-30,0 наполнитель для повышения термостойкости 0,5-12,0 полимер 0,5-10,0 полярный реагент 0,5-5,0 синтетическое масло или смесь синтетических масел остальное. Техническим результатом настоящего изобретения является повышение температуры каплепадения смазки до 310°С, а также коллоидной стабильности, повышение водостойкости и, как следствие, адгезионных свойств.

Изобретение относится к составам гидравлических жидкостей, используемых в автоматических коробках передач. .

Изобретение относится к процессам переработки и касается способа получения высокоиндексных базовых масел путем селективной очистки растворителями фракций вакуумного дистиллята и деасфальтизата гудрона от смол и асфальтенов с последующим гидрооблагораживанием при температуре 300-380°C, объемной скорости подачи сырья не более 2 ч-1, парциальном давлении водорода 24-35 кгс/см2 в присутствии катализатора, содержащего соединения никеля, вольфрама и/или молибдена, с последующей депарафинизацией растворителем стабилизированного продукта гидрооблагораживания.

Изобретение относится к способу повышения качества остатка перегонки углеводородов, включающему гидрокрекинг остатка на первой стадии реакции с образованием потока, выходящего с первой стадии; гидрокрекинг фракции деасфальтизированного масла на второй стадии реакции с образованием потока, выходящего со второй стадии; фракционирование потока, выходящего с первой стадии, и потока, выходящего со второй стадии, с извлечением, по меньшей мере, одной дистиллятной углеводородной фракции и остаточной углеводородной фракции; подачу остаточной углеводородной фракции в установку деасфальтизации растворителем с получением фракции асфальтенов и фракции деасфальтизированного масла.
Изобретение относится к способу получения базового масла для смазочных материалов, где базовое масло для смазочных материалов получают на первой стадии, где сырьевое масло, содержащее нормальные парафины С20 или более, подвергают реакции изомеризации таким образом, что содержание нормальных парафинов С20 или более составляет 6-20% масс.

Изобретение относится к получению углеводородного топлива. Изобретение касается способа, включающего суспензионный гидрокрекинг тяжелого сырья с получением продуктов суспензионного гидрокрекинга; разделение указанных продуктов суспензионного гидрокрекинга с получением потока пека и потока тяжелого ВГО; смешивание, по меньшей мере, части пекового потока с растворителем для того, чтобы растворить часть пека в растворителе; и смешивание растворенной части пека, по меньшей мере, с частью потока тяжелого ВГО с образованием смешанного продукта.

Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа переработки нефти, включающего фракционирование нефтяного сырья совместно со светлыми фракциями термической конверсии и гидроконверсии с получением светлых фракций, тяжелого газойля и остатка, гидроочистку светлых фракций, деасфальтизацию остатка фракционирования совместно с остатком термической конверсии и, по меньшей мере, частью остатка гидроконверсии, с получением деасфальтизата и асфальта, при этом смесь тяжелого газойля и деасфальтизата подвергают термической конверсии с получением светлых фракций и остатка, направляемого на деасфальтизацию, а асфальт подвергают гидроконверсии с получением светлых фракций и остатка гидроконверсии, по меньшей мере, часть которого направляют на деасфальтизацию, а балансовую часть сжигают с целью получения энергии для собственных нужд и выработки концентрата ванадия и никеля, кроме того, сумму светлых фракций, полученных при фракционировании, термической конверсии и гидроконверсии, подвергают гидроочистке и стабилизации с получением дизельного топлива и легкой фракции стабилизации, которую подвергают каталитической переработке и фракционированию продуктов переработки, например с получением автобензина.
Изобретение относится к процессам нефтепереработки, в частности к получению экологически чистого дизельного топлива. Изобретение касается способа, включающего разделение исходной прямогонной дизельной фракции на легкий (фр.

Изобретение относится к повышению качества нефтяного сырья. Изобретение касается способа повышения качества остатка перегонки, включающего гидрокрекинг остатка на первой стадии (14) реакции с образованием потока, выходящего с первой стадии; гидрокрекинг фракции деасфальтизированного масла на второй стадии (22) реакции с образованием потока, выходящего со второй стадии; подачу потока, выходящего с первой стадии, и потока, выходящего со второй стадии, в сепарационную систему (26); фракционирование потока, выходящего с первой стадии, и потока, выходящего со второй стадии, в сепарационной системе (26) с извлечением, по меньшей мере, одной дистиллятной углеводородной фракции и остаточной углеводородной фракции; и подачу остаточной углеводородной фракции в установку (32) растворной деасфальтизации с получением фракции асфальтенов и фракции деасфальтизированного масла.

Изобретение относится к способу конверсии тяжелого сырья, включающему следующие стадии: смешивание тяжелого сырья с подходящим катализатором гидрирования и направление полученной смеси в зону первой гидрообработки (ГО1), в которую вводят водород или смесь водорода и H2S; направление потока, выходящего из зоны первой гидрообработки (ГО1), содержащего продукт реакции гидрообработки и катализатор в диспергированной фазе, в зону первой перегонки (П1), содержащую одну или более стадий мгновенного испарения, и/или атмосферной перегонки, и/или вакуумной перегонки, посредством чего разделяют различные фракции, поступающие из реакции гидрообработки; направление по меньшей мере части остатка после перегонки (вязкого остаточного нефтепродукта) или жидкости, выходящей из установки мгновенного испарения зоны первой перегонки (П1), содержащих катализатор в диспергированной фазе, обогащенных сульфидами металлов, полученными путем деметаллизации сырья и, возможно, содержащих минимальное количество кокса, в зону деасфальтизации (ДА) в присутствии растворителей, получая два потока, один из которых состоит из деасфальтированного масла (ДАМ), а другой содержит асфальтены и твердые продукты, предназначенные для направления на сброс или на извлечение металлов; направление потока, состоящего из деасфальтированного масла (ДАМ), в зону второй гидрообработки (ГО2), в которую вводят водород или смесь водорода и H2 S и подходящий катализатор гидрирования, содержащий переходный металл в концентрации, составляющей от 1000 до 30000 частей на миллион; направление выходящего потока из зоны второй гидрообработки (ГО2), содержащего продукт реакции гидрообработки и катализатор в диспергированной фазе, в зону второй перегонки (П2), содержащую одну или более стадий мгновенного испарения и/или перегонки, посредством чего разделяют различные фракции, поступающие из зоны второй гидрообработки; направление рециклом по меньшей мере части остатка после перегонки или жидкости, выходящей из блока мгновенного испарения зоны второй перегонки (П2), содержащих катализатор в диспергированной фазе, в зону второй гидрообработки (ГО2).

Изобретение относится к способу конверсии тяжелого сырья, выбираемого из тяжелой сырой нефти, остатков после перегонки сырой нефти или поступающих из каталитической обработки, вязких остаточных нефтепродуктов из установки висбрекинга, вязких остаточных нефтепродуктов после термообработки, битумов из нефтеносных песков, жидкостей из углей различного происхождения и другого высококипящего сырья углеводородного происхождения, известного как «темные масла», включающему следующие стадии: смешивание тяжелого сырья с подходящим катализатором гидрирования и направление полученной смеси в зону первой гидрообработки (ГО1), в которую вводят водород или смесь водорода и H2S; направление выходящего потока из зоны первой гидрообработки (ГО1), содержащего продукт реакции гидрообработки и катализатор в диспергированной фазе, в зону первой перегонки (П1), содержащую одну или более стадий мгновенного испарения, и/или атмосферной перегонки, и/или вакуумной перегонки, посредством чего разделяют различные фракции, поступающие из реакции гидрообработки; направление по меньшей мере части остатка после перегонки (вязкого остаточного нефтепродукта) или жидкости, выходящей из установки мгновенного испарения зоны первой перегонки (П1), содержащих катализатор в диспергированной фазе, обогащенных сульфидами металлов, полученных путем деметаллизации сырья, и, возможно, минимальное количество кокса, в зону деасфальтизации (ДА) в присутствии растворителей или в зону физического разделения, которая отлична от деасфальтизации, получая, в случае зоны деасфальтизации, два потока, один из которых состоит из деасфальтированного масла (ДАМ), а другой содержит асфальтены, по меньшей мере частично рециркулируемые в зону первой гидрообработки, а в случае зоны физического разделения, отличной от деасфальтизации, - отделенные твердые вещества и поток жидкости; направление потока, состоящего из деасфальтированного масла (ДАМ) или потока жидкости, отделенного в зоне физического разделения, отличной от деасфальтизации, в зону второй гидрообработки (ГО2), в которую вводят водород или смесь водорода и H2S и подходящий катализатор гидрирования; направление выходящего потока из зоны второй гидрообработки (ГО2), содержащего продукт реакции гидрообработки и катализатор в диспергированной фазе, в зону второй перегонки (П2), содержащую одну или более стадий мгновенного испарения и/или перегонки, посредством чего разделяют различные фракции, поступающие из зоны второй гидрообработки; направление рециклом по меньшей мере части остатка после перегонки или жидкости, покидающей установку мгновенного испарения зоны второй перегонки (П2), содержащих катализатор в диспергированной фазе, в зону второй гидрообработки (ГО2), где две указанные стадии гидрообработки ГО1 и ГО2 осуществляют при различных жестких условиях.

Изобретение относится к нефтехимической либо нефтеперерабатывающей промышленности. Изобретение касается способа получения неканцерогенного ароматического технологического масла, содержащего менее 3,0% экстракта ПЦА по методу IP-346, включающего очистку масляных фракций нефти селективными растворителями и выделение экстракта, дополнительную обработку экстракта полярным растворителем и получение рафината в качестве целевого продукта, в качестве полярного растворителя используют смесь циклического карбоната с сорастворителем, где сорастворителем является вещество или несколько веществ, выбранных из группы: фенолы, эфиры, нитрилы, амиды, лактамы.
Наверх