Способ изготовления матричного фотоприемника

Изобретение относится к технологии изготовления полупроводниковых фотоприемников и может использоваться для создания многоэлементных фотоприемников различного назначения. Изобретение обеспечивает утоньшение базовой области фоточувствительного элемента с получением требуемого качества и воспроизводимости границ и толщины. В способе изготовления матричного фотоприемника на лицевой стороне фоточувствительного элемента до гибридизации протравливают канавку определенной глубины. В процессе утоньшения, когда полировка доходит до дна канавки, вследствие заданной ширины углубления происходит резкое изменение габаритов базовой области, которое можно зафиксировать визуально. В этот момент утоньшение прекращают - полученный кристалл имеет ровные края и фиксированный размер, заданный фотошаблонами под углубление. При этом для изготовления углубления после травления индиевых микроконтактов, не снимая нижний защитный и верхний фоторезисты, напыляют тонкую пленку SiO. Далее делают фотолитографию по SiO с помощью прямоугольного фотошаблона, открывающего место под углубление. Затем следует плазмохимическое травление SiO в месте углубления и жидкостное химическое травление непосредственно углубления на требуемую величину. Удаляют фоторезист, плазмохимически стравливают оставшуюся пленку SiO и удаляют остатки фоторезиста. 3 з.п. ф-лы, 12 ил.

 

Изобретение относится к технологии изготовления полупроводниковых фотоприемников и может использоваться для создания многоэлементных фотоприемников различного назначения.

Изготовление матричного фотоприемника (МФП) из объемного материала требует утоньшения базовой области (фоточувствительного слоя) матричного фоточувствительного элемента (МФЧЭ) (типично до толщины 8÷12 мкм). Известен способ изготовления МФП [патент на изобретение РФ №2460174], принятый за аналог, заключающийся в том, что утоньшение базовой области фоточувствительного элемента проводят после гибридизации отдельно вырезанных матричного фоточувствительного элемента и БИС считывания. Процесс утоньшения включает безабразивную химико-механическую полировку (БХМП) с использованием сферического полировального диска для получения заданной вогнутости поверхности до толщины базовой области фоточувствительного элемента (типично 80÷100 мкм) и химико-динамическую полировку (ХДП) до конечной толщины, при которой происходит компенсация вогнутости полученной на стадии БХМП с формированием неплоскостности поверхности при размере МФП порядка 10 мм не хуже ±2 мкм.

Однако, в известном способе изготовления МФП не описано, каким образом можно добиться качественных границ фоточувствительного элемента и хорошей воспроизводимости его размеров после утоньшения.

Прототипом предложенного изобретения принят метод утоньшения кристалла для получения улучшенного выхода годных приборов и повышения надежности [US Patent 6465344]. В этом изобретении представлены методы для формирования кристалла, которые приводят к минимальному краевому и поверхностному повреждению. Кристалл, сформированный этими методами, менее чувствителен к растрескиванию и разламыванию. Неровные края фоточувствительного элемента могут привести к образованию сколов, из которых в дальнейшем могут образовываться трещины. Это особенно критично в случае полупроводниковых материалов, работающих при температурах жидкого азота (InSb, KPT), которые постоянно подвергаются деформации вследствие термоциклов. Также немаловажно получение воспроизводимых размеров фоточувствительного слоя. Таким образом, существенно улучшается выход годных и характеристики устройств, изготовленных с помощью кристалла, сформированного этими методами. Для того чтобы создать кристалл, в подложке вокруг периферийного края кристалла формируются углубления процессами, которые вызывают только минимальное повреждение краев кристалла. Подложка разрезается через углубления в секциях, содержащих кристалл без соприкосновения с краем кристалла. Секции затем монтируются на держатель и утоньшаются для производства кристалла.

Далее изложение сопровождается ссылками на чертеж:

фиг. 1 - изображение матричного кристалла из антимонида индия с шагом 30 мкм и индиевыми микроконтактами, сформированными на Ni площадках с окнами в защитном диэлектрике после операции нанесения фоторезиста марки SP-16 толщиной 3 мкм на матричный кристалл с изготовленными индиевыми микроконтактами;

фиг. 2 - изображение матричного кристалла из антимонида индия с шагом 30 мкм и индиевыми микроконтактами, сформированными на Ni площадках с окнами в защитном диэлектрике после операции контактной фотолитографии для вскрытия области углубления и ее жидкостного химического травления;

фиг. 3 - изображение матричного кристалла из антимонида индия с шагом 30 мкм и индиевыми микроконтактами, сформированными на Ni площадках с окнами в защитном диэлектрике после отмывки от фоторезиста;

фиг. 4 - этап формирования канавки - изображение матричного кристалла из антимонида индия после травления индиевых микроконтактов, не снимая нижний защитный и верхний фоторезисты, нанесенные на защитные диэлектрики (для полупроводникового материала из InSb обычно используются SiO и анодный окисел);

фиг. 5 - этап формирования канавки - изображение матричного кристалла из антимонида индия после напыления тонкой пленки SiO (типично 1000Å);

фиг. 6 - этап формирования канавки - изображение матричного кристалла из антимонида индия после фотолитографии по SiO с помощью прямоугольного фотошаблона, открывающего место под углубление;

фиг. 7 - этап формирования канавки - изображение матричного кристалла из антимонида индия после плазмохимического травления SiO в месте углубления и жидкостного химического травления непосредственно углубления на требуемую величину (типично 8÷12 мкм);

фиг. 8 - этап формирования канавки - изображение изготовленного фоточувствительного элемента с канавкой после удаления фоторезиста, плазмохимического стравливания оставшейся пленки SiO и удаления остатков фоторезиста;

фиг. 9 - изображение матричного кристалла с шагом 20 мкм и изготовленными индиевыми микроконтактами после операции нанесения фоторезиста марки SP-16 толщиной 3 мкм и пленки SiO толщиной 1000Å;

фиг. 10 - изображение матричного кристалла с шагом 20 мкм и изготовленными индиевыми микроконтактами после операции фотолитографии для вскрытия области углубления, ее жидкостного химического травления и отмывки от фоторезиста;

фиг. 11 - фото матричного фотоприемника без использования канавки в качестве сравнения границ МФЧЭ без использования канавки;

фиг. 12 - фото окончательного результата изготовления матричного фотоприемника с использованием канавки.

На чертежах обозначены:

1 - изготовленные индиевые микроконтакты на кристалле.

2 - Ni площадки на кристалле.

3 - окна в защитном диэлектрике.

4 - результаты травления через поры в нанесенной пленке фоторезиста.

5 - нижний защитный и верхний фоторезисты.

6 - защитный диэлектрик (для полупроводникового материала из InSb обычно используется SiO).

7 - защитный диэлектрик (для полупроводникового материала из InSb обычно используется анодный окисел).

8 - тонкая пленка SiO (типично 1000Å).

9 - место углубления.

10 - непосредственно углубление.

11 - схематичное изображение изготовленного фоточувствительного элемента с канавкой.

Однако в способе изготовления МФП, взятом за прототип, не описано, каким образом формируются углубления наиболее бездефектным жидкостным химическим травлением с уже изготовленными индиевыми микроконтактами 1 на кристалле (фиг. 1). Дело в том, что стандартная форма защиты с помощью фоторезиста неэффективна из-за большой высоты индиевых микроконтактов (обычно более 5 мкм) по сравнению с толщиной применяемых фоторезистов (обычно 1-3 мкм). В результате, нанесенная пленка фоторезиста (например, с помощью центрифуги) содержит значительное количество пор 4 (фиг. 1-3), особенно на краевых выступах на вершинах индиевых микроконтактов, через которые проникает жидкостной химический травитель, используемый при формировании углублений в секциях, и стравливает индиевые микроконтакты. В качестве примера на фиг. 1-3 приведены изображения матричного кристалла из антимонида индия с шагом 30 мкм и индиевыми микроконтактами 1, сформированными на Ni площадках 2 с окнами 3 в защитном диэлектрике. Приведены изображения: после операции нанесения фоторезиста марки SP-16 толщиной 3 мкм на матричный кристалл с изготовленными индиевыми микроконтактами (фиг. 1); после операции контактной фотолитографии для вскрытия области углубления и ее жидкостного химического травления (фиг. 2), после отмывки от фоторезиста (фиг. 3). Хорошо видны стравленные части индиевых микроконтактов 4. Видно, что изотропное жидкостное химическое травление индия чаще всего начинается в углах на вершинах индиевых микроконтактов, приводя к сферическим травленным поверхностям. Особенно эта проблема усугубляется в случае формирования индиевых микроконтактов с малым шагом (20 мкм и менее).

Предложенное изобретение решает задачу утоньшения базовой области фоточувствительного элемента с получением требуемого качества и воспроизводимости границ и толщины.

Технический результат в изобретении достигается тем, что на лицевой стороне фоточувствительного элемента до гибридизации протравливают канавку определенной глубины. В процессе утоньшения, когда ХДП доходит до дна канавки, вследствие заданной ширины углубления происходит резкое изменение габаритов базовой области, которое можно зафиксировать визуально. В этот момент утоньшение прекращают - полученный кристалл имеет ровные края и фиксированный размер, заданный фотошаблонами под углубление. При этом для изготовления углубления после травления индиевых микроконтактов 1, не снимая нижний защитный и верхний фоторезисты 5 (фиг. 4) нанесенные на защитные диэлектрики 6 и 7 (для полупроводникового материала из InSb обычно используются SiO и анодный окисел), напыляют тонкую пленку 8 SiO (типично 1000Å) (фиг. 5). Далее делают фотолитографию по SiO с помощью прямоугольного фотошаблона, открывающего место под углубление (фиг.6). Затем следует плазмохимическое травление SiO в месте углубления 9 и жидкостное химическое травление непосредственно углубления 10 на требуемую величину (типично 8÷12 мкм) (фиг. 7). Удаляют фоторезист, плазмохимически стравливают оставшуюся пленку SiO и удаляют остатки фоторезиста. Изобретение поясняется чертежом, где на фиг. 8 приведено схематичное изображение изготовленного фоточувствительного элемента с канавкой 11.

Предлагаемый способ был опробован на предприятии-заявителе при создании экспериментальных и опытных образцов матричных фотоприемников на основе антимонида индия (InSb). Однако предлагаемый способ применим и к другим полупроводниковым материалам. Результаты приведены на изображениях после операции нанесения фоторезиста марки SP-16 толщиной 3 мкм и пленки SiO толщиной 1000Å на матричный кристалл с шагом 20 мкм и изготовленными индиевыми микроконтактами (фиг. 9); после операции фотолитографии для вскрытия области углубления, ее жидкостного химического травления, после отмывки от фоторезиста (фиг. 10). Окончательный результат изготовления матричного фотоприемника с использованием канавки приведен на фото (фиг. 12) и в качестве сравнения границ МФЧЭ без использования канавки - на фото (фиг. 11).

1. Способ изготовления матричного фотоприемника, заключающийся в том, что при утоньшении базовой области на лицевой стороне фоточувствительного элемента протравливают канавку определенной глубины, фоточувствительный элемент гибридизируют с БИС считывания и утоньшают базовую область фоточувствительного элемента до уровня протравленной канавки, отличающийся тем, что для получения канавки заданной глубины после травления индиевых микроконтактов, не снимая нижний защитный и верхний фоторезисты, напыляют тонкую пленку SiO, делают фотолитографию по SiO с фотошаблоном, открывающим место под углубление, затем производят плазмохимическое травление SiO в месте углубления и жидкостное химическое травление непосредственно углубления на требуемую величину, удаляют фоторезист, плазмохимически стравливают оставшуюся пленку SiO и удаляют остатки фоторезиста.

2. Способ по п.1, отличающийся тем, что для изготовления матричного фотоприемника используется полупроводниковый материал из антимонида индия.

3. Способ по п.1, отличающийся тем, что для получения канавки заданной глубины после травления индиевых микроконтактов, не снимая нижний защитный и верхний фоторезисты, напыляют пленку SiO толщиной 1000Å.

4. Способ по п.1, отличающийся тем, что на лицевой стороне фоточувствительного элемента протравливают канавку глубиной 8÷12 мкм.



 

Похожие патенты:

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц, выполненных на основе полупроводниковых материалов.

Коллекторный электрод для солнечного элемента изготавливают трафаретной печатью проводящей пасты, при этом трафаретную печать повторяют многократно. Скорость прокатывания во время второй или последующей трафаретных печатей является больше, чем скорость прокатывания во время первой трафаретной печати.

Изобретение относится к области технологии изготовления полупроводниковых приборов методом газофазной эпитаксии с использованием металлорганических соединений, в частности к технологии выращивания гетероструктуры для полупроводникового полупрозрачного фотокатода с активным слоем из арсенида галлия, фоточувствительного в видимом и ближнем инфракрасном диапазоне.

Изобретение относится к технологии создания фоточувствительных халькопиритных пленок, которые могут найти применение при создании солнечных батарей. Способ получения фоточувствительных халькопиритных пленок включает два этапа, на первом получают прекурсорную пленку, а на втором проводят ее отжиг.

Изобретение относится к технологии изготовления матричных фотоприемников ИК-излучения на основе антимонида индия, теллурида кадмия-ртути. Способ изготовления матричного фотоприемника согласно изобретению включает формирование на полупроводниковой пластине р+-n- или n+-р-перехода по всей поверхности, формирование защитной маски фоторезиста с рисунком ФЧЭ с последующим травлением мезаструктур на глубину, при которой р+-n- или n+-р-переход выходит на поверхность у основания мезаструктуры под углом меньше 60°.

Изобретение относится к области контроля фотоэлектрических устройств и касается способа исследования пространственного распределения характеристик восприимчивости фотоэлектрических преобразователей в составе солнечных батарей к оптическому излучению.

Согласно изобретению предложена печь для вжигания электрода солнечного элемента, которая снабжена транспортировочным элементом, транспортирующим подложку с нанесенной на нее проводящей пастой, секцией нагрева, которая нагревает подложку и вжигает проводящую пасту, и секцией охлаждения, которая охлаждает нагретую подложку.

Изобретение обеспечивает фотогальваническое устройство и способ изготовления такого устройства. Фотогальваническое устройство согласно изобретению включает в себя комбинацию полупроводниковых структур и защитный слой.
Изобретение относится к области электрического оборудования, в частности к полупроводниковым приборам, а именно к способам получения трехкаскадных преобразователей.

Изобретение относится к области микроэлектроники, в частности к созданию тонкопленочных элементов матрицы неохлаждаемого типа в тепловых приемниках излучения (болометров) высокой чувствительности. Способ получения чувствительного элемента матрицы теплового приемника на основе оксида ванадия представляет собой нанесение металлической пленки ванадия и электродов методами магнетронного распыления и последующей лифт-офф литографии на диэлектрическую подложку.

Изобретение относится к способу получения структурированного электропроводящего покрытия на подложке. Технический результат - предоставление способа получения структурированного металлического покрытия на подложке, при реализации которого формируют структурированный металлический слой с четко определенными кантами и краями, что позволяет напечатать картину с высоким разрешением и структурами малых размеров, применимую в солнечных батареях. Достигается тем, что сначала на поверхность подложки наносят монослой или олигослой вещества, гидрофобизирующего поверхность, а затем на подложку наносят вещество, содержащее электропроводящие частицы, в соответствии с заранее заданным узором. Кроме того, изобретение касается применения этого способа для изготовления солнечных батарей или печатных плат, а также электронной детали, включающей в себя подложку, на которую нанесена структурированная электропроводящая поверхность, причем на подложку нанесен монослой или олигослой материала, гидрофобизирующего поверхность, а на монослой или олигослой нанесена структурированная электропроводящая поверхность. 2 н. и 5 з.п. ф-лы.

Изобретение относится к технологии фотодиодов на основе эпитаксиальных p-i-n структур GaN/AlxGa1-xN, преобразующих излучение ультрафиолетовой области спектра. Изобретение может быть использовано в производстве матричных фоточувствительных элементов приборов гражданского и военного назначения. Сущность изобретения состоит в том, что травление гетероэпитаксиальных структур GaN/AlxGa1-xN после применения стандартных методов фотолитографии проводят с использованием заранее известных скоростей стравливания отдельных слоев AlxGa1-xN с разными значениями доли Al-x (0,00÷0,65). В качестве метода травления используют метод ионно-лучевого травления ионами Ar (аргона). Бомбардировка ионами инертного газа (Ar) при невысоких скоростях травления позволяет достичь необходимой анизотропности и однородности глубины травления. Скорость ионно-лучевого травления ионами аргона эпитаксиальных слоев AlxGa1-xN уменьшается с увеличением содержания мольной доли алюминия в эпитаксиальном слое в 3-4 раза при изменении молярной доли алюминия от 0 до 0.65. Изобретение обеспечивает возможность формирования меза-структуры с множеством отдельных p-i-n диодов с обеспечением необходимой однородности глубины травления структуры до слоя n+-AlxGa1-xN и без прерывания процесса травления. 2 ил., 1 пр.
Изобретение относится к солнечной энергетике. Способ формирования активной p+-области солнечных элементов включает процесс диффузии бора с применением жидкого источника - треххлористого бора (BCl3). В качестве источника диффузанта используется жидкий источник - треххлористый бор (BCl3) при следующем расходе газов: кислород O2=12 л/ч, азот N2=380 л/ч, N2+H2=380 л/ч, BCl3=2 л/ч, 1000 ppm. Изобретение позволяет получить боросиликатный слой из жидкого источника треххлористого бора (BCl3) c обеспечением уменьшения разброса значений поверхностного сопротивления по кремниевой пластине, снижение температуры и длительности процесса. 3 пр.

При изготовлении фотопреобразователя согласно изобретению на тыльной стороне подложки GaSb n-типа проводимости выращивают методом эпитаксии высоколегированный контактный слой n+-GaSb, а на лицевой стороне подложки - буферный слой n-GaSb. Наносят на лицевую поверхность подложки диэлектрическую пленку. Создают химическим травлением окна в диэлектрической пленке. Легируют диффузией цинка из газовой фазы в квазизамкнутом контейнере поверхностный слой структуры GaSb фотопреобразователя. Удаляют на тыльной стороне подложки p-n-переход. Осаждают тыльный и лицевой контакты и отжигают их. Разделяют структуру травлением на отдельные фотоэлементы и наносят антиотражающее покрытие. Изобретение позволяет увеличить КПД фотопреобразователей на основе GaSb при высоких плотностях падающего излучения. 2 з.п. ф-лы, 2 ил., 1 пр.

Способ изготовления гетероструктурного солнечного элемента включает выращивание полупроводниковой гетероструктуры на германиевой подложке, создание омических контактов со стороны тыльной поверхности германиевой подложки и со стороны фронтальной поверхности гетероструктуры, нанесение просветляющего покрытия на фронтальную поверхность гетероструктуры, создание разделительной мезы через маску фоторезиста путем травления первой канавки в полупроводниковой гетероструктуре до германиевой подложки. После создания первой канавки осуществляют пассивацию поверхности первой канавки диэлектриком, после чего проводят травление через маску из фоторезиста второй канавки в германиевой подложке глубиной не менее 2 мкм и шириной на 5-10 мкм уже ширины первой канавки и покрывают вторую канавку диэлектриком. Способ согласно изобретению позволяет увеличить выход годных гетероструктурных солнечных элементов и повысить надежность их эксплуатации особенно в условиях космического пространства. 1 з.п. ф-лы, 2 ил., 5 пр.

Изобретение относится к технологии изготовления трехкаскадных фотопреобразователей со встроенным диодом. Согласно изобретению на трехкаскадной полупроводниковой структуре GaInP/GaAs/Ge, выращенной на германиевой подложке с p-AlGaInP слоем потенциального барьера, p++-AlGaAs и n++-GaInP слоями туннельного перехода верхнего каскада, создают фоторезистивную маску с окнами лицевых контактов фотопреобразователя и диода, удаляют в диодном окне маски полупроводниковые слои, причем вытравливают p-AlGaInP слой потенциального барьера полностью или частично в смеси концентрированных соляной и фтористоводородной кислот в количественном соотношении объемных частей 5÷7 и 3÷5 соответственно, p++-AlGaAs слой туннельного перехода удаляют в смеси концентрированных соляной и лимонной (50%) кислот в количественном соотношении объемных частей 6÷10 и 8÷12 соответственно. Технический результат изобретения заключается в повышении однородности и воспроизводимости процесса травления, а также в улучшении параметров встроенного диода. 2 ил., 1 табл.

Изобретение относится к конструкции матричных полупроводниковых фотоприемников и может использоваться для создания многоэлементных фотоприемников различного назначения. Сборка фоточувствительного модуля на растр заключается в том, что приклейку криостойким клеем фоточувствительного модуля осуществляют с помощью многоконтактной зондовой головки с симметричным расположением 2n (n=1, 2…) зондов (обычно из нержавеющей стали), которые находятся точно на контактных площадках БИС считывания, предназначенных для вывода сигналов посредством сварки (обычно золотых) выводов на растр. Поскольку давить на утоньшенный фоточувствительный элемент недопустимо, а осуществлять давление по всей периферийной области небезопасно, так как в этой области находится схема БИС считывания, которую можно повредить, то нагрузку необходимо осуществлять на наиболее защищенные от повреждения области, которыми являются контактные площадки, предназначенные для тестирования БИС считывания и сварки выводов на растр. При типичном количестве контактных площадок (~30 шт.) на БИС считывания приклейку криостойким клеем фоточувствительного модуля, содержащего утоньшенный фоточувствительный элемент, на растр осуществляют с помощью штатного контактного устройства с фиксированным расположением зондов (типично из вольфрама), предназначенного для контроля кристаллов БИС считывания, которое позволяет осуществлять равномерную нагрузку на фоточувствительный модуль с величиной, необходимой для уменьшения клеевого слоя до толщины 3-5 мкм, обеспечивающей прочное соединение криостойким клеем при охлаждении до рабочей температуры жидкого азота. Изобретение позволяет бездефектно и качественно проводить сборку фоточувствительного модуля на растр во время приклейки криостойким клеем. 1 з.п. ф-лы, 4 ил.

Изобретение относится к радиографии, в частности к системам цифрового изображения в рентгеновских и гамма-лучах с помощью многоканальных полупроводниковых детекторов на основе полуизолирующего арсенида галлия. Предложенные конструкция и способ ее изготовления позволяют реализовать принцип внутреннего усиления в многоканальных полупроводниковых детекторах. Полупроводниковый детектор включает формирование полуизолирующей i-области, которая выполнена на основе арсенида галлия, компенсированного хромом, и металлические контакты к ней, при этом между металлическими контактами и i-областью формируют слой полупроводника, например арсенида индия, толщиной менее диффузионной длины электронов, инжектируемых из металлического контакта в i-область, и понижающий высоту потенциального барьера контакта металл-GaAs до энергии теплового равновесия кристалла, kT. Формирование осуществляют путем нанесения слоя индия поверх металлических контактов к i-области и последующего отжига контактов в условиях, достаточных для проплавления первичного металлического контакта. 2 н.п. ф-лы, 1 табл., 2 ил.
Изобретение относится к технологии изготовления солнечных элементов. Способ согласно изобретению заключается в том, что на поверхности подложки формируют тонкий слой пленки диоксида кремния за счет горения водорода и сухого кислорода в среде азота при расходе газов: N2=450 л/ч; H2=75 л/ч; O2=750±50 л/ч. Температура рабочей зоны 900±10°C. Разброс по толщине пленки диоксида кремния на подложке составил 3,0÷3,5%. Изобретение обеспечивает получение на поверхности подложки однородной и равномерной диэлектрической пленки диоксида кремния при низких температурах. 3 пр.

Изобретение относится к технологии обработки поверхности полупроводниковых пластин, в частности к процессам очистки поверхности пластин между технологическими операциями, для изготовления солнечных элементов. Способ согласно изобретению заключается в том, что с поверхности пластин происходит полное удаление окисла в растворе состоящей из плавиковой кислоты и деионизованной воды, при комнатной температуре раствора. Процесс удаления окисла считается законченным, в том случае, когда раствор скатывается с поверхности обратной стороны кремниевой пластины. Реакция обработки поверхности кремниевой пластины протекает с большой скоростью, длительность процесса составляет не более 20 секунд. При этом не происходит ухудшения качества поверхности кремния. Предлагаемый способ обеспечивает удаление остатков окисла с поверхности обратной стороны перед напылением и способствует улучшению адгезии, благодаря которой увеличивается процент выхода годных кристаллов - 98%. 3 пр.
Наверх